Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Neuroimage ; 287: 120518, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38219841

ABSTRACT

Stroke volume is a key determinant of infarct severity and an important metric for evaluating treatments. However, accurate estimation of stroke volume can be challenging, due to the often confined 2-dimensional nature of available data. Here, we introduce a comprehensive semi-automated toolkit to reliably estimate stroke volumes based on (1) whole brains ex-vivo magnetic resonance imaging (MRI) and (2) brain sections that underwent immunofluorescence staining. We located and quantified infarct areas from MRI three days (acute) and 28 days (chronic) after photothrombotic stroke induction in whole mouse brains. MRI results were compared with measures obtained from immunofluorescent histologic sections of the same brains. We found that infarct volume determined by post-mortem MRI was highly correlated with a deviation of only 6.6 % (acute) and 4.9 % (chronic) to the measurements as determined in the histological brain sections indicating that both methods are capable of accurately assessing brain tissue damage (Pearson r > 0.9, p < 0.001). The Dice similarity coefficient (DC) showed a high degree of coherence (DC > 0.8) between MRI-delineated regions of interest (ROIs) and ROIs obtained from histologic sections at four to six pre-defined landmarks, with histology-based delineation demonstrating higher inter-operator similarity compared to MR images. We further investigated stroke-related scarring and post-ischemic angiogenesis in cortical peri­infarct regions and described a negative correlation between GFAP+fluorescence intensity and MRI-obtained lesion size.


Subject(s)
Brain Ischemia , Stroke , Mice , Animals , Brain Ischemia/diagnostic imaging , Brain Ischemia/pathology , Stroke Volume , Rodentia , Stroke/pathology , Magnetic Resonance Imaging/methods , Infarction
2.
Data Brief ; 53: 110188, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38406243

ABSTRACT

This dataset offers images of mouse brains impacted by photothrombotic stroke in the sensorimotor cortex published by Weber et al. NeuroImage (2024). Data is gathered using two primary techniques: (1) whole-brain ex-vivo magnetic resonance imaging (MRI) and (2) 40 µm thick coronal histological sections that undergo immunofluorescence staining with NeuroTrace. Infarct areas and volumes are assessed through MRI at two distinct time frames-three days (acute) and 28 days (chronic) following photothrombotic stroke induction. Subsequently, the brains are sectioned into 40 µm thick coronal slices, stained with NeuroTrace, and imaged as whole sections. The dataset holds considerable value for reuse, particularly for researchers focused on stroke volume estimation methods as well as those interested in comparing the efficacy of MRI and histological techniques.

3.
bioRxiv ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39229128

ABSTRACT

Ischemic stroke triggers a cascade of pathological events that affect multiple cell types and often lead to incomplete functional recovery. Despite advances in single-cell technologies, the molecular and cellular responses that contribute to long-term post-stroke impairment remain poorly understood. To gain better insight into the underlying mechanisms, we generated a single-cell transcriptomic atlas from distinct brain regions using a mouse model of permanent focal ischemia at one month post-injury. Our findings reveal cell- and region-specific changes within the stroke-injured and peri-infarct brain tissue. For instance, GABAergic and glutamatergic neurons exhibited upregulated genes in signaling pathways involved in axon guidance and synaptic plasticity, and downregulated pathways associated with aerobic metabolism. Using cell-cell communication analysis, we identified increased strength in predicted interactions within stroke tissue among both neural and non-neural cells via signaling pathways such as those involving collagen, protein tyrosine phosphatase receptor, neuronal growth regulator, laminin, and several cell adhesion molecules. Furthermore, we found a strong correlation between mouse transcriptome responses after stroke and those observed in human nonfatal brain stroke lesions. Common molecular features were linked to inflammatory responses, extracellular matrix organization, and angiogenesis. Our findings provide a detailed resource for advancing our molecular understanding of stroke pathology and for discovering therapeutic targets in the repair phase of stroke recovery.

SELECTION OF CITATIONS
SEARCH DETAIL