Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37467495

ABSTRACT

Mouse double minute 2 homolog (MDM2) is a negative regulator of the tumor suppressor p53 and often highly expressed in acute myeloid leukemia (AML) and different solid tumors. Inactivating mutations in TP53, the gene encoding for p53, confers an unfavorable prognosis in AML and increases the risk for relapse after allogeneic hematopoietic cell transplantation (allo-HCT). We review the concept that manipulation of MDM2 and p53 could enhance immunogenicity of AML and solid tumor cells. Additionally, we discuss the mechanisms by which MDM2 and p53 regulate MHC class I and II expression, transcription of dsRNA of endogenous retroviruses, interferon responses, IL-15 production and TRAIL-receptor 1 and 2 expression on malignant cells. The direct effects of MDM2-inhibition or MDM2 deletion in effector T cells are discussed in the context of cancer immunotherapy. The preclinical findings are connected to clinical studies using MDM2-inhibition to enhance anti-tumor immunity in patients. In aggregate, this review summarizes current evidence supporting the use of MDM2-inhibition to restore p53, as well as direct effects of MDM2-inhibition on T cells as an emerging concept for combined anti-tumor immunotherapy against hematological malignancies and beyond.

2.
J Neurooncol ; 168(2): 317-332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630384

ABSTRACT

INTRODUCTION: Patients with pediatric low-grade gliomas (pLGGs), the most common primary brain tumors in children, can often benefit from MAPK inhibitor (MAPKi) treatment. However, rapid tumor regrowth, also referred to as rebound growth, may occur once treatment is stopped, constituting a significant clinical challenge. METHODS: Four patient-derived pediatric glioma models were investigated to model rebound growth in vitro based on viable cell counts in response to MAPKi treatment and withdrawal. A multi-omics dataset (RNA sequencing and LC-MS/MS based phospho-/proteomics) was generated to investigate possible rebound-driving mechanisms. Following in vitro validation, putative rebound-driving mechanisms were validated in vivo using the BT-40 orthotopic xenograft model. RESULTS: Of the tested models, only a BRAFV600E-driven model (BT-40, with additional CDKN2A/Bdel) showed rebound growth upon MAPKi withdrawal. Using this model, we identified a rapid reactivation of the MAPK pathway upon MAPKi withdrawal in vitro, also confirmed in vivo. Furthermore, transient overactivation of key MAPK molecules at transcriptional (e.g. FOS) and phosphorylation (e.g. pMEK) levels, was observed in vitro. Additionally, we detected increased expression and secretion of cytokines (CCL2, CX3CL1, CXCL10 and CCL7) upon MAPKi treatment, maintained during early withdrawal. While increased cytokine expression did not have tumor cell intrinsic effects, presence of these cytokines in conditioned media led to increased attraction of microglia cells in vitro. CONCLUSION: Taken together, these data indicate rapid MAPK reactivation upon MAPKi withdrawal as a tumor cell intrinsic rebound-driving mechanism. Furthermore, increased secretion of microglia-recruiting cytokines may play a role in treatment response and rebound growth upon withdrawal, warranting further evaluation.


Subject(s)
Brain Neoplasms , Cytokines , Glioma , Microglia , Mutation , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Microglia/metabolism , Microglia/drug effects , Glioma/metabolism , Glioma/drug therapy , Glioma/pathology , Glioma/genetics , Cytokines/metabolism , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays , Child , Mice , Cell Proliferation/drug effects , Cell Line, Tumor , MAP Kinase Signaling System/drug effects
3.
Childs Nerv Syst ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789691

ABSTRACT

Understanding the molecular and cellular mechanisms driving pediatric low-grade glioma (pLGG)-the most prevalent brain tumor in children-is essential for the identification and evaluation of novel effective treatments. This review explores the intricate relationship between the mitogen-activated protein kinase (MAPK) pathway, oncogene-induced senescence (OIS), the senescence-associated secretory phenotype (SASP), and the tumor microenvironment (TME), integrating these elements into a unified framework termed the MAPK/OIS/SASP/TME (MOST) axis. This integrated approach seeks to deepen our understanding of pLGG and improve therapeutic interventions by examining the MOST axis' critical influence on tumor biology and response to treatment. In this review, we assess the axis' capacity to integrate various biological processes, highlighting new targets for pLGG treatment, and the need for characterized in vitro and in vivo preclinical models recapitulating pLGG's complexity to test targets. The review underscores the need for a comprehensive strategy in pLGG research, positioning the MOST axis as a pivotal approach in understanding pLGG. This comprehensive framework will open promising avenues for patient care and guide future research towards inventive treatment options.

4.
J Hepatol ; 78(3): 614-626, 2023 03.
Article in English | MEDLINE | ID: mdl-36528236

ABSTRACT

BACKGROUND & AIMS: In recent years, intrahepatic cholangiocarcinoma (iCCA) has evolved as a "role model" for precision oncology in gastrointestinal cancers. However, its rarity, paired with its genomic heterogeneity, challenges the development and evolution of targeted therapies. Interrogating large datasets drives better understanding of the characteristics of molecular subgroups of rare cancers and enables the identification of genomic patterns that remain unrecognized in smaller cohorts. METHODS: We performed a retrospective analysis of 6,130 patients diagnosed with iCCA from the FoundationCORE database who received diagnostic panel sequencing on the FoundationOne platform. Short variants/fusion-rearrangements and copy number alterations in >300 tumor-associated genes were evaluated, and the tumor mutational burden (TMB) as well as the microsatellite instability (MSI) status were available for the majority of the cohort. RESULTS: We provide a highly representative cartography of the genomic landscape of iCCA and outline the co-mutational spectra of seven therapeutically relevant oncogenic driver genes: IDH1/2, FGFR2, ERBB2, BRAF, MDM2, BRCA1/2, MET and KRASG12C. We observed a negative selection of RTK/RAS/ERK pathway co-alterations, and an enrichment of epigenetic modifiers such as ARID1A and BAP1 in patients with IDH1/2 and FGFR2 alterations. RNF43 as well as KMT2D occurred with high frequency in MSIhigh and TMBhigh tumors. CONCLUSION: Detailed knowledge of the most prevalent genomic constellations is key to the development of effective treatment strategies for iCCA. Our study provides a valuable resource that could be used to assess the feasibility of clinical trials and subgroup analyses, spurs the development of translationally relevant preclinical models, and serves as a knowledge base to predict potential mechanisms of resistance to targeted therapies in genomically defined subgroups. IMPACT AND IMPLICATIONS: Due to the high frequency of targetable alterations, molecular diagnostics is recommended in patients with biliary tract cancers, and especially in those with iCCA. The identification of an actionable lesion, however, does not guarantee therapeutic success, and the co-mutational spectrum may act as a critical modifier of drug response. Using a large dataset of comprehensive panel sequencing results from 6,130 patients with iCCA, we provide a detailed analysis of the co-mutational spectrum of the most frequent druggable genetic alterations, which is meant to serve as a reference to establish genetically relevant preclinical models, develop hypothesis-driven combination therapies and identify recurrent genetic profiles.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Retrospective Studies , Precision Medicine , Cholangiocarcinoma/pathology , Mutation , Biomarkers, Tumor/genetics , Bile Ducts, Intrahepatic/pathology
5.
Cell Commun Signal ; 21(1): 136, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316874

ABSTRACT

The dimerization of RAF kinases represents a key event in their activation cycle and in RAS/ERK pathway activation. Genetic, biochemical and structural approaches provided key insights into this process defining RAF signaling output and the clinical efficacy of RAF inhibitors (RAFi). However, methods reporting the dynamics of RAF dimerization in living cells and in real time are still in their infancy. Recently, split luciferase systems have been developed for the detection of protein-protein-interactions (PPIs), incl. proof-of-concept studies demonstrating the heterodimerization of the BRAF and RAF1 isoforms. Due to their small size, the Nanoluc luciferase moieties LgBiT and SmBiT, which reconstitute a light emitting holoenzyme upon fusion partner promoted interaction, appear as well-suited to study RAF dimerization. Here, we provide an extensive analysis of the suitability of the Nanoluc system to study the homo- and heterodimerization of BRAF, RAF1 and the related KSR1 pseudokinase. We show that KRASG12V promotes the homo- and heterodimerization of BRAF, while considerable KSR1 homo- and KSR1/BRAF heterodimerization already occurs in the absence of this active GTPase and requires a salt bridge between the CC-SAM domain of KSR1 and the BRAF-specific region. We demonstrate that loss-of-function mutations impairing key steps of the RAF activation cycle can be used as calibrators to gauge the dynamics of heterodimerization. This approach identified the RAS-binding domains and the C-terminal 14-3-3 binding motifs as particularly critical for the reconstitution of RAF mediated LgBiT/SmBiT reconstitution, while the dimer interface was less important for dimerization but essential for downstream signaling. We show for the first time that BRAFV600E, the most common BRAF oncoprotein whose dimerization status is controversially portrayed in the literature, forms homodimers in living cells more efficiently than its wildtype counterpart. Of note, Nanoluc activity reconstituted by BRAFV600E homodimers is highly sensitive to the paradox-breaking RAFi PLX8394, indicating a dynamic and specific PPI. We report the effects of eleven ERK pathway inhibitors on RAF dimerization, incl. third-generation compounds that are less-defined in terms of their dimer promoting abilities. We identify Naporafenib as a potent and long-lasting dimerizer and show that the split Nanoluc approach discriminates between type I, I1/2 and II RAFi. Video Abstract.


Subject(s)
Proto-Oncogene Proteins B-raf , Dimerization , Luciferases
6.
Blood ; 136(12): 1442-1455, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32542357

ABSTRACT

Acute graft-versus-host disease (GVHD) is a life-threatening complication after allogeneic hematopoietic cell transplantation (allo-HCT). Although currently used GVHD treatment regimens target the donor immune system, we explored here an approach that aims at protecting and regenerating Paneth cells (PCs) and intestinal stem cells (ISCs). Glucagon-like-peptide-2 (GLP-2) is an enteroendocrine tissue hormone produced by intestinal L cells. We observed that acute GVHD reduced intestinal GLP-2 levels in mice and patients developing GVHD. Treatment with the GLP-2 agonist, teduglutide, reduced de novo acute GVHD and steroid-refractory GVHD, without compromising graft-versus-leukemia (GVL) effects in multiple mouse models. Mechanistically GLP-2 substitution promoted regeneration of PCs and ISCs, which enhanced production of antimicrobial peptides and caused microbiome changes. GLP-2 expanded intestinal organoids and reduced expression of apoptosis-related genes. Low numbers of L cells in intestinal biopsies and high serum levels of GLP-2 were associated with a higher incidence of nonrelapse mortality in patients undergoing allo-HCT. Our findings indicate that L cells are a target of GVHD and that GLP-2-based treatment of acute GVHD restores intestinal homeostasis via an increase of ISCs and PCs without impairing GVL effects. Teduglutide could become a novel combination partner for immunosuppressive GVHD therapy to be tested in clinical trials.


Subject(s)
Glucagon-Like Peptide 2/therapeutic use , Graft vs Host Disease/drug therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Intestines/drug effects , Paneth Cells/drug effects , Peptides/therapeutic use , Stem Cells/drug effects , Animals , Female , Gastrointestinal Agents/therapeutic use , Graft vs Host Disease/pathology , Humans , Intestines/cytology , Intestines/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Paneth Cells/pathology , Stem Cells/pathology , Transplantation, Homologous/adverse effects
7.
EMBO J ; 36(5): 646-663, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28093501

ABSTRACT

As a central element within the RAS/ERK pathway, the serine/threonine kinase BRAF plays a key role in development and homeostasis and represents the most frequently mutated kinase in tumors. Consequently, it has emerged as an important therapeutic target in various malignancies. Nevertheless, the BRAF activation cycle still raises many mechanistic questions as illustrated by the paradoxical action and side effects of RAF inhibitors. By applying SEC-PCP-SILAC, we analyzed protein-protein interactions of hyperactive BRAFV600E and wild-type BRAF (BRAFWT). We identified two macromolecular, cytosolic BRAF complexes of distinct molecular composition and phosphorylation status. Hyperactive BRAFV600E resides in large complexes of higher molecular mass and activity, while BRAFWT is confined to smaller, slightly less active complexes. However, expression of oncogenic K-RasG12V, either by itself or in combination with RAF dimer promoting inhibitors, induces the incorporation of BRAFWT into large, active complexes, whereas pharmacological inhibition of BRAFV600E has the opposite effect. Thus, the quaternary structure of BRAF complexes is shaped by its activation status, the conformation of its kinase domain, and clinically relevant inhibitors.


Subject(s)
Protein Multimerization , Protein Processing, Post-Translational , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Animals , Cells, Cultured , Chromatography, Gel , Humans , Mass Spectrometry , Mice , Phosphorylation , Protein Conformation
8.
Cell Commun Signal ; 19(1): 123, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930313

ABSTRACT

BACKGROUND: Vemurafenib (PLX4032) is one of the most frequently used treatments for late-stage melanoma patients with the BRAFV600E mutation; however, acquired resistance to the drug poses as a major challenge. It remains to be determined whether off-target effects of vemurafenib on normal stroma components could reshape the tumor microenvironment in a way that contributes to cancer progression and drug resistance. METHODS: By using temporally-resolved RNA- and ATAC-seq, we studied the early molecular changes induced by vemurafenib in human dermal fibroblast (HDF), a main stromal component in melanoma and other tumors with high prevalence of BRAFV600 mutations. RESULTS: Transcriptomics analyses revealed a stepwise up-regulation of proliferation signatures, together with a down-regulation of autophagy and proteolytic processes. The gene expression changes in HDF strongly correlated in an inverse way with those in BRAFV600E mutant malignant melanoma (MaMel) cell lines, consistent with the observation of a paradoxical effect of vemurafenib, leading to hyperphosphorylation of MEK1/2 and ERK1/2. The transcriptional changes in HDF were not strongly determined by alterations in chromatin accessibility; rather, an already permissive chromatin landscape seemed to facilitate the early accessibility to MAPK/ERK-regulated transcription factor binding sites. Combinatorial treatment with the MEK inhibitor trametinib did not preclude the paradoxical activation of MAPK/ERK signaling in HDF. When administered together, vemurafenib partially compensated for the reduction of cell viability and proliferation induced by trametinib. These paradoxical changes were restrained by using the third generation BRAF inhibitor PLX8394, a so-called paradox breaker compound. However, the advantageous effects on HDF during combination therapies were also lost. CONCLUSIONS: Vemurafenib induces paradoxical changes in HDF, enabled by a permissive chromatin landscape. These changes might provide an advantage during combination therapies, by compensating for the toxicity induced in stromal cells by less specific MAPK/ERK inhibitors. Our results highlight the relevance of evaluating the effects of the drugs on non-transformed stromal components, carefully considering the implications of their administration either as mono- or combination therapies. Video Abstract.


