Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters

Publication year range
1.
Nature ; 633(8029): 433-441, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39112714

ABSTRACT

The risk of early recurrent events after stroke remains high despite currently established secondary prevention strategies1. Risk is particularly high in patients with atherosclerosis, with more than 10% of patients experiencing early recurrent events1,2. However, despite the enormous medical burden of this clinical phenomenon, the underlying mechanisms leading to increased vascular risk and recurrent stroke are largely unknown. Here, using a novel mouse model of stroke-induced recurrent ischaemia, we show that stroke leads to activation of the AIM2 inflammasome in vulnerable atherosclerotic plaques via an increase of circulating cell-free DNA. Enhanced plaque inflammation post-stroke results in plaque destabilization and atherothrombosis, finally leading to arterioarterial embolism and recurrent stroke within days after the index stroke. We confirm key steps of plaque destabilization also after experimental myocardial infarction and in carotid artery plaque samples from patients with acute stroke. Rapid neutrophil NETosis was identified as the main source of cell-free DNA after stroke and NET-DNA as the causative agent leading to AIM2 inflammasome activation. Neutralization of cell-free DNA by DNase treatment or inhibition of inflammasome activation reduced the rate of stroke recurrence after experimental stroke. Our findings present an explanation for the high recurrence rate after incident ischaemic events in patients with atherosclerosis. The detailed mechanisms uncovered here provide clinically uncharted therapeutic targets for which we show high efficacy to prevent recurrent events. Targeting DNA-mediated inflammasome activation after remote tissue injury represents a promising avenue for further clinical development in the prevention of early recurrent events.


Subject(s)
Atherosclerosis , Cell-Free Nucleic Acids , DNA-Binding Proteins , Disease Models, Animal , Inflammasomes , Plaque, Atherosclerotic , Recurrence , Stroke , Animals , Inflammasomes/metabolism , Mice , Male , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/immunology , Humans , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Stroke/immunology , Stroke/metabolism , Stroke/complications , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/metabolism , Cell-Free Nucleic Acids/genetics , Female , Extracellular Traps/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/immunology , Neutrophils/immunology , Neutrophils/metabolism , Inflammation/pathology , Mice, Inbred C57BL
2.
Nat Immunol ; 15(8): 738-48, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24952504

ABSTRACT

Assembly of the NLRP3 inflammasome activates caspase-1 and mediates the processing and release of the leaderless cytokine IL-1ß and thereby serves a central role in the inflammatory response and in diverse human diseases. Here we found that upon activation of caspase-1, oligomeric NLRP3 inflammasome particles were released from macrophages. Recombinant oligomeric protein particles composed of the adaptor ASC or the p.D303N mutant form of NLRP3 associated with cryopyrin-associated periodic syndromes (CAPS) stimulated further activation of caspase-1 extracellularly, as well as intracellularly after phagocytosis by surrounding macrophages. We found oligomeric ASC particles in the serum of patients with active CAPS but not in that of patients with other inherited autoinflammatory diseases. Our findings support a model whereby the NLRP3 inflammasome, acting as an extracellular oligomeric complex, amplifies the inflammatory response.


Subject(s)
Carrier Proteins/immunology , Caspase 1/immunology , Inflammasomes/immunology , Inflammation/immunology , Macrophages/immunology , Animals , Apoptosis Regulatory Proteins , CARD Signaling Adaptor Proteins , Carrier Proteins/blood , Carrier Proteins/genetics , Caspase 1/genetics , Caspases/genetics , Caspases/immunology , Caspases, Initiator , Cells, Cultured , Cryopyrin-Associated Periodic Syndromes/blood , Cytoskeletal Proteins/blood , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/immunology , HEK293 Cells , Humans , Inflammasomes/blood , Interleukin-1beta/blood , Interleukin-1beta/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Phagocytosis/immunology , Signal Transduction/immunology
3.
Clin Immunol ; 249: 109287, 2023 04.
Article in English | MEDLINE | ID: mdl-36907540

ABSTRACT

Sensorineural hearing loss is the most common type of hearing loss in adults and occurs due to damage of the inner ear caused by a range of factors including ageing, excessive noise, toxins, and cancer. Auto-inflammatory disease is also a cause of hearing loss and there is evidence that inflammation could contribute to hearing loss in other conditions. Within the inner ear there are resident macrophage cells that respond to insults and whose activation correlates with damage. The NLRP3 inflammasome is a multi-molecular pro-inflammatory protein complex that forms in activated macrophages and may contribute to hearing loss. The aim of this article is to discuss the evidence for the NLRP3 inflammasome and associated cytokines as potential therapeutic targets for sensorineural hearing loss in conditions ranging from auto-inflammatory disease to tumour-induced hearing loss in vestibular schwannoma.


Subject(s)
Ear, Inner , Hearing Loss, Sensorineural , Hearing Loss , Adult , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hearing Loss, Sensorineural/etiology , Hearing Loss, Sensorineural/metabolism , Ear, Inner/metabolism , Hearing Loss/complications
4.
PLoS Genet ; 16(11): e1009084, 2020 11.
Article in English | MEDLINE | ID: mdl-33147210

ABSTRACT

The liver possesses a remarkable regenerative capacity based partly on the ability of hepatocytes to re-enter the cell cycle and divide to replace damaged cells. This capability is substantially reduced upon chronic damage, but it is not clear if this is a cause or consequence of liver disease. Here, we investigate whether blocking hepatocyte division using two different mouse models affects physiology as well as clinical liver manifestations like fibrosis and inflammation. We find that in P14 Cdk1Liv-/- mice, where the division of hepatocytes is abolished, polyploidy, DNA damage, and increased p53 signaling are prevalent. Cdk1Liv-/- mice display classical markers of liver damage two weeks after birth, including elevated ALT, ALP, and bilirubin levels, despite the lack of exogenous liver injury. Inflammation was further studied using cytokine arrays, unveiling elevated levels of CCL2, TIMP1, CXCL10, and IL1-Rn in Cdk1Liv-/- liver, which resulted in increased numbers of monocytes. Ablation of CDK2-dependent DNA re-replication and polyploidy in Cdk1Liv-/- mice reversed most of these phenotypes. Overall, our data indicate that blocking hepatocyte division induces biological processes driving the onset of the disease phenotype. It suggests that the decrease in hepatocyte division observed in liver disease may not only be a consequence of fibrosis and inflammation, but also a pathological cue.


Subject(s)
Cell Division/physiology , Hepatocytes/physiology , Liver Cirrhosis/metabolism , Animals , Apoptosis/physiology , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Cycle , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Fibrosis/physiopathology , Hepatitis/metabolism , Hepatitis/physiopathology , Hepatocytes/metabolism , Inflammation/pathology , Liver/metabolism , Liver/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Male , Mice , Mice, Knockout , Signal Transduction
5.
J Neurosci ; 41(13): 3025-3038, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33597269

ABSTRACT

Alzheimer's disease is a devastating neurodegenerative disease with a dramatically increasing prevalence and no disease-modifying treatment. Inflammatory lifestyle factors increase the risk of developing Alzheimer's disease. Zinc deficiency is the most prevalent malnutrition in the world and may be a risk factor for Alzheimer's disease potentially through enhanced inflammation, although evidence for this is limited. Here we provide epidemiological evidence suggesting that zinc supplementation was associated with reduced risk and slower cognitive decline, in people with Alzheimer's disease and mild cognitive impairment. Using the APP/PS1 mouse model of Alzheimer's disease fed a control (35 mg/kg zinc) or diet deficient in zinc (3 mg/kg zinc), we determined that zinc deficiency accelerated Alzheimer's-like memory deficits without modifying amyloid ß plaque burden in the brains of male mice. The NLRP3-inflammasome complex is one of the most important regulators of inflammation, and we show here that zinc deficiency in immune cells, including microglia, potentiated NLRP3 responses to inflammatory stimuli in vitro, including amyloid oligomers, while zinc supplementation inhibited NLRP3 activation. APP/PS1 mice deficient in NLRP3 were protected against the accelerated cognitive decline with zinc deficiency. Collectively, this research suggests that zinc status is linked to inflammatory reactivity and may be modified in people to reduce the risk and slow the progression of Alzheimer's disease.SIGNIFICANCE STATEMENT Alzheimer's disease is a common condition mostly affecting the elderly. Zinc deficiency is also a global problem, especially in the elderly and also in people with Alzheimer's disease. Zinc deficiency contributes to many clinical disorders, including immune dysfunction. Inflammation is known to contribute to the risk and progression of Alzheimer's disease; thus, we hypothesized that zinc status would affect Alzheimer's disease progression. Here we show that zinc supplementation reduced the prevalence and symptomatic decline in people with Alzheimer's disease. In an animal model of Alzheimer's disease, zinc deficiency worsened cognitive decline because of an enhancement in NLRP3-driven inflammation. Overall, our data suggest that zinc status affects Alzheimer's disease progression, and that zinc supplementation could slow the rate of cognitive decline.


Subject(s)
Alzheimer Disease/blood , Cognitive Dysfunction/blood , Disease Progression , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Zinc/blood , Adult , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/diet therapy , Animals , Cells, Cultured , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/diet therapy , Dietary Supplements , Female , Follow-Up Studies , Humans , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Zinc/administration & dosage , Zinc/deficiency
6.
Glia ; 70(7): 1301-1316, 2022 07.
Article in English | MEDLINE | ID: mdl-35353387

ABSTRACT

The NLRP3 (NLR family, pyrin domain containing 3) inflammasome is a multi-protein complex responsible for the activation of caspase-1 and the subsequent cleavage and activation of the potent proinflammatory cytokines IL-1ß and IL-18, and pyroptotic cell death. NLRP3 is implicated as a driver of inflammation in a range of disorders including neurodegenerative diseases, type 2 diabetes, and atherosclerosis. A commonly reported mechanism contributing to NLRP3 inflammasome activation is potassium ion (K+ ) efflux across the plasma membrane. Identification of K+ channels involved in NLRP3 activation remains incomplete. Here, we investigated the role of the K+ channel THIK-1 in NLRP3 activation. Both pharmacological inhibitors and cells from THIK-1 knockout (KO) mice were used to assess THIK-1 contribution to macrophage NLRP3 activation in vitro. Pharmacological inhibition of THIK-1 inhibited caspase-1 activation and IL-1ß release from mouse bone-marrow-derived macrophages (BMDMs), mixed glia, and microglia in response to NLRP3 agonists. Similarly, BMDMs and microglia from THIK-1 KO mice had reduced NLRP3-dependent IL-1ß release in response to P2X7 receptor activation with ATP. Overall, these data suggest that THIK-1 is a regulator of NLRP3 inflammasome activation in response to ATP and identify THIK-1 as a potential therapeutic target for inflammatory disease.


Subject(s)
Diabetes Mellitus, Type 2 , Inflammasomes , Potassium Channels, Tandem Pore Domain/metabolism , Adenosine Triphosphate/metabolism , Animals , Caspase 1/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Potassium/metabolism , Potassium Channels
7.
Glia ; 70(6): 1068-1083, 2022 06.
Article in English | MEDLINE | ID: mdl-35150591

ABSTRACT

Microglia, resident brain immune cells, are critical in orchestrating responses to central nervous system (CNS) injury. Many microglial functions, such as phagocytosis, motility and chemotaxis, are suggested to rely on chloride channels, including the volume-regulated anion channel (VRAC), but studies to date have relied on the use of pharmacological tools with limited specificity. VRAC has also been proposed as a drug target for acute CNS injury, and its role in microglial function is of considerable interest for developing CNS therapeutics. This study aimed to definitively confirm the contribution of VRAC in microglia function by using conditional LRRC8A-knockout mice, which lacked the essential VRAC subunit LRRC8A in microglia. We demonstrated that while VRAC contributed to cell volume regulation, it had no effect on phagocytic activity, cell migration or P2YR12-dependent chemotaxis. Moreover, loss of microglial VRAC did not affect microglial morphology or the extent of ischemic damage following stroke. We conclude that VRAC does not critically regulate microglial responses to brain injury and could be targetable in other CNS cell types (e.g., astrocytes) without impeding microglial function. Our results also demonstrate a role for VRAC in cell volume regulation but show that VRAC is not involved in several major cellular functions that it was previously thought to regulate, and point to other, alternative mechanisms of chloride transport in innate immunity.


Subject(s)
Microglia , Stroke , Animals , Cell Size , Ion Transport , Membrane Proteins/metabolism , Mice , Microglia/metabolism
8.
Immunology ; 165(4): 460-480, 2022 04.
Article in English | MEDLINE | ID: mdl-35137954

ABSTRACT

The NLRP3 inflammasome is a multiprotein complex that regulates caspase-1 activation and subsequent interleukin (IL)-1ß and IL-18 release from innate immune cells in response to infection or injury. Derivatives of the metabolites itaconate and fumarate, dimethyl itaconate (DMI), 4-octyl itaconate (4OI) and dimethyl fumarate (DMF) limit both expression and release of IL-1ß following NLRP3 inflammasome activation. However, the direct effects of these metabolite derivatives on NLRP3 inflammasome responses require further investigation. Using murine bone marrow-derived macrophages, mixed glia and organotypic hippocampal slice cultures (OHSCs), we demonstrate that DMI, 4OI and DMF pretreatments inhibit pro-inflammatory cytokine production in response to lipopolysaccharide (LPS), as well as inhibit subsequent NLRP3 inflammasome activation induced by nigericin. DMI, 4OI, DMF and monomethyl fumarate (MMF), another fumarate derivative, also directly inhibited biochemical markers of NLRP3 activation in LPS-primed macrophages, mixed glia, OHSCs and human macrophages in response to nigericin and imiquimod, including ASC speck formation, caspase-1 activation, gasdermin D cleavage and IL-1ß release. DMF, an approved treatment of multiple sclerosis, as well as DMI, 4OI and MMF, inhibited NLRP3 activation in macrophages in response to lysophosphatidylcholine, which is used to induce demyelination, suggesting a possible mechanism for DMF in multiple sclerosis through NLRP3 inhibition. The derivatives also reduced pro-IL-1α cleavage in response to the calcium ionophore ionomycin. Together, these findings reveal the immunometabolic regulation of both the priming and activation steps of NLRP3 activation in macrophages. Furthermore, we highlight itaconate and fumarate derivatives as potential therapeutic options in NLRP3- and IL-1α-driven diseases, including in the brain.


Subject(s)
Inflammasomes , Multiple Sclerosis , Animals , Caspase 1/metabolism , Caspases/metabolism , Fumarates/metabolism , Fumarates/pharmacology , Humans , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Multiple Sclerosis/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nigericin/pharmacology , Succinates
9.
Artif Organs ; 46(2): 259-272, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34662442

ABSTRACT

INTRODUCTION: Recent experimental evidence suggests normothermic machine perfusion of the vascularized composite allograft results in improved preservation compared to static cold storage, with less reperfusion injury in the immediate post-operative period. However, metabolic acidosis is a common feature of vascularized composite allograft perfusion, primarily due to the inability to process metabolic by-products. We evaluated the impact of combined limb-kidney perfusion on markers of metabolic acidosis and inflammation in a porcine model. METHODS: Ten paired pig forelimbs were used for this study, grouped as either limb-only (LO, n = 5) perfusion, or limb-kidney (LK, n = 5) perfusion. Infrared thermal imaging was used to determine homogeneity of perfusion. Lactate, bicarbonate, base, pH, and electrolytes, along with an inflammatory profile generated via the quantification of cytokines and cell-free DNA in the perfusate were recorded. RESULTS: The addition of a kidney to a limb perfusion circuit resulted in the rapid stabilization of lactate, bicarbonate, base, and pH. Conversely, the LO circuit became progressively acidotic, correlating in a significant increase in pro-inflammatory cytokines. Global perfusion across the limb was more homogenous with LK compared to LO. CONCLUSION: The addition of a kidney during limb perfusion results in significant improvements in perfusate biochemistry, with no evidence of metabolic acidosis.


Subject(s)
Acidosis/prevention & control , Composite Tissue Allografts , Kidney/physiology , Perfusion/methods , Animals , Forelimb , Inflammation/prevention & control , Reperfusion Injury , Sus scrofa
10.
Immunology ; 162(1): 84-91, 2021 01.
Article in English | MEDLINE | ID: mdl-32954500

ABSTRACT

Excessive and dysregulated inflammation is known to contribute to disease progression. HSP90 is an intracellular chaperone known to regulate inflammatory processes including the NLRP3 inflammasome and secretion of the pro-inflammatory cytokine interleukin(IL)-1ß. Here, primarily using an in vitro inflammasome ASC speck assay, and an in vivo model of murine peritonitis, we tested the utility of HSP90 inhibitors as anti-inflammatory molecules. We report that the HSP90 inhibitor EC144 effectively inhibited inflammatory processes including priming and activation of NLRP3 in vitro and in vivo. A specific inhibitor of the ß HSP90 isoform was ineffective suggesting the importance of the α isoform in inflammatory signalling. EC144 inhibited IL-1ß and IL-6 in vivo when administered orally, and was brain-penetrant. These data suggest that HSP90 inhibitors may be useful for targeting inflammation in diverse diseases that are worsened by the presence of inflammation.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Cytokines/metabolism , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Peritonitis/metabolism , Protein Isoforms/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL