Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 266
Filter
Add more filters

Publication year range
1.
Cell ; 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39481380

ABSTRACT

Ovarian cancer is resistant to immunotherapy, and this is influenced by the immunosuppressed tumor microenvironment (TME) dominated by macrophages. Resistance is also affected by intratumoral heterogeneity, whose development is poorly understood. To identify regulators of ovarian cancer immunity, we employed a spatial functional genomics screen (Perturb-map), focused on receptor/ligands hypothesized to be involved in tumor-macrophage communication. Perturb-map recapitulated tumor heterogeneity and revealed that interleukin-4 (IL-4) promotes resistance to anti-PD-1. We find ovarian cancer cells are the key source of IL-4, which directs the formation of an immunosuppressive TME via macrophage control. IL-4 loss was not compensated by nearby IL-4-expressing clones, revealing short-range regulation of TME composition dictating tumor evolution. Our studies show heterogeneous TMEs can emerge from localized altered expression of cancer-derived cytokines/chemokines that establish immune-rich and immune-excluded neighborhoods, which drive clone selection and immunotherapy resistance. They also demonstrate the potential of targeting IL-4 signaling to enhance ovarian cancer response to immunotherapy.

2.
Cell ; 185(7): 1223-1239.e20, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35290801

ABSTRACT

While CRISPR screens are helping uncover genes regulating many cell-intrinsic processes, existing approaches are suboptimal for identifying extracellular gene functions, particularly in the tissue context. Here, we developed an approach for spatial functional genomics called Perturb-map. We applied Perturb-map to knock out dozens of genes in parallel in a mouse model of lung cancer and simultaneously assessed how each knockout influenced tumor growth, histopathology, and immune composition. Moreover, we paired Perturb-map and spatial transcriptomics for unbiased analysis of CRISPR-edited tumors. We found that in Tgfbr2 knockout tumors, the tumor microenvironment (TME) was converted to a fibro-mucinous state, and T cells excluded, concomitant with upregulated TGFß and TGFß-mediated fibroblast activation, indicating that TGFß-receptor loss on cancer cells increased TGFß bioavailability and its immunosuppressive effects on the TME. These studies establish Perturb-map for functional genomics within the tissue at single-cell resolution with spatial architecture preserved and provide insight into how TGFß responsiveness of cancer cells can affect the TME.


Subject(s)
Neoplasms , Tumor Microenvironment , Animals , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genomics , Mice , Neoplasms/genetics , Transforming Growth Factor beta/genetics
3.
Nat Immunol ; 25(8): 1367-1382, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992254

ABSTRACT

Upregulation of diverse self-antigens that constitute components of the inflammatory response overlaps spatially and temporally with the emergence of pathogen-derived foreign antigens. Therefore, discrimination between these inflammation-associated self-antigens and pathogen-derived molecules represents a unique challenge for the adaptive immune system. Here, we demonstrate that CD8+ T cell tolerance to T cell-derived inflammation-associated self-antigens is efficiently induced in the thymus and supported by redundancy in cell types expressing these molecules. In addition to thymic epithelial cells, this included thymic eosinophils and innate-like T cells, a population that expressed molecules characteristic for all major activated T cell subsets. We show that direct T cell-to-T cell antigen presentation by minute numbers of innate-like T cells was sufficient to eliminate autoreactive CD8+ thymocytes. Tolerance to such effector molecules was of critical importance, as its breach caused by decreased thymic abundance of a single model inflammation-associated self-antigen resulted in autoimmune elimination of an entire class of effector T cells.


Subject(s)
Antigen Presentation , Autoantigens , CD8-Positive T-Lymphocytes , Inflammation , Thymocytes , Thymus Gland , Animals , Autoantigens/immunology , CD8-Positive T-Lymphocytes/immunology , Mice , Thymus Gland/immunology , Inflammation/immunology , Antigen Presentation/immunology , Thymocytes/immunology , Thymocytes/metabolism , Mice, Inbred C57BL , Immunity, Innate , Autoimmunity/immunology , Immune Tolerance/immunology , Mice, Transgenic , Mice, Knockout , Lymphocyte Activation/immunology , Eosinophils/immunology
4.
Nat Immunol ; 24(5): 792-801, 2023 05.
Article in English | MEDLINE | ID: mdl-37081148

ABSTRACT

Natural killer (NK) cells are commonly reduced in human tumors, enabling many to evade surveillance. Here, we sought to identify cues that alter NK cell activity in tumors. We found that, in human lung cancer, the presence of NK cells inversely correlated with that of monocyte-derived macrophages (mo-macs). In a murine model of lung adenocarcinoma, we show that engulfment of tumor debris by mo-macs triggers a pro-tumorigenic program governed by triggering receptor expressed on myeloid cells 2 (TREM2). Genetic deletion of Trem2 rescued NK cell accumulation and enabled an NK cell-mediated regression of lung tumors. TREM2+ mo-macs reduced NK cell activity by modulating interleukin (IL)-18/IL-18BP decoy interactions and IL-15 production. Notably, TREM2 blockade synergized with an NK cell-activating agent to further inhibit tumor growth. Altogether, our findings identify a new axis, in which TREM2+ mo-macs suppress NK cell accumulation and cytolytic activity. Dual targeting of macrophages and NK cells represents a new strategy to boost antitumor immunity.


Subject(s)
Killer Cells, Natural , Lung Neoplasms , Humans , Mice , Animals , Macrophages , Myeloid Cells , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics
5.
Cell ; 183(4): 841-844, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32949492

ABSTRACT

The U.S. government has sought to restrict immigration under the "America First" doctrine. These policies severely harm American science by stripping it of talent and eliminating a major driver of its innovation engine. We urge scientists to work to reverse these policies and forcefully condemn anti-immigrant sentiments.


Subject(s)
Science , COVID-19/epidemiology , COVID-19/virology , Emigrants and Immigrants , Emigration and Immigration , Humans , Laboratory Personnel , SARS-CoV-2/physiology , United States
6.
Cell ; 176(4): 897-912.e20, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30686579

ABSTRACT

A complete chart of cis-regulatory elements and their dynamic activity is necessary to understand the transcriptional basis of differentiation and function of an organ system. We generated matched epigenome and transcriptome measurements in 86 primary cell types that span the mouse immune system and its differentiation cascades. This breadth of data enable variance components analysis that suggests that genes fall into two distinct classes, controlled by either enhancer- or promoter-driven logic, and multiple regression that connects genes to the enhancers that regulate them. Relating transcription factor (TF) expression to the genome-wide accessibility of their binding motifs classifies them as predominantly openers or closers of local chromatin accessibility, pinpointing specific cis-regulatory elements where binding of given TFs is likely functionally relevant, validated by chromatin immunoprecipitation sequencing (ChIP-seq). Overall, this cis-regulatory atlas provides a trove of information on transcriptional regulation through immune differentiation and a foundational scaffold to define key regulatory events throughout the immunological genome.


Subject(s)
Immune System/immunology , Immune System/metabolism , Regulatory Elements, Transcriptional/genetics , Animals , Binding Sites/genetics , Chromatin , Chromatin Immunoprecipitation/methods , Enhancer Elements, Genetic/genetics , Epigenomics/methods , Gene Expression Regulation/genetics , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Transcription Factors/metabolism , Transcriptome/genetics
7.
Nat Immunol ; 22(7): 914-927, 2021 07.
Article in English | MEDLINE | ID: mdl-34099919

ABSTRACT

To better define the control of immune system regulation, we generated an atlas of microRNA (miRNA) expression from 63 mouse immune cell populations and connected these signatures with assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromatin immunoprecipitation followed by sequencing (ChIP-seq) and nascent RNA profiles to establish a map of miRNA promoter and enhancer usage in immune cells. miRNA complexity was relatively low, with >90% of the miRNA compartment of each population comprising <75 miRNAs; however, each cell type had a unique miRNA signature. Integration of miRNA expression with chromatin accessibility revealed putative regulatory elements for differentially expressed miRNAs, including miR-21a, miR-146a and miR-223. The integrated maps suggest that many miRNAs utilize multiple promoters to reach high abundance and identified dominant and divergent miRNA regulatory elements between lineages and during development that may be used by clustered miRNAs, such as miR-99a/let-7c/miR-125b, to achieve distinct expression. These studies, with web-accessible data, help delineate the cis-regulatory elements controlling miRNA signatures of the immune system.


Subject(s)
Gene Expression Profiling , Immune System/metabolism , MicroRNAs/genetics , Promoter Regions, Genetic , Transcriptome , Animals , Cells, Cultured , Chromatin Immunoprecipitation , Computational Biology , Gene Expression Regulation, Developmental , Immune System/cytology , Immune System/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/metabolism , RNA-Seq
8.
Immunity ; 57(7): 1586-1602.e10, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38897202

ABSTRACT

The tissues are the site of many important immunological reactions, yet how the immune system is controlled at these sites remains opaque. Recent studies have identified Foxp3+ regulatory T (Treg) cells in non-lymphoid tissues with unique characteristics compared with lymphoid Treg cells. However, tissue Treg cells have not been considered holistically across tissues. Here, we performed a systematic analysis of the Treg cell population residing in non-lymphoid organs throughout the body, revealing shared phenotypes, transient residency, and common molecular dependencies. Tissue Treg cells from different non-lymphoid organs shared T cell receptor (TCR) sequences, with functional capacity to drive multi-tissue Treg cell entry and were tissue-agnostic on tissue homing. Together, these results demonstrate that the tissue-resident Treg cell pool in most non-lymphoid organs, other than the gut, is largely constituted by broadly self-reactive Treg cells, characterized by transient multi-tissue migration. This work suggests common regulatory mechanisms may allow pan-tissue Treg cells to safeguard homeostasis across the body.


Subject(s)
Cell Movement , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Animals , Mice , Cell Movement/immunology , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Forkhead Transcription Factors/metabolism , Organ Specificity/immunology , Homeostasis/immunology
9.
Cell ; 175(4): 1141-1155.e16, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30343902

ABSTRACT

CRISPR pools are being widely employed to identify gene functions. However, current technology, which utilizes DNA as barcodes, permits limited phenotyping and bulk-cell resolution. To enable novel screening capabilities, we developed a barcoding system operating at the protein level. We synthesized modules encoding triplet combinations of linear epitopes to generate >100 unique protein barcodes (Pro-Codes). Pro-Code-expressing vectors were introduced into cells and analyzed by CyTOF mass cytometry. Using just 14 antibodies, we detected 364 Pro-Code populations; establishing the largest set of protein-based reporters. By pairing each Pro-Code with a different CRISPR, we simultaneously analyzed multiple phenotypic markers, including phospho-signaling, on dozens of knockouts. Pro-Code/CRISPR screens found two interferon-stimulated genes, the immunoproteasome component Psmb8 and a chaperone Rtp4, are important for antigen-dependent immune editing of cancer cells and identified Socs1 as a negative regulator of Pd-l1. The Pro-Code technology enables simultaneous high-dimensional protein-level phenotyping of 100s of genes with single-cell resolution.


Subject(s)
CRISPR-Cas Systems , Flow Cytometry/methods , Genomics/methods , Mass Spectrometry/methods , Single-Cell Analysis/methods , Animals , Epitopes/chemistry , Epitopes/classification , Epitopes/genetics , HEK293 Cells , Humans , Immunophenotyping/methods , Jurkat Cells , Mice, Inbred BALB C , Proteome/chemistry , Proteome/classification , Proteome/genetics , THP-1 Cells
10.
Immunity ; 56(12): 2665-2669, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38091944

ABSTRACT

Vaccines have stemmed many infectious diseases, but when SARS-CoV-2 emerged, traditional vaccine development would not have been fast enough. This year's Nobel Prize in Physiology or Medicine recognizes work that enabled the rapid development of mRNA vaccines, which halted the COVID-19 pandemic. The feat was a product of basic biological insights coupled with technological innovations, which have transformed vaccine design.


Subject(s)
COVID-19 , Vaccines , Humans , mRNA Vaccines , Pandemics/prevention & control , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Vaccines/genetics
11.
Nature ; 625(7993): 166-174, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057662

ABSTRACT

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Subject(s)
Bone Marrow , Carcinogenesis , Interleukin-4 , Myelopoiesis , Signal Transduction , Animals , Humans , Mice , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Bone Marrow/drug effects , Bone Marrow/metabolism , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interleukin-4/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Monocytes/drug effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Recurrence , Signal Transduction/drug effects
12.
Immunity ; 52(6): 910-941, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32505227

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Animals , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Disease Susceptibility , Humans , Immunity, Innate , Immunologic Memory , Inflammation/immunology , Inflammation/virology , Lymphocytes/immunology , Myeloid Cells/immunology , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Pneumonia, Viral/therapy , SARS-CoV-2
13.
Cell ; 158(3): 506-21, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25083866

ABSTRACT

Adaptation of the endoplasmic reticulum (ER) pathway for MHC class I (MHC-I) presentation in dendritic cells enables cross-presentation of peptides derived from phagocytosed microbes, infected cells, or tumor cells to CD8 T cells. How these peptides intersect with MHC-I molecules remains poorly understood. Here, we show that MHC-I selectively accumulate within phagosomes carrying microbial components, which engage Toll-like receptor (TLR) signaling. Although cross-presentation requires Sec22b-mediated phagosomal recruitment of the peptide loading complex from the ER-Golgi intermediate compartment (ERGIC), this step is independent of TLR signaling and does not deliver MHC-I. Instead, MHC-I are recruited from an endosomal recycling compartment (ERC), which is marked by Rab11a, VAMP3/cellubrevin, and VAMP8/endobrevin and holds large reserves of MHC-I. While Rab11a activity stocks ERC stores with MHC-I, MyD88-dependent TLR signals drive IκB-kinase (IKK)2-mediated phosphorylation of phagosome-associated SNAP23. Phospho-SNAP23 stabilizes SNARE complexes orchestrating ERC-phagosome fusion, enrichment of phagosomes with ERC-derived MHC-I, and subsequent cross-presentation during infection.


Subject(s)
Antigen Presentation , Endosomes/metabolism , Phagosomes/metabolism , Toll-Like Receptors/metabolism , Animals , Dendritic Cells/immunology , Histocompatibility Antigens Class I/metabolism , Lymphoid Tissue , Mice , Ovalbumin/immunology , Phagocytosis , Phosphorylation , Protein Transport , Qb-SNARE Proteins/metabolism , Qc-SNARE Proteins/metabolism , Toll-Like Receptors/immunology , rab GTP-Binding Proteins/metabolism
14.
Immunity ; 48(2): 271-285.e5, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29466757

ABSTRACT

Stem cells are critical for the maintenance of many tissues, but whether their integrity is maintained in the face of immunity is unclear. Here we found that cycling epithelial stem cells, including Lgr5+ intestinal stem cells, as well as ovary and mammary stem cells, were eliminated by activated T cells, but quiescent stem cells in the hair follicle and muscle were resistant to T cell killing. Immune evasion was an intrinsic property of the quiescent stem cells resulting from systemic downregulation of the antigen presentation machinery, including MHC class I and TAP proteins, and is mediated by the transactivator NLRC5. This process was reversed upon stem cell entry into the cell cycle. These studies identify a link between stem cell quiescence, antigen presentation, and immune evasion. As cancer-initiating cells can derive from stem cells, these findings may help explain how the earliest cancer cells evade immune surveillance.


Subject(s)
Hair Follicle/cytology , Immune Evasion , Immunologic Surveillance , Stem Cells/immunology , Animals , Antigen Presentation , Intracellular Signaling Peptides and Proteins/physiology , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL , Muscles/cytology , Receptors, G-Protein-Coupled/physiology , Tumor Escape
15.
Nature ; 595(7868): 578-584, 2021 07.
Article in English | MEDLINE | ID: mdl-34135508

ABSTRACT

Macrophages have a key role in shaping the tumour microenvironment (TME), tumour immunity and response to immunotherapy, which makes them an important target for cancer treatment1,2. However, modulating macrophages has proved extremely difficult, as we still lack a complete understanding of the molecular and functional diversity of the tumour macrophage compartment. Macrophages arise from two distinct lineages. Tissue-resident macrophages self-renew locally, independent of adult haematopoiesis3-5, whereas short-lived monocyte-derived macrophages arise from adult haematopoietic stem cells, and accumulate mostly in inflamed lesions1. How these macrophage lineages contribute to the TME and cancer progression remains unclear. To explore the diversity of the macrophage compartment in human non-small cell lung carcinoma (NSCLC) lesions, here we performed single-cell RNA sequencing of tumour-associated leukocytes. We identified distinct populations of macrophages that were enriched in human and mouse lung tumours. Using lineage tracing, we discovered that these macrophage populations differ in origin and have a distinct temporal and spatial distribution in the TME. Tissue-resident macrophages accumulate close to tumour cells early during tumour formation to promote epithelial-mesenchymal transition and invasiveness in tumour cells, and they also induce a potent regulatory T cell response that protects tumour cells from adaptive immunity. Depletion of tissue-resident macrophages reduced the numbers and altered the phenotype of regulatory T cells, promoted the accumulation of CD8+ T cells and reduced tumour invasiveness and growth. During tumour growth, tissue-resident macrophages became redistributed at the periphery of the TME, which becomes dominated by monocyte-derived macrophages in both mouse and human NSCLC. This study identifies the contribution of tissue-resident macrophages to early lung cancer and establishes them as a target for the prevention and treatment of early lung cancer lesions.


Subject(s)
Carcinogenesis , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Macrophages/immunology , Tumor Microenvironment , Animals , CD8-Positive T-Lymphocytes/immunology , Epithelial-Mesenchymal Transition , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasm Invasiveness , T-Lymphocytes, Regulatory/immunology
16.
Proc Natl Acad Sci U S A ; 121(22): e2322935121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771877

ABSTRACT

Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.


Subject(s)
Nanoparticles , RNA, Messenger , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Animals , Nanoparticles/chemistry , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Macrophages/drug effects , Interleukin-4/metabolism , Diabetes Mellitus, Experimental , Humans , Lipids/chemistry , Disease Models, Animal , Male , Liposomes
17.
Nat Immunol ; 15(1): 54-62, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24270517

ABSTRACT

miR-126 is a microRNA expressed predominately by endothelial cells and controls angiogenesis. We found miR-126 was required for the innate response to pathogen-associated nucleic acids and that miR-126-deficient mice had greater susceptibility to infection with pseudotyped HIV. Profiling of miRNA indicated that miR-126 had high and specific expression by plasmacytoid dendritic cells (pDCs). Moreover, miR-126 controlled the survival and function of pDCs and regulated the expression of genes encoding molecules involved in the innate response, including Tlr7, Tlr9 and Nfkb1, as well as Kdr, which encodes the growth factor receptor VEGFR2. Deletion of Kdr in DCs resulted in reduced production of type I interferon, which supports the proposal of a role for VEGFR2 in miR-126 regulation of pDCs. Our studies identify the miR-126-VEGFR2 axis as an important regulator of the innate response that operates through multiscale control of pDCs.


Subject(s)
Dendritic Cells/immunology , Immunity, Innate/immunology , MicroRNAs/immunology , Vascular Endothelial Growth Factor Receptor-2/immunology , Animals , Dendritic Cells/metabolism , Flow Cytometry , HIV Infections/immunology , HIV Infections/virology , Humans , Immunity, Innate/genetics , Immunoblotting , Interferon-alpha/blood , Interferon-alpha/immunology , Interferon-alpha/metabolism , Mice , Mice, Knockout , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/immunology , NF-kappa B p50 Subunit/metabolism , Nucleic Acids/immunology , Nucleic Acids/metabolism , Oligodeoxyribonucleotides/genetics , Oligodeoxyribonucleotides/immunology , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/immunology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism , Transcriptome/immunology , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
19.
Nature ; 580(7802): 257-262, 2020 04.
Article in English | MEDLINE | ID: mdl-32269339

ABSTRACT

Checkpoint blockade therapies have improved cancer treatment, but such immunotherapy regimens fail in a large subset of patients. Conventional type 1 dendritic cells (DC1s) control the response to checkpoint blockade in preclinical models and are associated with better overall survival in patients with cancer, reflecting the specialized ability of these cells to prime the responses of CD8+ T cells1-3. Paradoxically, however, DC1s can be found in tumours that resist checkpoint blockade, suggesting that the functions of these cells may be altered in some lesions. Here, using single-cell RNA sequencing in human and mouse non-small-cell lung cancers, we identify a cluster of dendritic cells (DCs) that we name 'mature DCs enriched in immunoregulatory molecules' (mregDCs), owing to their coexpression of immunoregulatory genes (Cd274, Pdcd1lg2 and Cd200) and maturation genes (Cd40, Ccr7 and Il12b). We find that the mregDC program is expressed by canonical DC1s and DC2s upon uptake of tumour antigens. We further find that upregulation of the programmed death ligand 1 protein-a key checkpoint molecule-in mregDCs is induced by the receptor tyrosine kinase AXL, while upregulation of interleukin (IL)-12 depends strictly on interferon-γ and is controlled negatively by IL-4 signalling. Blocking IL-4 enhances IL-12 production by tumour-antigen-bearing mregDC1s, expands the pool of tumour-infiltrating effector T cells and reduces tumour burden. We have therefore uncovered a regulatory module associated with tumour-antigen uptake that reduces DC1 functionality in human and mouse cancers.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/pathology , Lung Neoplasms/immunology , Animals , Antigens, Neoplasm/immunology , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Humans , Immunotherapy , Interferon-gamma/immunology , Interleukin-12/immunology , Interleukin-4/antagonists & inhibitors , Interleukin-4/immunology , Interleukin-4/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Mice , Tumor Burden/drug effects , Tumor Burden/immunology
20.
Nat Immunol ; 14(6): 619-32, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23644507

ABSTRACT

The differentiation of αßT cells from thymic precursors is a complex process essential for adaptive immunity. Here we exploited the breadth of expression data sets from the Immunological Genome Project to analyze how the differentiation of thymic precursors gives rise to mature T cell transcriptomes. We found that early T cell commitment was driven by unexpectedly gradual changes. In contrast, transit through the CD4(+)CD8(+) stage involved a global shutdown of housekeeping genes that is rare among cells of the immune system and correlated tightly with expression of the transcription factor c-Myc. Selection driven by major histocompatibility complex (MHC) molecules promoted a large-scale transcriptional reactivation. We identified distinct signatures that marked cells destined for positive selection versus apoptotic deletion. Differences in the expression of unexpectedly few genes accompanied commitment to the CD4(+) or CD8(+) lineage, a similarity that carried through to peripheral T cells and their activation, demonstrated by mass cytometry phosphoproteomics. The transcripts newly identified as encoding candidate mediators of key transitions help define the 'known unknowns' of thymocyte differentiation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Lineage/immunology , Cell Proliferation , Cells, Cultured , Cluster Analysis , Flow Cytometry , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Histocompatibility Antigens/metabolism , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Phosphorylation/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Thymocytes/cytology , Thymocytes/immunology , Thymocytes/metabolism , Transcriptome/genetics , Transcriptome/immunology
SELECTION OF CITATIONS
SEARCH DETAIL