Subject(s)
Vemurafenib
9.
EMBO J ; 35(2): 143-61, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26657898

ABSTRACT

Despite being mutated in cancer and RASopathies, the role of the activation segment (AS) has not been addressed for B-Raf signaling in vivo. Here, we generated a conditional knock-in mouse allowing the expression of the B-Raf(AVKA) mutant in which the AS phosphoacceptor sites T599 and S602 are replaced by alanine residues. Surprisingly, despite producing a kinase-impaired protein, the Braf(AVKA) allele does not phenocopy the lethality of Braf-knockout or paradoxically acting knock-in alleles. However, Braf(AVKA) mice display abnormalities in the hematopoietic system, a distinct facial morphology, reduced ERK pathway activity in the brain, and an abnormal gait. This phenotype suggests that maximum B-Raf activity is required for the proper development, function, and maintenance of certain cell populations. By establishing conditional murine embryonic fibroblast cultures, we further show that MEK/ERK phosphorylation and the immediate early gene response toward growth factors are impaired in the presence of B-Raf(AVKA). Importantly, alanine substitution of T599/S602 impairs the transformation potential of oncogenic non-V600E B-Raf mutants and a fusion protein, suggesting that blocking their phosphorylation could represent an alternative strategy to ATP-competitive inhibitors.


Subject(s)
Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Animals , Cell Proliferation/genetics , Cell Proliferation/physiology , Cells, Cultured , Enzyme Activation/genetics , Enzyme Activation/physiology , Female , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/radiation effects , Male , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Mutation , Phosphorylation , Signal Transduction/genetics , Signal Transduction/physiology
10.
EMBO Rep ; 19(2): 244-256, 2018 02.
Article in English | MEDLINE | ID: mdl-29335245

ABSTRACT

The acetyltransferase TIP60 is regulated by phosphorylation, and we have previously shown that phosphorylation of TIP60 on S86 by GSK-3 promotes p53-mediated induction of the BCL-2 protein PUMA. TIP60 phosphorylation by GSK-3 requires a priming phosphorylation on S90, and here, we identify CDK9 as a TIP60S90 kinase. We demonstrate that a phosphorylation-deficient mutant, TIP60S90A, exhibits reduced interaction with chromatin, histone 3 and RNA Pol II, while its association with the TIP60 complex subunit EPC1 is not affected. Consistently, we find a diminished association of TIP60S90A with the MYC gene. We show that cells expressing TIP60S90A, but also TIP60S86A, which retains S90 phosphorylation, exhibit reduced histone 4 acetylation and proliferation. Thus, our data indicate that, during transcription, phosphorylation of TIP60 at two sites has different regulatory effects on TIP60, whereby S90 phosphorylation controls association with the transcription machinery, and S86 phosphorylation is regulating TIP60 HAT activity.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Lysine Acetyltransferase 5/metabolism , Transcription, Genetic , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation , Chromatin/genetics , Chromatin/metabolism , Histones/metabolism , Humans , Lysine Acetyltransferase 5/chemistry , Models, Biological , Nuclear Proteins/metabolism , Phosphorylation , Protein Binding , RNA Polymerase II/metabolism , Serine/chemistry , Transcription Factors/metabolism
11.
Int J Cancer ; 145(3): 649-661, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30653256

ABSTRACT

Tyrosine kinase inhibitors currently confer the greatest survival gain for nonsmall cell lung cancer (NSCLC) patients with actionable genetic alterations. Simultaneously, the increasing number of targets and compounds poses the challenge of reliable, broad and timely molecular assays for the identification of patients likely to benefit from novel treatments. Here, we demonstrate the feasibility and clinical utility of comprehensive, NGS-based genetic profiling for routine workup of advanced NSCLC based on the first 3,000 patients analyzed in our department. Following automated extraction of DNA and RNA from formalin-fixed, paraffin-embedded tissue samples, parallel sequencing of DNA and RNA for detection of mutations and gene fusions, respectively, was performed using PCR-based enrichment with an ion semiconductor sequencing platform. Overall, 807 patients (27%) were eligible for currently approved, EGFR-/BRAF-/ALK- and ROS1-directed therapies, while 218 additional cases (7%) with MET, ERBB2 (HER2) and RET alterations could potentially benefit from experimental targeted compounds. In addition, routine capturing of comutations, e.g. TP53 (55%), KEAP1 (11%) and STK11 (11%), as well as the precise typing of fusion partners and involved exons in case of actionable translocations including ALK and ROS1, are prognostic and predictive tools currently gaining importance for further refinement of therapeutic and surveillance strategies. The reliability, low dropout rates (<5%), minimal tissue requirements, fast turnaround times (6 days on average) and lower costs of the diagnostic approach presented here compared to sequential single-gene testing, highlight its practicability in order to support individualized decisions in routine patient care, enrollment in molecularly stratified clinical trials, as well as translational research.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , DNA, Neoplasm/genetics , Lung Neoplasms/genetics , RNA, Neoplasm/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/epidemiology , Cohort Studies , Disease Progression , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Female , Gene Expression Profiling , Germany/epidemiology , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/epidemiology , Male , Middle Aged , Molecular Diagnostic Techniques , Mutation , Protein Kinase Inhibitors/pharmacology , Sequence Analysis, DNA , Sequence Analysis, RNA , Survival Rate , Young Adult
12.
Hum Mol Genet ; 25(24): 5339-5352, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27798104

ABSTRACT

Kindler syndrome (KS), a rare, autosomal recessive disorder comprises mechanical skin fragility and photosensitivity, which manifest early in life. The progression of the disorder is irreversible and results in tissue damage in form of cutaneous and mucosal atrophy and scarring and epithelial cancers. Here, we unravel molecular mechanisms of increased UV-B sensitivity of keratinocytes derived from KS patients. We show that the pro-inflammatory cytokines, IL-1ß, IL-6 and TNF-α, are upregulated in KS skin and in UV-B irradiated KS keratinocytes. These cytokines are dependent on p38 activation, which is increased in the absence of kindlin-1 and induced by higher ROS levels. Other dysregulated cytokines and growth factors were identified in this study and might be involved in paracrine interactions contributing to KS pathology. We show a direct relationship between kindlin-1 abundance and UV-B induced apoptosis in keratinocytes, whereas kindlin-2 overexpression has no compensatory effect. Importantly, low levels of kindlin-1 are sufficient to relieve or rescue this feature. Reduction of pro-inflammatory cytokines and of UV-B induced apoptosis is a valid therapeutic goal to influence long term complications of KS. Here, we demonstrate that antioxidants and the plant flavonoid luteolin represent feasible topical therapeutic approaches decreasing UV-B induced apoptosis in two-dimensional and organotypic KS cultures. We provide evidence for potential new therapeutic approaches to mitigate the progressive course of KS, for which no cure is available to date. Furthermore, we established organotypic KS models, a valuable in vitro tool for research with a morphology similar to the skin of patients in situ.


Subject(s)
Blister/drug therapy , Epidermolysis Bullosa/drug therapy , Inflammation/drug therapy , Luteolin/administration & dosage , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Periodontal Diseases/drug therapy , Photosensitivity Disorders/drug therapy , Antioxidants/administration & dosage , Apoptosis/drug effects , Apoptosis/radiation effects , Blister/genetics , Blister/pathology , Cells, Cultured , Epidermolysis Bullosa/genetics , Epidermolysis Bullosa/pathology , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Humans , Inflammation/genetics , Inflammation/pathology , Interleukin-1beta/biosynthesis , Interleukin-1beta/genetics , Interleukin-6/biosynthesis , Interleukin-6/genetics , Keratinocytes/drug effects , Keratinocytes/pathology , Keratinocytes/radiation effects , Membrane Proteins/biosynthesis , Neoplasm Proteins/biosynthesis , Periodontal Diseases/genetics , Periodontal Diseases/pathology , Photosensitivity Disorders/genetics , Photosensitivity Disorders/pathology , Skin/drug effects , Skin/pathology , Skin/radiation effects , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics , Ultraviolet Rays/adverse effects
13.
Blood ; 127(23): 2847-55, 2016 06 09.
Article in English | MEDLINE | ID: mdl-26941398

ABSTRACT

The activating mutation of the BRAF serine/threonine protein kinase (BRAF V600E) is the key driver mutation in hairy cell leukemia (HCL), suggesting opportunities for therapeutic targeting. We analyzed the course of 21 HCL patients treated with vemurafenib outside of trials with individual dosing regimens (240-1920 mg/d; median treatment duration, 90 days). Vemurafenib treatment improved blood counts in all patients, with platelets, neutrophils, and hemoglobin recovering within 28, 43, and 55 days (median), respectively. Complete remission was achieved in 40% (6/15 of evaluable patients) and median event-free survival was 17 months. Response rate and kinetics of response were independent of vemurafenib dosing. Retreatment with vemurafenib led to similar response patterns (n = 6). Pharmacodynamic analysis of BRAF V600E downstream targets showed that vemurafenib (480 mg/d) completely abrogated extracellular signal-regulated kinase phosphorylation of hairy cells in vivo. Typical side effects also occurred at low dosing regimens. We observed the development of acute myeloid lymphoma (AML) subtype M6 in 1 patient, and the course suggested disease acceleration triggered by vemurafenib. The phosphatidylinositol 3-kinase hotspot mutation (E545K) was identified in the AML clone, providing a potential novel mechanism for paradoxical BRAF activation. These data provide proof of dependence of HCL on active BRAF signaling. We provide evidence that antitumor and side effects are observed with 480 mg vemurafenib, suggesting that dosing regimens in BRAF-driven cancers could warrant reassessment in trials with implications for cost of cancer care.


Subject(s)
Antineoplastic Agents/administration & dosage , Indoles/administration & dosage , Leukemia, Hairy Cell/drug therapy , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Sulfonamides/administration & dosage , Aged , Aged, 80 and over , Antineoplastic Agents/adverse effects , Dose-Response Relationship, Drug , Humans , Indoles/adverse effects , Leukemia, Hairy Cell/mortality , Middle Aged , Recurrence , Retreatment , Retrospective Studies , Rituximab/therapeutic use , Sulfonamides/adverse effects , Survival Analysis , Treatment Outcome , Vemurafenib
14.
Biochim Biophys Acta ; 1853(11 Pt A): 2847-55, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26319181

ABSTRACT

Scaffold proteins are multidomain proteins without enzymatic function that play a central role in coordinating signaling processes. The scaffold protein CNK1 interacts with pathway-specific signaling proteins and thereby regulates these respective pathways. Here, we revealed tyrosine phosphorylation as a critical regulation mechanism to control the function of CNK1. We identified Tyr 26 as a PDGF-induced and, additionally, Tyr 519 and Tyr 665 as SRC-induced tyrosine phosphorylation sites. Phosphomimetic mutants indicate that phosphorylation of Tyr 519 recruits CNK1 to the nucleus and additional phosphorylation of Tyr 26 enables CNK1 to promote SRE-dependent gene expression. Contrary, mutants preventing tyrosine phosphorylation promote matrix metalloproteinase MMP14 promoter activity. CNK1-driven cell proliferation partially depends on its tyrosine phosphorylation. Upon PDGF stimulation, CNK1 is recruited to the plasma membrane mediated by SRC. Knock down of CNK1 prevents PDGF-induced SRE-dependent gene expression, MMP14 promoter activity and cell proliferation. Thus, tyrosine phosphorylation is an important mechanism to control the subcellular localization of CNK1 and its distinct biological functions.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Matrix Metalloproteinase 14/biosynthesis , Promoter Regions, Genetic/physiology , src-Family Kinases/metabolism , Cell Membrane/enzymology , Cell Membrane/genetics , Gene Knockdown Techniques , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Matrix Metalloproteinase 14/genetics , Mutation , Phosphorylation/physiology , Protein Transport/physiology , Tyrosine/genetics , Tyrosine/metabolism , src-Family Kinases/genetics
15.
Breast Cancer Res ; 18(1): 125, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27931239

ABSTRACT

BACKGROUND: Metastatic disease is largely resistant to therapy and accounts for almost all cancer deaths. Myeloid cell leukemia-1 (MCL-1) is an important regulator of cell survival and chemo-resistance in a wide range of malignancies, and thus its inhibition may prove to be therapeutically useful. METHODS: To examine whether targeting MCL-1 may provide an effective treatment for breast cancer, we constructed inducible models of BIMs2A expression (a specific MCL-1 inhibitor) in MDA-MB-468 (MDA-MB-468-2A) and MDA-MB-231 (MDA-MB-231-2A) cells. RESULTS: MCL-1 inhibition caused apoptosis of basal-like MDA-MB-468-2A cells grown as monolayers, and sensitized them to the BCL-2/BCL-XL inhibitor ABT-263, demonstrating that MCL-1 regulated cell survival. In MDA-MB-231-2A cells, grown in an organotypic model, induction of BIMs2A produced an almost complete suppression of invasion. Apoptosis was induced in such a small proportion of these cells that it could not account for the large decrease in invasion, suggesting that MCL-1 was operating via a previously undetected mechanism. MCL-1 antagonism also suppressed local invasion and distant metastasis to the lung in mouse mammary intraductal xenografts. Kinomic profiling revealed that MCL-1 antagonism modulated Src family kinases and their targets, which suggested that MCL-1 might act as an upstream modulator of invasion via this pathway. Inhibition of MCL-1 in combination with dasatinib suppressed invasion in 3D models of invasion and inhibited the establishment of tumors in vivo. CONCLUSION: These data provide the first evidence that MCL-1 drives breast cancer cell invasion and suggests that MCL-1 antagonists could be used alone or in combination with drugs targeting Src kinases such as dasatinib to suppress metastasis.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Dasatinib/pharmacology , Drug Resistance, Neoplasm , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Cell Death/drug effects , Cell Death/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Disease Models, Animal , Female , Gene Expression , Humans , Immunohistochemistry , Mice , Mice, Knockout , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
16.
EMBO J ; 31(11): 2629-47, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22510884

ABSTRACT

The dimerisation of Raf kinases involves a central cluster within the kinase domain, the dimer interface (DIF). Yet, the importance of the DIF for the signalling potential of wild-type B-Raf (B-Raf(wt)) and its oncogenic counterparts remains unknown. Here, we show that the DIF plays a pivotal role for the activity of B-Raf(wt) and several of its gain-of-function (g-o-f) mutants. In contrast, the B-Raf(V600E), B-Raf(insT) and B-Raf(G469A) oncoproteins are remarkably resistant to mutations in the DIF. However, compared with B-Raf(wt), B-Raf(V600E) displays extended protomer contacts, increased homodimerisation and incorporation into larger protein complexes. In contrast, B-Raf(wt) and Raf-1(wt) mediated signalling triggered by oncogenic Ras as well as the paradoxical activation of Raf-1 by kinase-inactivated B-Raf require an intact DIF. Surprisingly, the B-Raf DIF is not required for dimerisation between Raf-1 and B-Raf, which was inactivated by the D594A mutation, sorafenib or PLX4720. This suggests that paradoxical MEK/ERK activation represents a two-step mechanism consisting of dimerisation and DIF-dependent transactivation. Our data further implicate the Raf DIF as a potential target against Ras-driven Raf-mediated (paradoxical) ERK activation.


Subject(s)
MAP Kinase Signaling System/physiology , Protein Multimerization/physiology , Proto-Oncogene Proteins B-raf/metabolism , Benzenesulfonates/pharmacology , Caco-2 Cells , HCT116 Cells , HT29 Cells , Humans , Indoles/pharmacology , MAP Kinase Signaling System/drug effects , Niacinamide/analogs & derivatives , Phenylurea Compounds , Protein Kinase Inhibitors/pharmacology , Protein Multimerization/drug effects , Pyridines/pharmacology , Sorafenib , Sulfonamides/pharmacology
17.
Cell Commun Signal ; 14: 6, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26912052

ABSTRACT

BACKGROUND: Chronic myeloid leukemia (CML) is driven by the fusion kinase Bcr-Abl. Bcr-Abl tyrosine kinase inhibitors (TKIs), such as imatinib mesylate (IM), revolutionized CML therapy. Nevertheless, about 20 % of CMLs display primary or acquired TKI resistance. TKI resistance can be either caused by mutations within the Bcr-Abl kinase domain or by aberrant signaling by its effectors, e.g. Lyn or Gab2. Bcr-Abl mutations are frequently observed in TKI resistance and can only in some cases be overcome by second line TKIs. In addition, we have previously shown that the formation of Gab2 complexes can be regulated by Bcr-Abl and that Gab2 signaling counteracts the efficacy of four distinct Bcr-Abl inhibitors. Therefore, TKI resistance still represents a challenge for disease management and alternative therapies are urgently needed. FINDINGS: Using different CML cell lines and models, we identified the clinically approved TKIs sorafenib (SF) and axitinib (AX) as drugs overcoming the resistance mediated by the Bcr Abl(T315I) mutant as well as the one mediated by Gab2 and Lyn(Y508F). In addition, we demonstrated that AX mainly affects the Bcr-Abl/Grb2/Gab2 axis, whereas SF seems to act independently of the fusion kinase and most likely by blocking signaling pathways up- and downstream of Gab2. CONCLUSION: We demonstrate that SF and AX show potency in various and mechanistically distinct scenarios of TKI resistance, including Bcr-Abl(T315I) as well as Lyn- and Gab2-mediated resistances. Our data invites for further evaluation und consideration of these inhibitors in the treatment of TKI resistant CML.


Subject(s)
Drug Resistance, Neoplasm , Imidazoles/pharmacology , Indazoles/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Axitinib , Cell Line, Tumor , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mutation , Niacinamide/pharmacology , Point Mutation , Protein Interaction Maps/drug effects , Sorafenib , src-Family Kinases/genetics , src-Family Kinases/metabolism
18.
Int J Cancer ; 136(10): 2328-40, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25346496

ABSTRACT

Metastatic ovarian cancer has a dismal prognosis and current chemotherapeutic approaches have very limited success. Metadherin (MTDH) is expressed in human ovarian cancer tissue and its expression inversely correlates with patients overall survival. Consistent with these studies, we observed MTDH expression in tissue specimens of FIGO Stage III ovarian carcinomas (72/83 cases). However, we also observed this in normal human ovarian epithelial (OE) cells, which raised the question of whether MTDH-variants with functional differences exist. We identified a novel MTDH exon 11 skipping variant (MTDHdel) which was seen at higher levels in ovarian cancer compared to benign OE cells. We analyzed MTDH-binding partner interactions and found that 12 members of the small ribosomal subunit and several mRNA binding proteins bound stronger to MTDHdel than to wildtype MTDH which indicates differential effects on gene translation. Knockdown of MTDH in ovarian cancer cells reduced the amount of distant metastases and improved the survival of ovarian cancer-bearing mice. Selective overexpression of the MTDHdel enhanced murine and human ovarian cancer progression and caused a malignant phenotype in originally benign human OE cells. MTDHdel was detectable in microdissected ovarian cancer cells of some human tissue specimens of ovarian carcinomas. In summary, we have identified a novel MTDH exon 11 skipping variant that shows enhanced binding to small ribosomal subunit members and that caused reduced overall survival of ovarian cancer bearing mice. Based on the findings in the murine system and in human tissues, MTDHdel must be considered a major promalignant factor for ovarian cancer.


Subject(s)
Cell Adhesion Molecules/genetics , Membrane Proteins/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Sequence Deletion , Animals , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Exons , Female , Gene Knockdown Techniques , Humans , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Neoplasm Metastasis , Neoplasm Transplantation , RNA-Binding Proteins
19.
Int J Cancer ; 137(11): 2566-77, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26077342

ABSTRACT

Invasion and metastasis of carcinomas are often activated by induction of aberrant epithelial-mesenchymal transition (EMT). This is mainly driven by the transcription factor ZEB1, promoting tumor-initiating capacity correlated with increased expression of the putative stem cell marker CD44. However, the direct link between ZEB1, CD44 and tumourigenesis is still enigmatic. Remarkably, EMT-induced repression of ESRP1 controls alternative splicing of CD44, causing a shift in the expression from the variant CD44v to the standard CD44s isoform. We analyzed whether CD44 and ZEB1 regulate each other and show that ZEB1 controls CD44s splicing by repression of ESRP1 in breast and pancreatic cancer. Intriguingly, CD44s itself activates the expression of ZEB1, resulting in a self-sustaining ZEB1 and CD44s expression. Activation of this novel CD44s-ZEB1 regulatory loop has functional impact on tumor cells, as evident by increased tumor-sphere initiation capacity, drug-resistance and tumor recurrence. In summary, we identified a self-enforcing feedback loop that employs CD44s to activate ZEB1 expression. This renders tumor cell stemness independent of external stimuli, as ZEB1 downregulates ESRP1, further promoting CD44s isoform synthesis.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Homeodomain Proteins/genetics , Hyaluronan Receptors/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Transcription Factors/genetics , Cell Line , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Down-Regulation/genetics , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Humans , MCF-7 Cells , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , RNA-Binding Proteins/genetics , Zinc Finger E-box-Binding Homeobox 1
20.
Blood ; 122(9): 1621-33, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23863897

ABSTRACT

The receptor tyrosine kinase (RTK) insulin-like growth factor-1 receptor (IGF1R) is implicated in various tumor entities including chronic lymphocytic leukemia (CLL), but its functional significance in this disease remains poorly characterized. Here, we show that the IGF1R protein is overexpressed in various CLL subsets, suggesting a contribution to CLL pathology. Indeed, we show that IGF1R knockdown in primary human CLL cells compromised their viability. Likewise, IGF1R inhibition with 3 structurally distinct compounds induced apoptosis, even in the presence of protective stroma components. Furthermore, IGF1R inhibition effectively limited CLL development in Eµ-TCL1 transgenic mice and of primary human CLL xenografts. In agreement with its prosurvival function, IGF1R inhibition affected the phosphorylation and/or expression of multiple signaling proteins. The multikinase inhibitor sorafenib yielded similar effects on these signaling elements as IGF1R inhibitors. Indeed, IGF1R appears to be a direct sorafenib target because sorafenib decreased IGF1R expression and phosphorylation, counteracted insulin-like growth factor-1 (IGF-1) binding to CLL cells, and lowered the in vitro kinase activity of recombinant, purified IGF1R. Thus, we demonstrate that blockade of IGF1R-mediated signaling represents a novel mechanism of action for sorafenib in CLL. Importantly, IGF1R inhibitors compromise CLL viability in their microenvironment context, implicating this RTK as a promising therapeutic target.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Molecular Targeted Therapy/methods , Receptor, IGF Type 1/antagonists & inhibitors , Aged , Aged, 80 and over , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Middle Aged , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/physiology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL