Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Epilepsia ; 62(2): 325-334, 2021 02.
Article in English | MEDLINE | ID: mdl-33410528

ABSTRACT

OBJECTIVE: Asparagine-linked glycosylation 13 (ALG13) deficiencies have been repeatedly described in the literature with the clinical phenotype of a developmental and epileptic encephalopathy (DEE). Most cases were females carrying the recurrent ALG13 de novo variant, p.(Asn107Ser), with normal transferrin electrophoresis. METHODS: We delineate the phenotypic spectrum of 38 individuals, 37 girls and one boy, 16 of them novel and 22 published, with the most common pathogenic ALG13 variant p.(Asn107Ser) and additionally report the phenotype of three individuals carrying other likely pathogenic ALG13 variants. RESULTS: The phenotypic spectrum often comprised pharmacoresistant epilepsy with epileptic spasms, mostly with onset within the first 6 months of life and with spasm persistence in one-half of the cases. Tonic seizures were the most prevalent additional seizure type. Electroencephalography showed hypsarrhythmia and at a later stage of the disease in one-third of all cases paroxysms of fast activity with electrodecrement. ALG13-related DEE was usually associated with severe to profound developmental delay; ambulation was acquired by one-third of the cases, whereas purposeful hand use was sparse or completely absent. Hand stereotypies and dyskinetic movements including dystonia or choreoathetosis were relatively frequent. Verbal communication skills were absent or poor, and eye contact and pursuit were often impaired. SIGNIFICANCE: X-linked ALG13-related DEE usually manifests as West syndrome with severe to profound developmental delay. It is predominantly caused by the recurrent de novo missense variant p.(Asn107Ser). Comprehensive functional studies will be able to prove or disprove an association with congenital disorder of glycosylation.


Subject(s)
Developmental Disabilities/physiopathology , Drug Resistant Epilepsy/physiopathology , N-Acetylglucosaminyltransferases/genetics , Spasms, Infantile/physiopathology , Adrenocorticotropic Hormone/therapeutic use , Anticonvulsants/therapeutic use , Child , Child, Preschool , Developmental Disabilities/genetics , Diet, Ketogenic , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/therapy , Dyskinesias/genetics , Dyskinesias/physiopathology , Electroencephalography , Epileptic Syndromes/genetics , Epileptic Syndromes/physiopathology , Epileptic Syndromes/therapy , Female , Glucocorticoids/therapeutic use , Hormones/therapeutic use , Humans , Infant , Language Development Disorders/genetics , Language Development Disorders/physiopathology , Magnetic Resonance Imaging , Male , Mutation, Missense , Phenotype , Social Behavior , Spasms, Infantile/genetics
2.
Am J Hum Genet ; 101(2): 300-310, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28777935

ABSTRACT

Massively parallel sequencing has revealed many de novo mutations in the etiology of developmental and epileptic encephalopathies (EEs), highlighting their genetic heterogeneity. Additional candidate genes have been prioritized in silico by their co-expression in the brain. Here, we evaluate rare coding variability in 20 candidates nominated with the use of a reference gene set of 51 established EE-associated genes. Variants within the 20 candidate genes were extracted from exome-sequencing data of 42 subjects with EE and no previous genetic diagnosis. We identified 7 rare non-synonymous variants in 7 of 20 genes and performed Sanger sequence validation in affected probands and parental samples. De novo variants were found only in SLC1A2 (aka EAAT2 or GLT1) (c.244G>A [p.Gly82Arg]) and YWHAG (aka 14-3-3γ) (c.394C>T [p.Arg132Cys]), highlighting the potential cause of EE in 5% (2/42) of subjects. Seven additional subjects with de novo variants in SLC1A2 (n = 1) and YWHAG (n = 6) were subsequently identified through online tools. We identified a highly significant enrichment of de novo variants in YWHAG, establishing their role in early-onset epilepsy, and we provide additional support for the prior assignment of SLC1A2. Hence, in silico modeling of brain co-expression is an efficient method for nominating EE-associated genes to further elucidate the disorder's etiology and genotype-phenotype correlations.


Subject(s)
14-3-3 Proteins/genetics , Genetic Predisposition to Disease , Glutamate Plasma Membrane Transport Proteins/genetics , Spasms, Infantile/genetics , Adolescent , Adult , Amino Acid Sequence , Child , Excitatory Amino Acid Transporter 2 , Exome/genetics , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Phenotype , Young Adult
3.
Eur Radiol ; 24(11): 2980-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25097124

ABSTRACT

OBJECTIVE: To investigate pathological findings in the susceptibility weighted imaging (SWI) of patients experiencing convulsive (CSE) or non-convulsive status epilepticus (NCSE) with focal hyperperfusion in the acute setting. METHODS: Twelve patients (six with NCSE confirmed by electroencephalogram (EEG) and six patients with CSE with seizure event clinically diagnosed) underwent MRI in this acute setting (mean time between onset of symptoms and MRI was 3 h 8 min), including SWI, dynamic susceptibility contrast MR imaging (DSC) and diffusion-weighted imaging (DWI). MRI sequences were retrospectively evaluated and compared with EEG findings (10/12 patients), and clinical symptoms. RESULTS: Twelve out of 12 (100 %) patients showed a focal parenchymal area with pseudo-narrowed cortical veins on SWI, associated with focal hyperperfused areas (increased cerebral blood flow (CBF) and mean transit time (MTT) shortening), and cortical DWI restriction in 6/12 patients (50 %). Additionally, these areas were associated with ictal or postical EEG patterns in 8/10 patients (80 %). Most frequent acute clinical findings were aphasia and/or hemiparesis in eight patients, and all of them showed pseudo-narrowed veins in those parenchymal areas responsible for these symptoms. CONCLUSION: In this study series with CSE and NCSE patients, SWI showed focally pseudo-narrowed cortical veins in hyperperfused and ictal parenchymal areas. Therefore, SWI might have the potential to identify an ictal region in CSE/NCSE. KEY POINTS: • The focal ictal brain regions show hyperperfusion in DSC MR-perfusion imaging. • SWI shows focally diminished cortical veins in hyperperfused ictal regions. • SWI has the potential to identify a focal ictal region in CSE/NCSE.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Hemodynamics/physiology , Status Epilepticus/physiopathology , Adolescent , Adult , Aged , Aged, 80 and over , Brain/pathology , Cerebrovascular Circulation , Child , Child, Preschool , Electroencephalography , Female , Humans , Infant , Male , Middle Aged , Regional Blood Flow , Retrospective Studies , Status Epilepticus/diagnosis , Young Adult
4.
Seizure ; 113: 66-75, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995443

ABSTRACT

PURPOSE: Genetic studies in sudden infant death syndrome (SIDS) and sudden unexplained death (SUD) cohorts have indicated that cardiovascular diseases might have contributed to sudden unexpected death in 20-35 % of autopsy-negative cases. Sudden unexpected death can also occur in people with epilepsy, termed as sudden unexpected death in epilepsy (SUDEP). The pathophysiological mechanisms of SUDEP are not well understood, but are likely multifactorial, including seizure-induced hypoventilation and arrhythmias as well as genetic risk factors. The sudden death of some of the SIDS/SUD victims might also be explained by genetic epilepsy, therefore this study aimed to expand the post-mortem genetic analysis of SIDS/SUD cases to epilepsy-related genes. METHODS: Existing whole-exome sequencing data from our 155 SIDS and 45 SUD cases were analyzed, with a focus on 365 epilepsy-related genes. Nine of the SUD victims had a known medical history of epilepsy, seizures or other underlying neurological conditions and were therefore classified as SUDEP cases. RESULTS: In our SIDS and SUD cohorts, we found epilepsy-related pathogenic/likely pathogenic variants in the genes OPA1, RAI1, SCN3A, SCN5A and TSC2. CONCLUSION: Post-mortem analysis of epilepsy-related genes identified potentially disease-causing variants that might have contributed to the sudden death events in our SIDS/SUD cases. However, the interpretation of identified variants remains challenging and often changes over time as more data is gathered. Overall, this study contributes insight in potentially pathophysiological epilepsy-related mechanisms in SIDS, SUD and SUDEP victims and underlines the importance of sensible counselling on the risk and preventive measures in genetic epilepsy.


Subject(s)
Epilepsy , Sudden Infant Death , Sudden Unexpected Death in Epilepsy , Adult , Child , Infant , Humans , Sudden Infant Death/genetics , Exome , Epilepsy/complications , Epilepsy/genetics , Arrhythmias, Cardiac/genetics , Seizures/genetics
5.
AJR Am J Roentgenol ; 198(5): W440-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22528925

ABSTRACT

OBJECTIVE: The purpose of this article is to present and discuss the susceptibility-weighted imaging signal characteristics of the normal pediatric brain and those of a variety of pediatric brain pathologic abnormalities. CONCLUSION: Its high susceptibility for blood products, iron depositions, and calcifications makes susceptibility-weighted imaging an important additional sequence for the diagnostic workup of pediatric brain pathologic abnormalities. Compared with conventional MRI sequences, susceptibility-weighted imaging may show lesions in better detail or with higher sensitivity. Familiarity with the pediatric susceptibility-weighted imaging signal variance is essential to prevent misdiagnosis.


Subject(s)
Brain Diseases/diagnosis , Brain/anatomy & histology , Magnetic Resonance Imaging/methods , Artifacts , Child , Child, Preschool , Humans , Imaging, Three-Dimensional , Infant , Infant, Newborn , Reference Values , Sensitivity and Specificity
7.
Dev Med Child Neurol ; 52(11): 1033-7, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20477838

ABSTRACT

AIM: The aim of this study was to describe neuroimaging patterns associated with arterial ischaemic stroke (AIS) in childhood and to differentiate them according to stroke aetiology. METHOD: Clinical and neuroimaging (acute and follow-up) findings were analysed prospectively in 79 children (48 males, 31 females) aged 2 months to 15 years 8 months (median 5 y 3 mo) at the time of stroke by the Swiss Neuropaediatric Stroke Registry from 2000 to 2006. RESULTS: Stroke was confirmed in the acute period in 36 out of 41 children who underwent computed tomography, in 53 of 57 who underwent T2-weighted magnetic resonance imaging (MRI) and in all 48 children who underwent diffusion-weighted MRI. AIS occurred in the anterior cerebral artery (ACA) in 63 participants and in all cases was associated with lesions of the middle cerebral artery (MCA). The lesion was cortical-subcortical in 30 out of 63 children, cortical in 25 out of 63, and subcortical in 8 of 63 children. Among participants with AIS in the posterior circulation territory, the stroke was cortical-subcortical in 8 out of 16, cortical in 5 of 16, and thalamic in 3 out of 16 children. INTERPRETATION: AIS mainly involves the anterior circulation territory, with both the ACA and the MCA being affected. The classification of Ganesan is an appropriate population-based classification for our Swiss cohort, but the neuroimaging pattern alone is insufficient to determine the aetiology of stroke in a paediatric population. The results show a poor correlation between lesion pattern and aetiology.


Subject(s)
Brain Ischemia/diagnosis , Brain Ischemia/etiology , Intracranial Arterial Diseases/complications , Intracranial Arterial Diseases/diagnosis , Stroke/diagnosis , Stroke/etiology , Adolescent , Brain Infarction/etiology , Brain Infarction/pathology , Child , Child, Preschool , Diagnostic Imaging , Female , Follow-Up Studies , Humans , Infant , Male , Retrospective Studies
8.
Anesth Analg ; 109(3): 807-16, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19690250

ABSTRACT

BACKGROUND: Sedation protocols, including the use of sedation scales and regular sedation stops, help to reduce the length of mechanical ventilation and intensive care unit stay. Because clinical assessment of depth of sedation is labor-intensive, performed only intermittently, and interferes with sedation and sleep, processed electrophysiological signals from the brain have gained interest as surrogates. We hypothesized that auditory event-related potentials (ERPs), Bispectral Index (BIS), and Entropy can discriminate among clinically relevant sedation levels. METHODS: We studied 10 patients after elective thoracic or abdominal surgery with general anesthesia. Electroencephalogram, BIS, state entropy (SE), response entropy (RE), and ERPs were recorded immediately after surgery in the intensive care unit at Richmond Agitation-Sedation Scale (RASS) scores of -5 (very deep sedation), -4 (deep sedation), -3 to -1 (moderate sedation), and 0 (awake) during decreasing target-controlled sedation with propofol and remifentanil. Reference measurements for baseline levels were performed before or several days after the operation. RESULTS: At baseline, RASS -5, RASS -4, RASS -3 to -1, and RASS 0, BIS was 94 [4] (median, IQR), 47 [15], 68 [9], 75 [10], and 88 [6]; SE was 87 [3], 46 [10], 60 [22], 74 [21], and 87 [5]; and RE was 97 [4], 48 [9], 71 [25], 81 [18], and 96 [3], respectively (all P < 0.05, Friedman Test). Both BIS and Entropy had high variabilities. When ERP N100 amplitudes were considered alone, ERPs did not differ significantly among sedation levels. Nevertheless, discriminant ERP analysis including two parameters of principal component analysis revealed a prediction probability PK value of 0.89 for differentiating deep sedation, moderate sedation, and awake state. The corresponding PK for RE, SE, and BIS was 0.88, 0.89, and 0.85, respectively. CONCLUSIONS: Neither ERPs nor BIS or Entropy can replace clinical sedation assessment with standard scoring systems. Discrimination among very deep, deep to moderate, and no sedation after general anesthesia can be provided by ERPs and processed electroencephalograms, with similar P(K)s. The high inter- and intraindividual variability of Entropy and BIS precludes defining a target range of values to predict the sedation level in critically ill patients using these parameters. The variability of ERPs is unknown.


Subject(s)
Anesthesiology/methods , Evoked Potentials/drug effects , Intensive Care Units , Aged , Aged, 80 and over , Conscious Sedation/methods , Electroencephalography/methods , Entropy , Humans , Middle Aged , Monitoring, Intraoperative/methods , Pilot Projects , Piperidines/pharmacology , Propofol/pharmacology , Remifentanil
10.
Front Neurol ; 10: 434, 2019.
Article in English | MEDLINE | ID: mdl-31164858

ABSTRACT

Targeted whole-exome sequencing (WES) is a powerful diagnostic tool for a broad spectrum of heterogeneous neurological disorders. Here, we aim to examine the impact on diagnosis, treatment and cost with early use of targeted WES in early-onset epilepsy. WES was performed on 180 patients with early-onset epilepsy (≤5 years) of unknown cause. Patients were classified as Retrospective (epilepsy diagnosis >6 months) or Prospective (epilepsy diagnosis <6 months). WES was performed on an Ion Proton™ and variant reporting was restricted to the sequences of 620 known epilepsy genes. Diagnostic yield and time to diagnosis were calculated. An analysis of cost and impact on treatment was also performed. A molecular diagnoses (pathogenic/likely pathogenic variants) was achieved in 59/180 patients (33%). Clinical management changed following WES findings in 23 of 59 diagnosed patients (39%) or 13% of all patients. A possible diagnosis was identified in 21 additional patients (12%) for whom supporting evidence is pending. Time from epilepsy onset to a genetic diagnosis was faster when WES was performed early in the diagnostic process (mean: 145 days Prospective vs. 2,882 days Retrospective). Costs of prior negative tests averaged $8,344 per patient in the Retrospective group, suggesting savings of $5,110 per patient using WES. These results highlight the diagnostic yield, clinical utility and potential cost-effectiveness of using targeted WES early in the diagnostic workup of patients with unexplained early-onset epilepsy. The costs and clinical benefits are likely to continue to improve. Advances in precision medicine and further studies regarding impact on long-term clinical outcome will be important.

12.
Pediatr Neurol ; 75: 87-90, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28811059

ABSTRACT

BACKGROUND: Pathogenic heterozygous variants in the ATP1A2 gene have most commonly been associated with familial hemiplegic migraine. However, a wide spectrum of phenotypes that include alternating hemiplegia of childhood and epilepsy have been described. PATIENT DESCRIPTION: We describe a boy who presented at age three months with a complex phenotype that included epilepsy, nonepileptic paroxysmal events, and recurrent hemiplegia. Magnetic resonance imaging demonstrated unilateral cortical edema during a severe episode of hemiplegia that was followed by a persistent mild hemiparesis. RESULTS: Whole-exome sequencing identified a previously reported ATP1A2 missense variant (p.Arg548Cys) classified as pathogenic and a novel missense variant (p.Arg1008Trp) classified as a variant of uncertain significance. After this genetic diagnosis, treatment with flunarizine was initiated and no further episodes of hemiplegia have occurred. CONCLUSIONS: This is only the second report of compound heterozygosity of the ATP1A2 gene. It demonstrates the spectrum of paroxysmal neurological events that can arise as a result of ATP1A2 variants, with unique features overlapping alternating hemiplegia of childhood, hemiplegic migraine, and epilepsy. This child illustrates the diagnostic challenges that these disorders can present and the importance of genetic diagnosis in guiding management.


Subject(s)
Epilepsy/genetics , Hemiplegia/genetics , Mutation/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Child, Preschool , Electroencephalography , Epilepsy/diagnostic imaging , Hemiplegia/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Phenotype
13.
Eur J Paediatr Neurol ; 20(2): 252-260, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26778232

ABSTRACT

BACKGROUND: The mechanisms of childhood and perinatal arterial ischemic stroke (AIS) are poorly understood. Multiple risk factors include cerebral arteriopathy, congenital cardiac disease, infection, sickle cell disease, and maternal-fetal conditions in neonates. For infections and parainfectious conditions being the most important a possible inflammatory pathophysiology has long been suspected. This pilot study aims to detect, whether there are any abnormalities of inflammatory markers associated with childhood and neonatal stroke. METHODS: The concentration of 23 different metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs), endothelial factors, vascular cell adhesion proteins, and cytokines in plasma were measured in 12 children with AIS, 7 healthy age matched controls and 6 full term neonates with perinatal AIS. RESULTS: At the time of the acute event children with AIS had significantly elevated levels of MMP-9, TIMP4, IL-6, IL-8 and CRP compared to controls (p < 0.05). Except for lower IL-6 and CRP levels the pattern of children with a history of varizella-zoster virus (VZV) and other viral infections did not differ to the non-infectious group. Median levels of MMP-1, MMP-2, TIMP-1, TIMP-2, sE-selectin, sICAM-1, sVCAM-1, IL-8, IL-10, TNF-alpha, VEGF, Fetuin A were found to be higher in the neonatal group when compared with older children. CONCLUSION: This pilot study supports the assumption of an inflammatory process and up-regulation of metalloproteinases and their inhibitors, and altered pattern of circulating pro-inflammatory cytokines, CRP and vWF levels in pediatric and neonatal AIS. It highlights the feasibility but also difficulties for similar larger future studies that should aim to clarify childhood stroke etiopathogenesis and consecutive further therapeutic options.


Subject(s)
Biomarkers/blood , Stroke/blood , Stroke/physiopathology , Child , Child, Preschool , Female , Humans , Infant , Inflammation/complications , Male , Pilot Projects , Risk Factors
14.
Neurol Genet ; 2(6): e120, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27872899

ABSTRACT

OBJECTIVE: We describe 2 additional patients with early-onset epilepsy with a de novo FGF12 mutation. METHODS: Whole-exome sequencing was performed in 2 unrelated patients with early-onset epilepsy and their unaffected parents. Genetic variants were assessed by comparative trio analysis. Clinical evolution, EEG, and neuroimaging are described. The phenotype and response to treatment was reviewed and compared to affected siblings in the original report. RESULTS: We identified the same FGF12 de novo mutation reported previously (c.G155A, p.R52H) in 2 additional patients with early-onset epilepsy. Similar to the original brothers described, both presented with tonic seizures in the first month of life. In the first patient, seizures responded to sodium channel blockers and her development was normal at 11 months. Patient 2 is a 15-year-old girl with treatment-resistant focal epilepsy, moderate intellectual disability, and autism. Carbamazepine (sodium channel blocker) was tried later in her course but not continued due to an allergic reaction. CONCLUSIONS: The identification of a recurrent de novo mutation in 2 additional unrelated probands with early-onset epilepsy supports the role of FGF12 p.R52H in disease pathogenesis. Affected carriers presented with similar early clinical phenotypes; however, this report expands the phenotype associated with this mutation which contrasts with the progressive course and early mortality of the siblings in the original report.

15.
Gen Hosp Psychiatry ; 27(3): 180-8, 2005.
Article in English | MEDLINE | ID: mdl-15882764

ABSTRACT

AIM: The purpose of this review was to study the relationships between negative affect states and cardiovascular disorders. PROCEDURE: The phenomenology of the negative affect states of depression, helplessness, hopelessness, vital exhaustion and grief is described. Their correlations with morbidity and mortality are analyzed. The physiological correlates of the affect states are pointed out. Finally, the reaction pattern of conservation-withdrawal according to Schmale and Engel and its ontogenesis are outlined. This is a disengaging behavior pattern as opposed to the engaging fight-flight reaction pattern of Cannon. The giving up complex, with its affects of helplessness and hopelessness, is explained. CONCLUSIONS: The giving up complex in the context of the conservation-withdrawal pattern presents a biologically and developmentally sound conceptual basis for the understanding of the relationships of the negative affect states with cardiovascular disorders. This enables the integration of the concept of vital exhaustion, which has become the most promising operationalized instrument in psychosocial cardiovascular research.


Subject(s)
Cardiovascular Diseases/psychology , Negativism , Psychology , Humans , Switzerland
16.
Pediatrics ; 135(5): e1220-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25896840

ABSTRACT

BACKGROUND AND OBJECTIVES: Neonatal arterial ischemic stroke (NAIS) is associated with considerable lifetime burdens such as cerebral palsy, epilepsy, and cognitive impairment. Prospective epidemiologic studies that include outcome assessments are scarce. This study aimed to provide information on the epidemiology, clinical manifestations, infarct characteristics, associated clinical variables, treatment strategies, and outcomes of NAIS in a prospective, population-based cohort of Swiss children. METHODS: This prospective study evaluated the epidemiology, clinical manifestations, vascular territories, associated clinical variables, and treatment of all full-term neonates diagnosed with NAIS and born in Switzerland between 2000 and 2010. Follow-up was performed 2 years (mean 23.3 months, SD 4.3 months) after birth. RESULTS: One hundred neonates (67 boys) had a diagnosis of NAIS. The NAIS incidence in Switzerland during this time was 13 (95% confidence interval [CI], 11-17) per 100,000 live births. Seizures were the most common symptom (95%). Eighty-one percent had unilateral (80% left-sided) and 19% had bilateral lesions. Risk factors included maternal risk conditions (32%), birth complications (68%), and neonatal comorbidities (54%). Antithrombotic and antiplatelet therapy use was low (17%). No serious side effects were reported. Two years after birth, 39% were diagnosed with cerebral palsy and 31% had delayed mental performance. CONCLUSIONS: NAIS in Switzerland shows a similar incidence as other population-based studies. About one-third of patients developed cerebral palsy or showed delayed mental performance 2 years after birth, and children with normal mental performance may still develop deficits later in life.


Subject(s)
Brain Ischemia , Stroke , Brain Ischemia/complications , Brain Ischemia/diagnosis , Brain Ischemia/drug therapy , Brain Ischemia/epidemiology , Female , Humans , Incidence , Infant, Newborn , Male , Prospective Studies , Stroke/diagnosis , Stroke/drug therapy , Stroke/epidemiology , Stroke/etiology , Switzerland/epidemiology , Treatment Outcome
17.
Nat Genet ; 45(9): 1067-72, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23933819

ABSTRACT

Idiopathic focal epilepsy (IFE) with rolandic spikes is the most common childhood epilepsy, comprising a phenotypic spectrum from rolandic epilepsy (also benign epilepsy with centrotemporal spikes, BECTS) to atypical benign partial epilepsy (ABPE), Landau-Kleffner syndrome (LKS) and epileptic encephalopathy with continuous spike and waves during slow-wave sleep (CSWS). The genetic basis is largely unknown. We detected new heterozygous mutations in GRIN2A in 27 of 359 affected individuals from 2 independent cohorts with IFE (7.5%; P = 4.83 × 10(-18), Fisher's exact test). Mutations occurred significantly more frequently in the more severe phenotypes, with mutation detection rates ranging from 12/245 (4.9%) in individuals with BECTS to 9/51 (17.6%) in individuals with CSWS (P = 0.009, Cochran-Armitage test for trend). In addition, exon-disrupting microdeletions were found in 3 of 286 individuals (1.0%; P = 0.004, Fisher's exact test). These results establish alterations of the gene encoding the NMDA receptor NR2A subunit as a major genetic risk factor for IFE.


Subject(s)
Epilepsies, Partial/genetics , Mutation , Receptors, N-Methyl-D-Aspartate/genetics , Amino Acid Substitution , Epilepsies, Partial/diagnosis , Female , Humans , Male , Models, Molecular , Mutation, Missense , Pedigree , Protein Conformation , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL