ABSTRACT
BACKGROUND: Acute myocardial injury in hospitalized patients with coronavirus disease 2019 (COVID-19) has a poor prognosis. Its associations and pathogenesis are unclear. Our aim was to assess the presence, nature, and extent of myocardial damage in hospitalized patients with troponin elevation. METHODS: Across 25 hospitals in the United Kingdom, 342 patients with COVID-19 and an elevated troponin level (COVID+/troponin+) were enrolled between June 2020 and March 2021 and had a magnetic resonance imaging scan within 28 days of discharge. Two prospective control groups were recruited, comprising 64 patients with COVID-19 and normal troponin levels (COVID+/troponin-) and 113 patients without COVID-19 or elevated troponin level matched by age and cardiovascular comorbidities (COVID-/comorbidity+). Regression modeling was performed to identify predictors of major adverse cardiovascular events at 12 months. RESULTS: Of the 519 included patients, 356 (69%) were men, with a median (interquartile range) age of 61.0 years (53.8, 68.8). The frequency of any heart abnormality, defined as left or right ventricular impairment, scar, or pericardial disease, was 2-fold greater in cases (61% [207/342]) compared with controls (36% [COVID+/troponin-] versus 31% [COVID-/comorbidity+]; P<0.001 for both). More cases than controls had ventricular impairment (17.2% versus 3.1% and 7.1%) or scar (42% versus 7% and 23%; P<0.001 for both). The myocardial injury pattern was different, with cases more likely than controls to have infarction (13% versus 2% and 7%; P<0.01) or microinfarction (9% versus 0% and 1%; P<0.001), but there was no difference in nonischemic scar (13% versus 5% and 14%; P=0.10). Using the Lake Louise magnetic resonance imaging criteria, the prevalence of probable recent myocarditis was 6.7% (23/342) in cases compared with 1.7% (2/113) in controls without COVID-19 (P=0.045). During follow-up, 4 patients died and 34 experienced a subsequent major adverse cardiovascular event (10.2%), which was similar to controls (6.1%; P=0.70). Myocardial scar, but not previous COVID-19 infection or troponin, was an independent predictor of major adverse cardiovascular events (odds ratio, 2.25 [95% CI, 1.12-4.57]; P=0.02). CONCLUSIONS: Compared with contemporary controls, patients with COVID-19 and elevated cardiac troponin level have more ventricular impairment and myocardial scar in early convalescence. However, the proportion with myocarditis was low and scar pathogenesis was diverse, including a newly described pattern of microinfarction. REGISTRATION: URL: https://www.isrctn.com; Unique identifier: 58667920.
Subject(s)
COVID-19 , Heart Injuries , Myocarditis , Female , Humans , Male , Middle Aged , Cicatrix , COVID-19/complications , COVID-19/epidemiology , Hospitalization , Prospective Studies , Risk Factors , Troponin , AgedABSTRACT
Originally designed as anti-hyperglycemic drugs, Glucagon-Like Peptide-1 receptor agonists (GLP-1Ra) and Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have demonstrated protective cardiovascular effects, with significant impact on cardiovascular morbidity and mortality. Despite several mechanisms have been proposed, the exact pathophysiology behind these effects is not yet fully understood. Cardiovascular imaging is key for the evaluation of diabetic patients, with an established role from the identification of early subclinical changes to long-term follow up and prognostic assessment. Among the different imaging modalities, CMR may have a key-role being the gold standard for volumes and function assessment and having the unique ability to provide tissue characterization. Novel techniques are also implementing the possibility to evaluate cardiac metabolism through CMR and thereby further increasing the potential role of the modality in this context. Aim of this paper is to provide a comprehensive review of changes in CMR parameters and novel CMR techniques applied in both pre-clinical and clinical studies evaluating the effects of SGLT2i and GLP-1Ra, and their potential role in better understanding the underlying CV mechanisms of these drugs.
Subject(s)
Cardiovascular Diseases , Cardiovascular System , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents/therapeutic use , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/prevention & controlABSTRACT
Importance: Development of myocardial fibrosis in patients with aortic stenosis precedes left ventricular decompensation and is associated with an adverse long-term prognosis. Objective: To investigate whether early valve intervention reduced the incidence of all-cause death or unplanned aortic stenosis-related hospitalization in asymptomatic patients with severe aortic stenosis and myocardial fibrosis. Design, Setting, and Participants: This prospective, randomized, open-label, masked end point trial was conducted between August 2017 and October 2022 at 24 cardiac centers across the UK and Australia. Asymptomatic patients with severe aortic stenosis and myocardial fibrosis were included. The final date of follow-up was July 26, 2024. Intervention: Early valve intervention with transcatheter or surgical aortic valve replacement or guideline-directed conservative management. Main Outcomes and Measures: The primary outcome was a composite of all-cause death or unplanned aortic stenosis-related hospitalization in a time-to-first-event intention-to-treat analysis. There were 9 secondary outcomes, including the components of the primary outcome and symptom status at 12 months. Results: The trial enrolled 224 eligible patients (mean [SD] age, 73 [9] years; 63 women [28%]; mean [SD] aortic valve peak velocity of 4.3 [0.5] m/s) of the originally planned sample size of 356 patients. The primary end point occurred in 20 of 113 patients (18%) in the early intervention group and 25 of 111 patients (23%) in the guideline-directed conservative management group (hazard ratio, 0.79 [95% CI, 0.44-1.43]; P = .44; between-group difference, -4.82% [95% CI, -15.31% to 5.66%]). Of 9 prespecified secondary end points, 7 showed no significant difference. All-cause death occurred in 16 of 113 patients (14%) in the early intervention group and 14 of 111 (13%) in the guideline-directed group (hazard ratio, 1.22 [95% CI, 0.59-2.51]) and unplanned aortic stenosis hospitalization occurred in 7 of 113 patients (6%) and 19 of 111 patients (17%), respectively (hazard ratio, 0.37 [95% CI, 0.16-0.88]). Early intervention was associated with a lower 12-month rate of New York Heart Association class II-IV symptoms than guideline-directed conservative management (21 [19.7%] vs 39 [37.9%]; odds ratio, 0.37 [95% CI, 0.20-0.70]). Conclusions and Relevance: In asymptomatic patients with severe aortic stenosis and myocardial fibrosis, early aortic valve intervention had no demonstrable effect on all-cause death or unplanned aortic stenosis-related hospitalization. The trial had a wide 95% CI around the primary end point, with further research needed to confirm these findings. Trial Registration: ClinicalTrials.gov Identifier: NCT03094143.
ABSTRACT
Structural and functional abnormalities of coronary microvasculature are highly prevalent in several clinical settings and often associated with worse clinical outcomes. Therefore, there is a growing interest in the detection and treatment of this, often overlooked, disease. Coronary angiography allows the assessment of the Coronary flow reserve (CFR) and the index of microcirculatory resistance (IMR). However, the measurement of these parameters is not always feasible because of limited technical availability and the need for a cardiac catheterization with a small but real risk of potential complications. Recent advances in non-invasive imaging techniques allow the assessment of coronary microvascular function with good accuracy and reproducibility. The objective of this review is to discuss the strengths and weaknesses of alternative non-invasive approaches used in the diagnosis of coronary microvascular dysfunction (CMD), highlighting the most recent advances for each imaging modality.
Subject(s)
Coronary Vessels , Ischemia , Humans , Microcirculation , Reproducibility of Results , Coronary Angiography/methods , Coronary CirculationABSTRACT
This article reviews the most relevant literature published in 2021 on the role of cardiovascular imaging in cardiovascular medicine. Coronavirus disease 2019 (COVID-19) continued to impact the healthcare landscape, resulting in reduced access to hospital-based cardiovascular care including reduced routine diagnostic cardiovascular testing. However, imaging has also facilitated the understanding of the presence and extent of myocardial damage caused by the coronavirus infection. What has dominated the imaging literature beyond the pandemic are novel data on valvular heart disease, the increasing use of artificial intelligence (AI) applied to imaging, and the use of advanced imaging modalities in both ischaemic heart disease and cardiac amyloidosis.
Subject(s)
Amyloidosis , COVID-19 , Myocardial Ischemia , Artificial Intelligence , Heart , Humans , Magnetic Resonance Imaging/methods , Myocardial Ischemia/diagnosisABSTRACT
BACKGROUND: In patients with stable angina, two strategies are often used to guide revascularization: one involves myocardial-perfusion cardiovascular magnetic resonance imaging (MRI), and the other involves invasive angiography and measurement of fractional flow reserve (FFR). Whether a cardiovascular MRI-based strategy is noninferior to an FFR-based strategy with respect to major adverse cardiac events has not been established. METHODS: We performed an unblinded, multicenter, clinical-effectiveness trial by randomly assigning 918 patients with typical angina and either two or more cardiovascular risk factors or a positive exercise treadmill test to a cardiovascular MRI-based strategy or an FFR-based strategy. Revascularization was recommended for patients in the cardiovascular-MRI group with ischemia in at least 6% of the myocardium or in the FFR group with an FFR of 0.8 or less. The composite primary outcome was death, nonfatal myocardial infarction, or target-vessel revascularization within 1 year. The noninferiority margin was a risk difference of 6 percentage points. RESULTS: A total of 184 of 454 patients (40.5%) in the cardiovascular-MRI group and 213 of 464 patients (45.9%) in the FFR group met criteria to recommend revascularization (P = 0.11). Fewer patients in the cardiovascular-MRI group than in the FFR group underwent index revascularization (162 [35.7%] vs. 209 [45.0%], P = 0.005). The primary outcome occurred in 15 of 421 patients (3.6%) in the cardiovascular-MRI group and 16 of 430 patients (3.7%) in the FFR group (risk difference, -0.2 percentage points; 95% confidence interval, -2.7 to 2.4), findings that met the noninferiority threshold. The percentage of patients free from angina at 12 months did not differ significantly between the two groups (49.2% in the cardiovascular-MRI group and 43.8% in the FFR group, P = 0.21). CONCLUSIONS: Among patients with stable angina and risk factors for coronary artery disease, myocardial-perfusion cardiovascular MRI was associated with a lower incidence of coronary revascularization than FFR and was noninferior to FFR with respect to major adverse cardiac events. (Funded by the Guy's and St. Thomas' Biomedical Research Centre of the National Institute for Health Research and others; MR-INFORM ClinicalTrials.gov number, NCT01236807.).
Subject(s)
Angina, Stable/diagnosis , Coronary Angiography , Fractional Flow Reserve, Myocardial , Magnetic Resonance Angiography , Adult , Aged , Angina, Stable/complications , Angina, Stable/diagnostic imaging , Angina, Stable/physiopathology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Female , Humans , Male , Middle Aged , Risk FactorsABSTRACT
Most cardiac imaging conferences have adopted social media as a means of disseminating conference highlights to a global audience well beyond the confines of the conference location. A deliberate and thoughtful social media campaign has the potential to increase the reach of the conference and allow for augmented engagement. The coronavirus disease 2019 (COVID-19) pandemic triggered a radical transformation in not just the delivery of healthcare but also the dissemination of science within the medical community. In the past, in-person medical conferences were an integral annual tradition for most medical professionals to stay up to date with the latest in the field. Social distancing requirements of the COVID-19 pandemic resulted in either cancelling medical conferences or shifting to a virtual format. Following suit, for the first time in its history, the 2021 Society for Cardiovascular Magnetic Resonance (SCMR) annual meeting was an all-virtual event. This called for a modified social media strategy which aimed to re-create the sociability of an in-person conference whilst also promoting global dissemination of the science being presented. This paper describes the employment of social media as well as the evolution through the SCMR scientific sessions for 2020 and 2021 that serves as a model for future cardiovascular conferences.
Subject(s)
COVID-19 , Social Media , Humans , Magnetic Resonance Spectroscopy , Pandemics , Predictive Value of Tests , SARS-CoV-2ABSTRACT
The Society for Cardiovascular Magnetic Resonance (SCMR) recommendations for training and competency of cardiovascular magnetic resonance (CMR) technologists document will define the knowledge, experiences and skills required for a technologist to be competent in CMR imaging. By providing a framework for CMR training and competency the overarching goal is to promote the performance of high-quality CMR and to foster the increased adoption of CMR into clinical care.
Subject(s)
Cardiovascular System , Magnetic Resonance Imaging , Humans , Predictive Value of Tests , Magnetic Resonance SpectroscopyABSTRACT
BACKGROUND: Although prior reports have evaluated the clinical and cost impacts of cardiovascular magnetic resonance (CMR) for low-to-intermediate-risk patients with suspected significant coronary artery disease (CAD), the cost-effectiveness of CMR compared to relevant comparators remains poorly understood. We aimed to summarize the cost-effectiveness literature on CMR for CAD and create a cost-effectiveness calculator, useable worldwide, to approximate the cost-per-quality-adjusted-life-year (QALY) of CMR and relevant comparators with context-specific patient-level and system-level inputs. METHODS: We searched the Tufts Cost-Effectiveness Analysis Registry and PubMed for cost-per-QALY or cost-per-life-year-saved studies of CMR to detect significant CAD. We also developed a linear regression meta-model (CMR Cost-Effectiveness Calculator) based on a larger CMR cost-effectiveness simulation model that can approximate CMR lifetime discount cost, QALY, and cost effectiveness compared to relevant comparators [such as single-photon emission computed tomography (SPECT), coronary computed tomography angiography (CCTA)] or invasive coronary angiography. RESULTS: CMR was cost-effective for evaluation of significant CAD (either health-improving and cost saving or having a cost-per-QALY or cost-per-life-year result lower than the cost-effectiveness threshold) versus its relevant comparator in 10 out of 15 studies, with 3 studies reporting uncertain cost effectiveness, and 2 studies showing CCTA was optimal. Our cost-effectiveness calculator showed that CCTA was not cost-effective in the US compared to CMR when the most recent publications on imaging performance were included in the model. CONCLUSIONS: Based on current world-wide evidence in the literature, CMR usually represents a cost-effective option compared to relevant comparators to assess for significant CAD.
Subject(s)
Coronary Artery Disease , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Cost-Benefit Analysis , Humans , Magnetic Resonance Spectroscopy , Predictive Value of TestsABSTRACT
The Society for Cardiovascular Magnetic Resonance (SCMR) is an international society focused on the research, education, and clinical application of cardiovascular magnetic resonance (CMR). "Cases of SCMR" is a case series hosted on the SCMR website ( https://www.scmr.org ) that demonstrates the utility and importance of CMR in the clinical diagnosis and management of cardiovascular disease. The COVID-19 Case Collection highlights the impact of coronavirus disease 2019 (COVID-19) on the heart as demonstrated on CMR. Each case in series consists of the clinical presentation and the role of CMR in diagnosis and guiding clinical management. The cases are all instructive and helpful in the approach to patient management. We present a digital archive of the 2021 Cases of SCMR and the 2020 and 2021 COVID-19 Case Collection series of nine cases as a means of further enhancing the education of those interested in CMR and as a means of more readily identifying these cases using a PubMed or similar literature search engine.
Subject(s)
COVID-19 , Cardiovascular System , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Predictive Value of TestsABSTRACT
The effect of limb remote ischaemic conditioning (RIC) on myocardial infarct (MI) size and left ventricular ejection fraction (LVEF) was investigated in a pre-planned cardiovascular magnetic resonance (CMR) substudy of the CONDI-2/ERIC-PPCI trial. This single-blind multi-centre trial (7 sites in UK and Denmark) included 169 ST-segment elevation myocardial infarction (STEMI) patients who were already randomised to either control (n = 89) or limb RIC (n = 80) (4 × 5 min cycles of arm cuff inflations/deflations) prior to primary percutaneous coronary intervention. CMR was performed acutely and at 6 months. The primary endpoint was MI size on the 6 month CMR scan, expressed as median and interquartile range. In 110 patients with 6-month CMR data, limb RIC did not reduce MI size [RIC: 13.0 (5.1-17.1)% of LV mass; control: 11.1 (7.0-17.8)% of LV mass, P = 0.39], or LVEF, when compared to control. In 162 patients with acute CMR data, limb RIC had no effect on acute MI size, microvascular obstruction and LVEF when compared to control. In a subgroup of anterior STEMI patients, RIC was associated with lower incidence of microvascular obstruction and higher LVEF on the acute scan when compared with control, but this was not associated with an improvement in LVEF at 6 months. In summary, in this pre-planned CMR substudy of the CONDI-2/ERIC-PPCI trial, there was no evidence that limb RIC reduced MI size or improved LVEF at 6 months by CMR, findings which are consistent with the neutral effects of limb RIC on clinical outcomes reported in the main CONDI-2/ERIC-PPCI trial.
Subject(s)
Myocardial Infarction , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , Magnetic Resonance Spectroscopy , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/therapy , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/therapy , Single-Blind Method , Stroke Volume , Treatment Outcome , Ventricular Function, LeftABSTRACT
BACKGROUND: Adenosine triphosphate (ATP) has been predominantly used in the Asia-Pacific region for stress perfusion cardiovascular magnetic resonance (CMR). We evaluated the prognosis of patients stressed using ATP, for which there are no current data. METHODS: We performed a retrospective longitudinal study from January 2016 to December 2020 and included 208 subjects with suspected obstructive coronary artery disease (CAD) who underwent ATP stress perfusion CMR. An inducible stress perfusion defect was defined as a subendocardial dark rim involving ≥ 1.5 segments that persisted for ≥ 6 beats during stress but not at rest. The primary outcome measure was a composite of major adverse cardiovascular events (MACE) including (1) cardiac death, (2) nonfatal myocardial infarction, (3) cardiac hospitalization, (4) late coronary revascularization. We compared outcomes in patients with and without perfusion defect using Kaplan-Meier and log rank tests. Significant predictors of MACE were identified using multivariable Cox regression analysis. RESULTS: Median follow-up was 3.3 years. Patients with no stress perfusion defect had a lower incidence of MACE (p < 0.001), including lower cardiac hospitalization (p = 0.004), late coronary revascularization (p = 0.001) and cardiac death (p = 0.003). Significant independent predictors for MACE were stress induced perfusion defect (p < 0.001, hazard ratio [HR] = 3.63), lower left ventricular ejection fractino (LVEF) (p < 0.001, HR = 0.96) and infarct detected by late gadolinium enhancement (LGE) (p = 0.001, HR = 2.92). CONCLUSION: Perfusion defects on ATP stress are predictive of MACE which is driven primarily by cardiac hospitalization, late coronary revascularization and cardiac death. Significant independent predictors of MACE were stress induced perfusion defect, lower LVEF and infarct detected by LGE.
Subject(s)
Coronary Artery Disease , Adenosine Triphosphate , Contrast Media , Coronary Artery Disease/diagnostic imaging , Gadolinium , Humans , Longitudinal Studies , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Perfusion , Predictive Value of Tests , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , Vasodilator AgentsABSTRACT
BACKGROUND: Although coronavirus disease 2019 (COVID-19) is primarily a respiratory illness, myocardial injury is increasingly reported and associated with adverse outcomes. However, the pathophysiology, extent of myocardial injury and clinical significance remains unclear. METHODS: COVID-HEART is a UK, multicentre, prospective, observational, longitudinal cohort study of patients with confirmed COVID-19 and elevated troponin (sex-specific > 99th centile). Baseline assessment will be whilst recovering in-hospital or recently discharged, and include cardiovascular magnetic resonance (CMR) imaging, quality of life (QoL) assessments, electrocardiogram (ECG), serum biomarkers and genetics. Assessment at 6-months includes repeat CMR, QoL assessments and 6-min walk test (6MWT). The CMR protocol includes cine imaging, T1/T2 mapping, aortic distensibility, late gadolinium enhancement (LGE), and adenosine stress myocardial perfusion imaging in selected patients. The main objectives of the study are to: (1) characterise the extent and nature of myocardial involvement in COVID-19 patients with an elevated troponin, (2) assess how cardiac involvement and clinical outcome associate with recognised risk factors for mortality (age, sex, ethnicity and comorbidities) and genetic factors, (3) evaluate if differences in myocardial recovery at 6 months are dependent on demographics, genetics and comorbidities, (4) understand the impact of recovery status at 6 months on patient-reported QoL and functional capacity. DISCUSSION: COVID-HEART will provide detailed characterisation of cardiac involvement, and its repair and recovery in relation to comorbidity, genetics, patient-reported QoL measures and functional capacity. CLINICAL TRIAL REGISTRATION: ISRCTN 58667920. Registered 04 August 2020.
Subject(s)
COVID-19/complications , Heart Diseases/virology , Research Design , Biomarkers/blood , Comorbidity , Contrast Media , Electrocardiography , Female , Heart Diseases/physiopathology , Humans , Longitudinal Studies , Magnetic Resonance Imaging, Cine , Male , Multicenter Studies as Topic , Myocardial Perfusion Imaging , Observation , Pneumonia, Viral/virology , Prospective Studies , Quality of Life , Risk Factors , SARS-CoV-2 , Troponin/blood , United Kingdom , Walk TestABSTRACT
This document is a position statement from the Society for Cardiovascular Magnetic Resonance (SCMR) on recommendations for clinical utilization of cardiovascular magnetic resonance (CMR) in women with cardiovascular disease. The document was prepared by the SCMR Consensus Group on CMR Imaging for Female Patients with Cardiovascular Disease and endorsed by the SCMR Publications Committee and SCMR Executive Committee. The goals of this document are to (1) guide the informed selection of cardiovascular imaging methods, (2) inform clinical decision-making, (3) educate stakeholders on the advantages of CMR in specific clinical scenarios, and (4) empower patients with clinical evidence to participate in their clinical care. The statements of clinical utility presented in the current document pertain to the following clinical scenarios: acute coronary syndrome, stable ischemic heart disease, peripartum cardiomyopathy, cancer therapy-related cardiac dysfunction, aortic syndrome and congenital heart disease in pregnancy, bicuspid aortic valve and aortopathies, systemic rheumatic diseases and collagen vascular disorders, and cardiomyopathy-causing mutations. The authors cite published evidence when available and provide expert consensus otherwise. Most of the evidence available pertains to translational studies involving subjects of both sexes. However, the authors have prioritized review of data obtained from female patients, and direct comparison of CMR between women and men. This position statement does not consider CMR accessibility or availability of local expertise, but instead highlights the optimal utilization of CMR in women with known or suspected cardiovascular disease. Finally, the ultimate goal of this position statement is to improve the health of female patients with cardiovascular disease by providing specific recommendations on the use of CMR.
Subject(s)
Cardiovascular Diseases , Heart Defects, Congenital , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/therapy , Female , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Predictive Value of TestsABSTRACT
The role of inflammation in cardiovascular pathophysiology has gained a lot of research interest in recent years. Cardiovascular Magnetic Resonance has been a powerful tool in the non-invasive assessment of inflammation in several conditions. More recently, Ultrasmall superparamagnetic particles of iron oxide have been successfully used to evaluate macrophage activity and subsequently inflammation on a cellular level. Current evidence from research studies provides encouraging data and confirms that this evolving method can potentially have a huge impact on clinical practice as it can be used in the diagnosis and management of very common conditions such as coronary artery disease, ischaemic and non-ischaemic cardiomyopathy, myocarditis and atherosclerosis. Another important emerging concept is that of myocardial energetics. With the use of phosphorus magnetic resonance spectroscopy, myocardial energetic compromise has been proved to be an important feature in the pathophysiological process of several conditions including diabetic cardiomyopathy, inherited cardiomyopathies, valvular heart disease and cardiac transplant rejection. This unique tool is therefore being utilized to assess metabolic alterations in a wide range of cardiovascular diseases. This review systematically examines these state-of-the-art methods in detail and provides an insight into the mechanisms of action and the clinical implications of their use.
Subject(s)
Cardiovascular Diseases/diagnostic imaging , Contrast Media/administration & dosage , Ferric Compounds/administration & dosage , Inflammation/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Humans , Inflammation/metabolism , Inflammation/physiopathologyABSTRACT
PURPOSE OF REVIEW: Parametric mapping represents a significant innovation in cardiovascular magnetic resonance (CMR) tissue characterisation, allowing the quantification of myocardial changes based on changes on T1, T2 and T2* relaxation times and extracellular volume (ECV). Its clinical use is rapidly expanding, but it requires availability of dedicated equipment as well as expertise in image acquisition and analysis. This review focuses on the principles of CMR parametric mapping, its current clinical applications, important limitations, as well as future directions of this technique in cardiovascular medicine. RECENT FINDINGS: There is increasing evidence that CMR parametric mapping techniques provide accurate diagnostic and prognostic tools that can be applied to and support the clinical management of patients with a range of cardiovascular disease. The unique capability of CMR myocardial tissue characterisation in cardiovascular diseases has further expanded by the introduction of parametric mapping. Its use in clinical practice presents opportunities but has also limitations.
Subject(s)
Heart , Magnetic Resonance Imaging , Contrast Media , Humans , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Myocardium , Predictive Value of TestsABSTRACT
Cardiac magnetic resonance (CMR) imaging is a unique imaging modality, which provides accurate noninvasive tissue characterization. Various CMR sequences can be utilized to identify and quantify patterns of myocardial edema, fibrosis, and infiltrates, which are important determinants for diagnosis and prognostication of heart failure. This article describes available methods of tissue characterization imaging applied in CMR. The presence and patterns of abnormal tissue characterization are related to common etiologies of heart failure and the techniques employed to demonstrate this. CMR provides the opportunity to identify the etiology of heart failure based on the recognition of different patterns of myocardial abnormalities.
Subject(s)
Cardiomyopathies/diagnosis , Heart Failure/complications , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Cardiomyopathies/etiology , Edema/diagnosis , Edema/etiology , Fibrosis/diagnosis , Fibrosis/etiology , Heart Failure/diagnosis , HumansABSTRACT
Heart failure (HF) with either reduced or preserved ejection fraction is an increasingly prevalent condition. Cardiac imaging plays a central role in trying to identify the underlying cause of the underlying systolic and diastolic dysfunction, as the imaging findings have implications for patient's management and individualised treatment. The imaging modalities used more frequently in patients with heart failure in clinical routine are echocardiography and cardiac magnetic resonance. Both techniques keep some strengths and weakness due to their spatial and temporal resolution. Notably, several features in the diagnostic algorithm of heart failure with preserved systolic function (HFpEF) may be improved by an integrated approach. This review focuses on the role of each modality in characterising cardiac anatomy, systolic and diastolic function as well as myocardial tissue characterisation in the most common phenotypes of dilated and hypertrophied hearts.
Subject(s)
Heart Failure/diagnostic imaging , Heart Ventricles/diagnostic imaging , Stroke Volume , Diastole , Echocardiography , Heart Failure/physiopathology , Heart Ventricles/physiopathology , Humans , Magnetic Resonance Imaging, Cine , Myocardium/pathology , Phenotype , SystoleABSTRACT
This document is an update to the 2013 publication of the Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Protocols. Concurrent with this publication, 3 additional task forces will publish documents that should be referred to in conjunction with the present document. The first is a document on the Clinical Indications for CMR, an update of the 2004 document. The second task force will be updating the document on Reporting published by that SCMR Task Force in 2010. The 3rd task force will be updating the 2013 document on Post-Processing. All protocols relative to congenital heart disease are covered in a separate document.The section on general principles and techniques has been expanded as more of the techniques common to CMR have been standardized. A section on imaging in patients with devices has been added as this is increasingly seen in day-to-day clinical practice. The authors hope that this document continues to standardize and simplify the patient-based approach to clinical CMR. It will be updated at regular intervals as the field of CMR advances.
Subject(s)
Cardiovascular Diseases/diagnostic imaging , Clinical Protocols/standards , Magnetic Resonance Imaging/standards , Consensus , Humans , Predictive Value of TestsABSTRACT
The aim of this document is to provide specific recommendations on the use of cardiovascular magnetic resonance (CMR) protocols in the era of the COVID-19 pandemic. In patients without COVID-19, standard CMR protocols should be used based on clinical indication as usual. Protocols used in patients who have known / suspected active COVID-19 or post COVID-19 should be performed based on the specific clinical question with an emphasis on cardiac function and myocardial tissue characterization. Short and dedicated protocols are recommended.