Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 21(7): 746-755, 2020 07.
Article in English | MEDLINE | ID: mdl-32514064

ABSTRACT

Plasma membranes of animal cells are enriched for cholesterol. Cholesterol-dependent cytolysins (CDCs) are pore-forming toxins secreted by bacteria that target membrane cholesterol for their effector function. Phagocytes are essential for clearance of CDC-producing bacteria; however, the mechanisms by which these cells evade the deleterious effects of CDCs are largely unknown. Here, we report that interferon (IFN) signals convey resistance to CDC-induced pores on macrophages and neutrophils. We traced IFN-mediated resistance to CDCs to the rapid modulation of a specific pool of cholesterol in the plasma membrane of macrophages without changes to total cholesterol levels. Resistance to CDC-induced pore formation requires the production of the oxysterol 25-hydroxycholesterol (25HC), inhibition of cholesterol synthesis and redistribution of cholesterol to an esterified cholesterol pool. Accordingly, blocking the ability of IFN to reprogram cholesterol metabolism abrogates cellular protection and renders mice more susceptible to CDC-induced tissue damage. These studies illuminate targeted regulation of membrane cholesterol content as a host defense strategy.


Subject(s)
Bacterial Infections/immunology , Bacterial Toxins/immunology , Hydroxycholesterols/metabolism , Interferons/isolation & purification , Phagocytes/immunology , Streptolysins/immunology , Animals , Bacteria/immunology , Bacteria/metabolism , Bacterial Proteins/administration & dosage , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Cell Membrane/metabolism , Cell Membrane Permeability/immunology , Cells, Cultured , Disease Models, Animal , Disease Susceptibility/immunology , Female , Host Microbial Interactions/immunology , Humans , Intravital Microscopy , Male , Mice , Mice, Transgenic , Phagocytes/cytology , Phagocytes/metabolism , Primary Cell Culture , Steroid Hydroxylases/genetics , Steroid Hydroxylases/metabolism , Streptolysins/administration & dosage , Streptolysins/metabolism
2.
Nano Lett ; 24(26): 7999-8007, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900975

ABSTRACT

The rapid increase in data storage worldwide demands a substantial amount of energy consumption annually. Studies looking at low power consumption accompanied by high-performance memory are essential for next-generation memory. Here, Graphdiyne oxide (GDYO), characterized by facile resistive switching behavior, is systematically reported toward a low switching voltage memristor. The intrinsic large, homogeneous pore-size structure in GDYO facilitates ion diffusion processes, effectively suppressing the operating voltage. The theoretical approach highlights the remarkably low diffusion energy of the Ag ion (0.11 eV) and oxygen functional group (0.6 eV) within three layers of GDYO. The Ag/GDYO/Au memristor exhibits an ultralow operating voltage of 0.25 V with a GDYO thickness of 5 nm; meanwhile, the thicker GDYO of 29 nm presents multilevel memory with an ON/OFF ratio of up to 104. The findings shed light on memory resistive switching behavior, facilitating future improvements in GDYO-based devices toward opto-memristors, artificial synapses, and neuromorphic applications.

3.
Toxicol Appl Pharmacol ; 485: 116911, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38527694

ABSTRACT

The highly selective Spleen Tyrosine Kinase (SYK) inhibitors entospletinib and lanraplenib disrupt kinase activity and inhibit immune cell functions. They are developed for treatment of B-cell malignancies and autoimmunity diseases. The impact of P-gp/ABCB1 and BCRP/ABCG2 efflux transporters, OATP1a/1b uptake transporters and CYP3A drug-metabolizing enzymes on the oral pharmacokinetics of these drugs was assessed using mouse models. Entospletinib and lanraplenib were orally administered simultaneously at moderate dosages (10 mg/kg each) to female mice to assess the possibility of examining two structurally and mechanistically similar drugs at the same time, while reducing the number of experimental animals and sample-processing workload. The plasma pharmacokinetics of both drugs were not substantially restricted by Abcb1 or Abcg2. The brain-to-plasma ratios of entospletinib in Abcb1a/b-/-, Abcg2-/- and Abcb1a/b;Abcg2-/- mice were 1.7-, 1.8- and 2.9-fold higher, respectively, compared to those in wild-type mice. For lanraplenib these brain-to-plasma ratios were 3.0-, 1.3- and 10.4-fold higher, respectively. This transporter-mediated restriction of brain penetration for both drugs could be almost fully inhibited by coadministration of the dual ABCB1/ABCG2 inhibitor elacridar, without signs of acute toxicity. Oatp1a/b and human CYP3A4 did not seem to affect the pharmacokinetics of entospletinib and lanraplenib, but mouse Cyp3a may limit lanraplenib plasma exposure. Unexpectedly, entospletinib and lanraplenib increased each other's plasma exposure by 2.6- to 2.9-fold, indicating a significant drug-drug interaction. This interaction was, however, unlikely to be mediated through any of the studied transporters or CYP3A. The obtained insights may perhaps help to further improve the safety and efficacy of entospletinib and lanraplenib.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Brain , Indazoles , Morpholines , Protein Kinase Inhibitors , Pyrazines , Animals , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Female , Mice , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Brain/metabolism , Brain/drug effects , Syk Kinase/antagonists & inhibitors , Syk Kinase/metabolism , Mice, Knockout , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Mice, Inbred C57BL , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Administration, Oral
4.
Mol Pharm ; 21(10): 5159-5170, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39312722

ABSTRACT

Zotizalkib (TPX-0131), a fourth-generation macrocyclic anaplastic lymphoma kinase (ALK) inhibitor, is designed to overcome resistance due to secondary ALK mutations in non-small cell lung cancer (NSCLC). We here evaluated the pharmacokinetic roles of the ABCB1 (P-gp/MDR1) and ABCG2 (BCRP) efflux transporters, OATP1 influx transporters and the metabolizing enzymes CES1 and CYP3A in plasma and tissue disposition of zotizalkib after oral administration in relevant mouse models. Zotizalkib was efficiently transported by hABCB1 in vitro. In vivo, a significant ∼9-fold higher brain-to-plasma ratio was observed in Abcb1a/b-/- and Abcb1a/b;Abcg2-/- compared to wild-type mice. No change in brain disposition was observed in Abcg2-/- mice, suggesting that mAbcb1a/b markedly restricts the brain accumulation of zotizalkib. ABCB1-mediated efflux of zotizalkib was completely inhibited by elacridar, a dual ABCB1/ABCG2 inhibitor, increasing brain exposure without any signs of acute CNS-related toxicities. In Oatp1a/b-/- mice, no marked changes in plasma exposure or tissue-to-plasma ratios were observed, indicating that zotizalkib is not a substantial in vivo substrate for mOatp1a/b. Zotizalkib may further be metabolized by CYP3A4 but only noticeably at low plasma concentrations. In Ces1-/- mice, a 2.5-fold lower plasma exposure was seen compared to wild-type, without alterations in tissue distribution. This suggests increased plasma retention of zotizalkib by binding to the abundant mouse plasma Ces1c. Notably, the hepatic expression of human CES1 did not affect zotizalkib plasma exposure or tissue distribution. The obtained pharmacokinetic insights may be useful for the further development and optimization of therapeutic efficacy and safety of zotizalkib and related compact macrocyclic ALK inhibitors.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Anaplastic Lymphoma Kinase , Brain , Animals , Mice , Brain/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Mice, Knockout , Male , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Humans , Tissue Distribution , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/antagonists & inhibitors , Carboxylesterase/metabolism , Carboxylesterase/antagonists & inhibitors , Carboxylesterase/genetics , Administration, Oral , Organic Anion Transport Protein 1/metabolism , Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism
5.
PLoS Comput Biol ; 18(4): e1010069, 2022 04.
Article in English | MEDLINE | ID: mdl-35468131

ABSTRACT

Dendritic spines are highly dynamic neuronal compartments that control the synaptic transmission between neurons. Spines form ultrastructural units, coupling synaptic contact sites to the dendritic shaft and often harbor a spine apparatus organelle, composed of smooth endoplasmic reticulum, which is responsible for calcium sequestration and release into the spine head and neck. The spine apparatus has recently been linked to synaptic plasticity in adult human cortical neurons. While the morphological heterogeneity of spines and their intracellular organization has been extensively demonstrated in animal models, the influence of spine apparatus organelles on critical signaling pathways, such as calcium-mediated dynamics, is less well known in human dendritic spines. In this study we used serial transmission electron microscopy to anatomically reconstruct nine human cortical spines in detail as a basis for modeling and simulation of the calcium dynamics between spine and dendrite. The anatomical study of reconstructed human dendritic spines revealed that the size of the postsynaptic density correlates with spine head volume and that the spine apparatus volume is proportional to the spine volume. Using a newly developed simulation pipeline, we have linked these findings to spine-to-dendrite calcium communication. While the absence of a spine apparatus, or the presence of a purely passive spine apparatus did not enable any of the reconstructed spines to relay a calcium signal to the dendritic shaft, the calcium-induced calcium release from this intracellular organelle allowed for finely tuned "all-or-nothing" spine-to-dendrite calcium coupling; controlled by spine morphology, neck plasticity, and ryanodine receptors. Our results suggest that spine apparatus organelles are strategically positioned in the neck of human dendritic spines and demonstrate their potential relevance to the maintenance and regulation of spine-to-dendrite calcium communication.


Subject(s)
Calcium , Dendritic Spines , Animals , Calcium/metabolism , Dendrites/physiology , Dendritic Spines/metabolism , Humans , Neuronal Plasticity , Neurons/physiology , Synapses/metabolism , Synaptic Transmission/physiology
6.
Phys Chem Chem Phys ; 25(37): 25389-25397, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37705426

ABSTRACT

Density functional theory (DFT) calculations were utilized to investigate the electrocatalytic potential of single boron (B) atom doping in defective ReS2 monolayers as an active site. Our investigation revealed that B-doped defective ReS2, containing S and S-Re-S defects, demonstrated remarkable conductivity, and emerged as an exceptionally active catalyst for nitrogen reduction reactions (NRR), exhibiting limiting potentials of 0.63 and 0.53 V, respectively. For both cases, we determined the potential by examining the hydrogenation of adsorbed N2* to N2H*. Although the competing hydrogen evolution reaction (HER) process appeared dominant in the S-Re-S defect case, its impact was minimal. The outstanding NRR performance can be ascribed to the robust chemical interactions between B and N atoms. The adsorption of N2 on B weakens the N-N bond, thereby facilitating the formation of NH3. Moreover, we verified the selectivity and stability of the catalysts for NRR. Our findings indicate that B-doped defective ReS2 monolayers hold considerable promise for electrocatalysis in a variety of applications.

7.
Int J Mol Sci ; 24(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36901716

ABSTRACT

(1) Background: The dysfunction and reduced proliferation of peripheral CD8+ T cells and natural killer (NK) cells have been observed in both aging and cancer patients, thereby challenging the adoption of immune cell therapy in these subjects. In this study, we evaluated the growth of these lymphocytes in elderly cancer patients and the correlation of peripheral blood (PB) indices to their expansion. (2) Method: This retrospective study included 15 lung cancer patients who underwent autologous NK cell and CD8+ T cell therapy between January 2016 and December 2019 and 10 healthy individuals. (3) Results: On average, CD8+ T lymphocytes and NK cells were able to be expanded about 500 times from the PB of elderly lung cancer subjects. Particularly, 95% of the expanded NK cells highly expressed the CD56 marker. The expansion of CD8+ T cells was inversely associated with the CD4+:CD8+ ratio and the frequency of PB-CD4+ T cells in PB. Likewise, the expansion of NK cells was inversely correlated with the frequency of PB-lymphocytes and the number of PB-CD8+ T cells. The growth of CD8+ T cells and NK cells was also inversely correlated with the percentage and number of PB-NK cells. (4) Conclusion: PB indices are intrinsically tied to immune cell health and could be leveraged to determine CD8 T and NK cell proliferation capacity for immune therapies in lung cancer patients.


Subject(s)
CD8-Positive T-Lymphocytes , Lung Neoplasms , Humans , Aged , Retrospective Studies , Southeast Asian People , Killer Cells, Natural , Cell Proliferation
8.
BMC Health Serv Res ; 22(1): 1503, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36494814

ABSTRACT

BACKGROUND: Reinforced by the COVID-19 pandemic, the capacity of health systems to cope with increasing healthcare demands has been an abiding concern of both governments and the public. Health systems are made up from non-identical human and physical components interacting in diverse ways in varying locations. It is challenging to represent the function and dysfunction of such systems in a scientific manner. We describe a Network Science approach to that dilemma. General hospitals with large emergency caseloads are the resource intensive components of health systems. We propose that the care-delivery services in such entities are modular, and that their structure and function can be usefully analysed by contemporary Network Science. We explore that possibility in a study of Australian hospitals during 2019 and 2020. METHODS: We accessed monthly snapshots of whole of hospital administrative patient level data in two general hospitals during 2019 and 2020. We represented the organisations inpatient services as network graphs and explored their graph structural characteristics using the Louvain algorithm and other methods. We related graph topological features to aspects of observable function and dysfunction in the delivery of care. RESULTS: We constructed a series of whole of institution bipartite hospital graphs with clinical unit and labelled wards as nodes, and patients treated by units in particular wards as edges. Examples of the graphs are provided. Algorithmic identification of community structures confirmed the modular structure of the graphs. Their functional implications were readily identified by domain experts. Topological graph features could be related to functional and dysfunctional issues such as COVID-19 related service changes and levels of hospital congestion. DISCUSSION AND CONCLUSIONS: Contemporary Network Science is one of the fastest growing areas of current scientific and technical advance. Network Science confirms the modular nature of healthcare service structures. It holds considerable promise for understanding function and dysfunction in healthcare systems, and for reconceptualising issues such as hospital capacity in new and interesting ways.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/epidemiology , Australia/epidemiology , Hospitals , Delivery of Health Care
9.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232666

ABSTRACT

(1) Colorectal cancer (CRC) is an increasingly prevalent disease with a high mortality rate in recent years. Immune cell-based therapies have received massive attention among scientists, as they have been proven effective as low-toxicity treatments. This study evaluated the safety and effectiveness of autologous immune enhancement therapy (AIET) for CRC. (2) An open-label, single-group study, including twelve patients diagnosed with stages III and IV CRC, was conducted from January 2016 to December 2021. Twelve CRC patients received one to seven infusions of natural killer (NK)-cell and cytotoxic T-lymphocyte (CTL). Multivariate modelling was used to identify factors associated with health-related quality-of-life (HRQoL) scores. (3) After 20−21 days of culture, the NK cells increased 3535-fold, accounting for 85% of the cultured cell population. Likewise, CTLs accounted for 62.4% of the cultured cell population, which was a 1220-fold increase. Furthermore, the QoL improved with increased EORTC QLQ-C30 scores, decreased symptom severity, and reduced impairment in daily living caused by these symptoms (MDASI-GI report). Finally, a 14.3 ± 14.1-month increase in mean survival time was observed at study completion. (4) AIET demonstrated safety and improved survival time and HRQoL for CRC patients in Vietnam.


Subject(s)
Colorectal Neoplasms , Quality of Life , Hospitals , Humans , Killer Cells, Natural , Surveys and Questionnaires , T-Lymphocytes, Cytotoxic
10.
Angew Chem Int Ed Engl ; 61(50): e202209555, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36289044

ABSTRACT

While higher selectivity of nitrogen reduction reaction (NRR) to ammonia (NH3 ) is always achieved in alkali, the selectivity dependence on nitrogen (N2 ) protonation and mechanisms therein are unrevealed. Herein, we profile how the NRR selectivity theoretically relies upon the first protonation that is collectively regulated by proton (H) abundance and adsorption-desorption, along with intermediate-*NNH formation. By incorporating electronic metal modulators (M=Co, Ni, Cu, Zn) in nitrogenase-imitated model-iron polysulfide (FeSx), a series of FeMSx catalysts with tailorable protonation kinetics are obtained. The key intermediates behaviors traced by in situ FT-IR and Raman spectroscopy and operando electrochemical impedance spectroscopy demonstrate the strong protonation kinetics-dependent selectivity that mathematically follows a log-linear Bradley curve. Strikingly, FeCuSx exhibits a record-high selectivity of 75.05 % at -0.1 V (vs. RHE) for NH3 production in 0.1 M KOH electrolyte.

11.
Nat Immunol ; 10(1): 83-91, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19029903

ABSTRACT

The mucosal immune system of the intestine is separated from a vast array of microbes by a single layer of epithelial cells. Cues from the commensal microflora are needed to maintain epithelial homeostasis, but the molecular and cellular identities of these cues are unclear. Here we provide evidence that signals from the commensal microflora contribute to the differentiation of a lymphocyte population coexpressing stimulatory natural killer cell receptors and the transcription factor RORgammat that produced interleukin 22 (IL-22). The emergence of these IL-22-producing RORgammathiNKp46+NK1.1(int) cells depended on RORgammat expression, which indicated that these cells may have been derived from lymphoid tissue-inducer cells. IL-22 released by these cells promoted the production of antimicrobial molecules important in the maintenance of mucosal homeostasis.


Subject(s)
Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Natural Killer T-Cells/immunology , Receptors, Retinoic Acid/physiology , Receptors, Thyroid Hormone/physiology , Transcription Factors/physiology , Animals , Antigens, Ly/immunology , Bacteria/immunology , Cell Differentiation , Homeostasis/immunology , Interleukins/biosynthesis , Mice , Mice, Knockout , Natural Cytotoxicity Triggering Receptor 1/immunology , Natural Killer T-Cells/cytology , Nuclear Receptor Subfamily 1, Group F, Member 3 , Peyer's Patches/immunology , Receptors, Retinoic Acid/genetics , Receptors, Thyroid Hormone/genetics , Interleukin-22
12.
Phys Chem Chem Phys ; 23(44): 25143-25151, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34730155

ABSTRACT

It remains a great challenge to explore high-performance electrocatalysts for the CO2 reduction reaction (CO2RR) with high activity and selectivity. Herein, we employ first principles calculations to systematically investigate an emerging family of extended surface catalysts, bi-atom catalysts (BACs), in which bimetals anchored on graphitic carbon nitride (g-CN), for the CO2RR; and propose a novel framework to boost the CO2RR via incorporation with well-defined clusters. Among 28 BACs, five candidates (Cr2, CrFe, Mn2, MnFe and Fe2/g-CN) are first selected with efficient CO2 activation and favorability for CO2 reduction over H2 evolution. Fe2@g-CN is then served as a superior electrocatalyst for the CO2RR with low limiting potentials (UL) of -0.58 and -0.54 V towards C1 and C2 products. Intriguingly, the CO2RR performance of pure Fe2@g-CN could be controlled by tunable Fe atomic cluster integration. In particular, the presence of an Fe13 cluster could strengthen the CO2 adsorption, effectively deactivate H, and intriguingly break the adsorbate (CO* and CHO*) scaling relation to achieve the distinguished CO2RR with a lowered UL to -0.45 V for the C1 mechanism, which is attributed to the exceptional charge redistribution of bimetals modulated by Fe13. Our findings might open up possibilities for the rational design of BACs towards the CO2RR and other reactions.

13.
Cancer Control ; 27(1): 1073274820974025, 2020.
Article in English | MEDLINE | ID: mdl-33222507

ABSTRACT

Dendritic cells (DC) are professional antigen-presenting cells that activate T cells to kill cancer cells. The extracellular products of DCs have also been reported to perform the same function. In this study, we examined the in vitro differentiation of umbilical cord blood monocytes into DCs in the presence of GM-CSF, and interferon (IFN)-α. The resulting DC population (called IFN-DCs) were then matured in the presence of TNF-α, and pulsed with total protein extracted from A549 cancer cell line. The pulsed DCs and their conditioned medium were then used to stimulate allogeneic lymphocytes (alloLym). The proliferation and cytotoxicity of alloLym were then determined. The results showed that after 5 days of differentiation, the stimulated monocytes had the typical morphology and characteristic surface markers of DCs. Both unpulsed and pulsed IFN-DCs can induce the proliferation of alloLym, especially Vγ9γδ T cells. The conditioned medium from pulsed and unpulsed IFN-DCs culture also prompted the growth of Vγ9γδ T cells. Moreover, alloLym stimulated with pulsed DCs and their conditioned medium had a greater cytotoxic effect on A549 cells than the ones that were not stimulated. Our results indicated that IFN-DCs and their conditioned medium could induce the anti-tumor immunity in vitro, providing evidence for application of cord blood monocytes-derived, interferon-α- stimulated dendritic cells and their extracellular products in anti-cancer therapy.


Subject(s)
Antigen-Presenting Cells/metabolism , Dendritic Cells/metabolism , Fetal Blood/metabolism , Interferon-alpha/metabolism , Monocytes/metabolism , T-Lymphocytes/immunology , Cell Culture Techniques , Cell Differentiation , Humans , Phenotype , T-Lymphocytes/cytology
14.
Phys Chem Chem Phys ; 22(32): 18149-18154, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32766624

ABSTRACT

The reaction probability and kinetics of the water splitting process on the penta-NiAs2 monolayer are studied using ab initio molecular dynamics simulations. A total of 100 trajectories are investigated, in which a H2O molecule is set to strike the surface with a translational energy of 1 eV or 2 eV. The results show that the NiAs2 monolayer is an excellent candidate for the activation of water splitting with a reaction probability of 94% for both energy levels. Interestingly, the kinetics of two O-H dissociation stages varies greatly with respect to the inletting translational energy. Interpreting the reaction data for the 1 eV case, we conclude that O-H1 and O-H2 dissociations are first-order processes. However, such dissociation steps become pseudo-zeroth order in the 2 eV case. At the time of the dissociation, the force acting on atoms and the principal component analysis suggest that the two OH breaking stages behave like harmonic springs until reaching the dissociation.

15.
Immunity ; 33(5): 736-51, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-21093318

ABSTRACT

Whether the recently identified innate lymphocyte population coexpressing natural killer cell receptors (NKRs) and the nuclear receptor RORγt is part of the NK or lymphoid tissue inducer (LTi) cell lineage remains unclear. By using adoptive transfer of genetically tagged LTi-like cells, we demonstrate that NKR⁻RORγt(+) innate lymphocytes but not NK cells were direct progenitors to NKR(+)RORγt(+) cells in vivo. Genetic lineage tracing revealed that the differentiation of LTi-like cells was characterized by the stable upregulation of NKRs and a progressive loss of RORγt expression. Whereas interleukin-7 (IL-7) and intestinal microbiota stabilized RORγt expression within such NKR-LTi cells, IL-12 and IL-15 accelerated RORγt loss. RORγt(+) NKR-LTi cells produced IL-22, whereas RORγt⁻ NKR-LTi cells released IFN-γ and were potent inducers of colitis. Thus, the RORγt gradient in NKR-LTi cells serves as a tunable rheostat for their functional program. Our data also define a previously unappreciated role of RORγt⁻ NKR-LTi cells for the onset or maintenance of inflammatory bowel diseases.


Subject(s)
Killer Cells, Natural/immunology , Lymphoid Tissue/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Animals , Cell Lineage/immunology , Down-Regulation , Inflammatory Bowel Diseases/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-12/immunology , Interleukin-12/metabolism , Interleukin-15/immunology , Interleukin-15/metabolism , Interleukin-7/genetics , Interleukin-7/immunology , Interleukin-7/metabolism , Interleukins/immunology , Interleukins/metabolism , Intestines/immunology , Intestines/microbiology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Up-Regulation , Interleukin-22
16.
Dig Dis Sci ; 64(8): 2140-2146, 2019 08.
Article in English | MEDLINE | ID: mdl-30788684

ABSTRACT

BACKGROUND: Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a group of cytoplasmic sensors that survey danger signals released by invading pathogens or damaged tissue. Mutations in the NLRP subfamily affect pro-inflammatory mediators and cause nonspecific systemic symptoms. AIMS: We sought to identify a potential genetic etiology of an inflammatory syndrome in a patient that presented with an atypical multisystem illness with carcinoid syndrome as well as atopic and autoimmune features. METHODS: Exome sequencing was performed using the Agilent SureSelect Clinical Research Exome XT kit on an Illumina HiSeq 2500. Longitudinal monitoring of pro-inflammatory cytokines was performed. RESULTS: We identified a novel variant (heterozygous c.536C > T [p.Thr179Ile]) in the NLRP12 gene in a 63-year-old woman and her daughter, who presented with an unusual clinical syndrome that differs from autoinflammatory disorders previously reported in association with the NLRP subfamily gene mutations. This NLRP12 variant was predicted to be pathogenic by functional analysis through Hidden Markov Models (FATHMM). Both the mother and the daughter had episodes of abdominal pain, fever, diarrhea, skin rash, hypothyroidism, and elevated urine 5-hydroxyindoleacetic acid (5-HIAA) levels. The proband also had elevated serum levels of pro-inflammatory (IL-1ß, IL-6, IL-12, and TNF-α), Th1 (IL-2, IFN-γ), and Th2 (IL-4, IL-5, IL-13) cytokines, but not of Th17 (IL-17) and IL-10. CONCLUSION: This report adds to the expanding spectrum of clinical manifestations attributed to the NLRP subfamily gene variants and suggests a role of NLRP12 in the regulation of multiple cytokines.


Subject(s)
Autoimmune Diseases/genetics , Cytokines/blood , Inflammation Mediators/blood , Intracellular Signaling Peptides and Proteins/genetics , Malignant Carcinoid Syndrome/genetics , Mutation , Autoimmune Diseases/blood , Autoimmune Diseases/diagnosis , Female , Genetic Predisposition to Disease , Heredity , Humans , Malignant Carcinoid Syndrome/blood , Malignant Carcinoid Syndrome/diagnosis , Middle Aged , Phenotype , Up-Regulation
17.
Int J Mol Sci ; 20(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261712

ABSTRACT

(1) Background: Immune cell therapy recently attracted enormous attention among scientists as a cancer treatment, but, so far, it has been poorly studied and applied in Vietnam. The aim of this study was to assess the safety of autologous immune cell therapy for treating lung, liver, and colon cancers-three prevalent cancers in Vietnam. (2) Method: This was an open-label, single-group clinical trial that included 10 patients with confirmed diagnosis of colon, liver, or lung cancer, conducted between March 2016 and December 2017. (3) Results: After 20-21 days of culture, the average number of cytotoxic T lymphocytes (CTLs) increased 488.5-fold and the average cell viability was 96.3%. The average number of natural killer cells (NKs) increased 542.5-fold, with an average viability of 95%. Most patients exhibited improved quality of life, with the majority of patients presenting a score of 1 to 2 in the Eastern Cooperative Oncology Group (ECOG) performance status (ECOG/PS) scale, a decrease in symptoms on fatigue scales, and an increase in the mean survival time to 18.7 months at the end of the study. (4) Conclusion: This method of immune cell expansion met the requirements for clinical applications in cancer treatment and demonstrated the safety of this therapy for the cancer patients in Vietnam.


Subject(s)
Colonic Neoplasms/therapy , Immunotherapy/methods , Killer Cells, Natural/transplantation , Liver Neoplasms/therapy , Lung Neoplasms/therapy , T-Lymphocytes, Cytotoxic/transplantation , Adult , Aged , Aged, 80 and over , Blood Transfusion, Autologous/methods , Cells, Cultured , Female , Humans , Killer Cells, Natural/immunology , Male , Middle Aged , T-Lymphocytes, Cytotoxic/immunology
18.
J Immunoassay Immunochem ; 39(3): 308-322, 2018.
Article in English | MEDLINE | ID: mdl-29995570

ABSTRACT

Fe3O4/Ag core/shell nanoparticles functionalized with the free amino (NH2) functional groups (Fe3O4/Ag-NH2) were conjugated with fluorescent electron coupled dye (ECD)-antiCD34 antibody using the 1-ethyl-3-(3'-dimethyl-aminopropyl) carbodiimide (EDC) catalyst (ECD - Electron Coupled Dye or R Phycoerythrin-Texas Red is a fluorescent organic dye attached to the antibody). The characteristic fluorescence of ECD in the antibody was investigated and was used as a good indicator for estimating the percentage of the antibodies that were successfully conjugated with the nanoparticles. The conjugation efficiency was found to increase depending on the VNP:VAB ratio, where VNP and VAB are the volumes of the nanoparticle solution (concentration of 50 ppm) and the as-purchased antibody solution, respectively. The conjugation efficiency rapidly increased from approximately 18% to approximately 70% when VNP:VAB was increased from 2:1 to 100:1, and it gradually reached the saturated state at an efficiency of 95%, as the VNP:VAB was equal to 300:1. The bioactivity of the abovementioned conjugation product (denoted by Fe3O4/Ag-antiCD34) was evaluated in an experiment for the collection of stem cells from bone marrow samples.


Subject(s)
Antigens, CD34/analysis , Cell Separation/methods , Ferrosoferric Oxide/chemistry , Immunomagnetic Separation/methods , Nanoparticles/chemistry , Silver/chemistry , Stem Cells/cytology , Antigens, CD34/immunology , Cell Separation/instrumentation , Humans , Immunomagnetic Separation/instrumentation , Stem Cells/immunology
19.
Phys Chem Chem Phys ; 19(40): 27332-27342, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28971193

ABSTRACT

We present in this study a theoretical investigation of the collision of Li with the MX2 surface (MoSe2 or WS2) by employing the Born-Oppenheimer molecular dynamics (MD) approach. In each trajectory, atomic Li is fired toward the two-dimensional monolayer with an inletting kinetic energy of 0.2 eV or 2.0 eV and a chosen striking angle. In total, 84 MD trajectories are analyzed. We observe that Li has a high tendency to migrate on WS2 in most investigated cases (20/21 cases at 0.2 eV inletting kinetic energy and 21/21 cases at 2.0 eV inletting kinetic energy), while the migration probability on MoSe2 is much lower (only 5/21 cases with the inletting kinetic energy of 0.2 eV and 15/21 cases with the inletting kinetic energy of 2.0 eV). Interestingly, our finding shows that the migration probability does not depend on the binding energies of Li-MoSe2 (1.61 eV) and Li-WS2 (1.77 eV), but it is in good agreement with the nudged-elastic-band prediction of migration barriers. In fact, it is the intensity of elastic vibration of the transition metal dichalcogenide layer that plays a very significant role in the migration of Li. During the collision process, Li is able to absorb energy from the layer vibration to jump out from one X-X-X trap to another. Consequently, with the assistance from intensive vibration of WS2, Li would possess higher migration probability on the layer surface. Finally, electronic structure analysis on various interacting Li-MX2 configurations is performed. From Bader charge estimation, we observe that WS2 tends to establish more charge transferability with Li. Moreover, when Li approaches closer to the S/Se layer, the hybridization of Li-2s and Mo-4d (or W-5d) orbitals results in a magnetic moment (up to ∼1 µB).

20.
Opt Express ; 24(13): 14851-6, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27410637

ABSTRACT

Active triangulation range finders are widely used in a variety of applications such as robotics and assistive technologies. The power of the laser source should be carefully selected in order to satisfy detectability and still remain eye-safe. In this paper, we present a systematic approach to assess the detectability of an active triangulation range finder in an outdoor environment. For the first time, we accurately quantify the background noise of a laser system due to solar irradiance by coupling the Perez all-weather sky model and ray tracing techniques. The model is validated with measurements with a modeling error of less than 14.0%. Being highly generic and sufficiently flexible, the proposed model serves as a guide to define a laser system for any geographical location and microclimate.

SELECTION OF CITATIONS
SEARCH DETAIL