Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Oncoimmunology ; 10(1): 1900635, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33796412

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has traditionally been thought of as an immunologically quiescent tumor type presumably because of a relatively low tumor mutational burden (TMB) and poor responses to checkpoint blockade therapy. However, many PDAC tumors exhibit T cell inflamed phenotypes. The presence of tertiary lymphoid structures (TLS) has recently been shown to be predictive of checkpoint blockade response in melanomas and sarcomas, and are prognostic for survival in PDAC. In order to more comprehensively understand tumor immunity in PDAC patients with TLS, we performed RNA-seq, single and multiplex IHC, flow cytometry and predictive genomic analysis on treatment naïve, PDAC surgical specimens. Forty-six percent of tumors contained distinct T and B cell aggregates reflective of "early-stage TLS" (ES-TLS), which correlated with longer overall and progression-free survival. These tumors had greater CD8+ T cell infiltration but were not defined by previously published TLS gene-expression signatures. ES-TLS+ tumors were enriched for IgG1 class-switched memory B cells and memory CD4+ T cells, suggesting durable immunological memory persisted in these patients. We also observed the presence of active germinal centers (mature-TLS) in 31% of tumors with lymphocyte clusters, whose patients had long-term survival (median 56 months). M-TLS-positive tumors had equivalent overall T cell infiltration to ES-TLS, but were enriched for activated CD4+ memory cells, naive B cells and NK cells. Finally, using a TCGA-PDAC dataset, ES-TLS+ tumors harbored a decreased TMB, but M-TLS with germinal centers expressed significantly more MHCI-restricted neoantigens as determined by an in silico neoantigen prediction method. Interestingly, M-TLS+ tumors also had evidence of increased rates of B cell somatic hypermutation, suggesting that germinal centers form in the presence of high-quality tumor neoantigens leading to increased humoral immunity that confers improved survival for PDAC patients. AbbreviationsTLS: tertiary lymphoid structures; GC: germinal center(s); PDAC: pancreatic ductal adenocarcinoma; RNA-seq: RNA sequencing; BCRseq: B cell receptor sequencing; HEV: high endothelial venule; PNAd: peripheral node addressin; TMB: tumor mutational burden; TCGA: the cancer genome atlas; PAAD: pancreatic adenocarcinoma; FFPE: formalin fixed paraffin embedded; TIME: tumor immune microenvironment.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Tertiary Lymphoid Structures , Germinal Center , Humans , Immunity, Humoral , Pancreatic Neoplasms/genetics , Survivorship , Tumor Microenvironment
2.
Biochemistry ; 47(24): 6329-41, 2008 Jun 17.
Article in English | MEDLINE | ID: mdl-18491919

ABSTRACT

Pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP) are highly versatile coenzymes whose importance is well recognized. The capability of PLP/PMP-dependent enzymes to catalyze a diverse array of chemical reactions is attributed to fine-tuning of the cofactor-substrate interactions in the active site. CDP-6-deoxy-L-threo-D-glycero-4-hexulose 3-dehydrase (E1), along with its reductase (E3), catalyzes the C-3 deoxygenation of CDP-4-keto-6-deoxy-D-glucose to form the dehydrated product, CDP-4-keto-3,6-dideoxy- d-glucose, in the ascarylose biosynthetic pathway. This product is the progenitor to most 3,6-dideoxyhexoses, which are the major antigenic determinants of many Gram-negative pathogens. The dimeric [2Fe-2S] protein, E 1, cloned from Yersinia pseudotuberculosis, is the only known enzyme whose catalysis involves the direct participation of PMP in one-electron redox chemistry. E1 also contains an unusual [2Fe-2S] cluster with a previously unknown binding motif (C-X 57-C-X 1-C-X 7-C). Herein we report the first X-ray crystal structure of E1, which exhibits an aspartate aminotransferase (AAT) fold. A comparison of the E1 active site architecture with homologous structures uncovers residues critical for the dehydration versus transamination activity. Site-directed mutagenesis of four E1 residues, D194H, Y217H, H220K, and F345H, converted E 1 from a PMP-dependent dehydrase to a PLP/glutamate-dependent aminotransferase. The E1 quadruple mutant, having been conferred this altered enzyme activity, can transaminate the natural substrate to CDP-4,6-dideoxy-4-amino-D-galactose without E3. Taken together, these results provide the molecular basis of the functional switch of E1 toward dehydration, epimerization, and transamination. The insights gained from these studies can be used for the development of inhibitors of disease-relevant PLP/PMP-dependent enzymes.


Subject(s)
Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Mutagenesis, Site-Directed , Water/metabolism , Yersinia pseudotuberculosis/enzymology , Yersinia pseudotuberculosis/metabolism , Amino Acid Sequence , Catalysis , Crystallography, X-Ray , Electron Transport , Hydro-Lyases/genetics , Molecular Sequence Data , Pyridoxal Phosphate/chemistry , Substrate Specificity , Transaminases/chemistry , Yersinia pseudotuberculosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL