ABSTRACT
The emergence and rapid spread of SARS-CoV-2 variants of concern (VOC) have been linked to new waves of COVID-19 epidemics occurring in different regions of the world. The VOC have acquired adaptive mutations that have enhanced virus transmissibility, increased virulence, and reduced response to neutralizing antibodies. Kenya has experienced six waves of COVID-19 epidemics. In this study, we analyzed 64 genome sequences of SARS-CoV-2 strains that circulated in Nairobi and neighboring counties, Kenya between March 2021 and July 2021. Viral RNA was extracted from RT-PCR confirmed COVID-19 cases, followed by sequencing using the ARTIC network protocol and Oxford Nanopore Technologies. Analysis of the sequence data was performed using different bioinformatics methods. Our analyses revealed that during the study period, three SARS-CoV-2 variants of concern (VOC) circulated in Nairobi and nearby counties in Kenya. The Alpha (B.1.1.7) lineage predominated (62.7%), followed by Delta (B.1.617.2, 35.8%) and Beta (B.1.351, 1.5%). Notably, the Alpha (B.1.1.7) VOC were most frequent from March 2021 to May 2021, while the Delta (B.1.617.2) dominated beginning June 2021 through July 2021. Sequence comparisons revealed that all the Kenyan viruses were genetically similar to those that circulated in other regions. Although the majority of Kenyan viruses clustered together in their respective phylogenetic lineages/clades, a significant number were interspersed among foreign strains. Between March and July 2021, our study's findings indicate the prevalence of multiple lineages of SAR-CoV-2 VOC in Nairobi and nearby counties in Kenya. The data suggest that the recent increase in SARS-CoV-2 infection, particularly in Nairobi and Kenya as a whole, is attributable to the introduction and community transmission of SARS-CoV-2 VOC among the populace. In conclusion, the findings provide a snapshot of the SARS-CoV-2 variants that circulated in Kenya during the study period.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Phylogeny , Kenya/epidemiology , COVID-19/epidemiology , Sequence AnalysisABSTRACT
BACKGROUND: Treatment of gonorrhea is complicated by the development of antimicrobial resistance in Neisseria gonorrhoeae (GC) to the antibiotics recommended for treatment. Knowledge on types of plasmids and the antibiotic resistance genes they harbor is useful in monitoring the emergence and spread of bacterial antibiotic resistance. In Kenya, studies on gonococcal antimicrobial resistance are few and data on plasmid mediated drug resistance is limited. The present study characterizes plasmid mediated resistance in N. gonorrhoeae isolates recovered from Kenya between 2013 and 2018. METHODS: DNA was extracted from 36 sub-cultured GC isolates exhibiting varying drug resistance profiles. Whole genome sequencing was done on Illumina MiSeq platform and reads assembled de-novo using CLC Genomics Workbench. Genome annotation was performed using Rapid Annotation Subsystem Technology. Comparisons in identified antimicrobial resistance determinants were done using Bioedit sequence alignment editor. RESULTS: Twenty-four (66.7%) isolates had both ß-lactamase (TEM) and TetM encoding plasmids. 8.3% of the isolates lacked both TEM and TetM plasmids and had intermediate to susceptible penicillin and tetracycline MICs. Twenty-six (72%) isolates harbored TEM encoding plasmids. 25 of the TEM plasmids were of African type while one was an Asian type. Of the 36 isolates, 31 (86.1%) had TetM encoding plasmids, 30 of which harbored American TetM, whereas 1 carried a Dutch TetM. All analyzed isolates had non-mosaic penA alleles. All the isolates expressing TetM were tetracycline resistant (MIC> 1 mg/L) and had increased doxycycline MICs (up to 96 mg/L). All the isolates had S10 ribosomal protein V57M amino acid substitution associated with tetracycline resistance. No relation was observed between PenB and MtrR alterations and penicillin and tetracycline MICs. CONCLUSION: High-level gonococcal penicillin and tetracycline resistance in the sampled Kenyan regions was found to be mediated by plasmid borne blaTEM and tetM genes. While the African TEM plasmid, TEM1 and American TetM are the dominant genotypes, Asian TEM plasmid, a new TEM239 and Dutch TetM have emerged in the regions.
Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Neisseria gonorrhoeae/genetics , Penicillins/therapeutic use , Plasmids/genetics , Tetracycline Resistance/genetics , Tetracycline/therapeutic use , DNA, Bacterial/genetics , Female , Genotype , Gonorrhea/microbiology , Humans , Kenya/epidemiology , Male , Microbial Sensitivity Tests , Neisseria gonorrhoeae/isolation & purification , Whole Genome Sequencing , beta-Lactamases/geneticsABSTRACT
BACKGROUND: Phenotypic fluoroquinolone resistance was first reported in Western Kenya in 2009 and later in Coastal Kenya and Nairobi. Until recently gonococcal fluoroquinolone resistance mechanisms in Kenya had not been elucidated. The aim of this paper is to analyze mutations in both gyrA and parC responsible for elevated fluoroquinolone Minimum Inhibitory Concentrations (MICs) in Neisseria gonorrhoeae (GC) isolated from heterosexual individuals from different locations in Kenya between 2013 and 2017. METHODS: Antimicrobial Susceptibility Tests were done on 84 GC in an ongoing Sexually Transmitted Infections (STI) surveillance program. Of the 84 isolates, 22 resistant to two or more classes of antimicrobials were chosen for analysis. Antimicrobial susceptibility tests were done using E-test (BioMerieux) and the results were interpreted with reference to European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards. The isolates were sub-cultured, and whole genomes were sequenced using Illumina platform. Reads were assembled de novo using Velvet, and mutations in the GC Quinolone Resistant Determining Regions identified using Bioedit sequence alignment editor. Single Nucleotide Polymorphism based phylogeny was inferred using RaxML. RESULTS: Double GyrA amino acid substitutions; S91F and D95G/D95A were identified in 20 isolates. Of these 20 isolates, 14 had an additional E91G ParC substitution and significantly higher ciprofloxacin MICs (p = 0.0044*). On the contrary, norfloxacin MICs of isolates expressing both GyrA and ParC QRDR amino acid changes were not significantly high (p = 0.82) compared to MICs of isolates expressing GyrA substitutions alone. No single GyrA substitution was found in the analyzed isolates, and no isolate contained a ParC substitution without the simultaneous presence of double GyrA substitutions. Maximum likelihood tree clustered the 22 isolates into 6 distinct clades. CONCLUSION: Simultaneous presence of amino acid substitutions in ParC and GyrA has been reported to increase gonococcal fluoroquinolone resistance from different regions in the world. Our findings indicate that GyrA S91F, D95G/D95A and ParC E91G amino acid substitutions mediate high fluoroquinolone resistance in the analyzed Kenyan GC.
Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Fluoroquinolones/pharmacology , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Amino Acid Substitution , Bacterial Proteins/genetics , Epidemiological Monitoring , Female , Gonorrhea/microbiology , Humans , Kenya , Male , Microbial Sensitivity Tests , Mutation , Retrospective StudiesABSTRACT
BACKGROUND: The use of saliva in diagnosis of infectious diseases is an attractive alternative to procedures that involve blood drawing. It promises to reduce risks associated with accidental needle pricks and improve patient compliance particularly in malaria survey and drug efficacy studies. Quantification of parasitaemia is useful in establishing severity of disease and in assessing individual patient response to treatment. In current practice, microscopy is the recommended technique, despite its limitations. This study measured the levels of Plasmodium falciparum lactate dehydrogenase (PfLDH) in saliva of malaria patients and investigated the relationship with blood parasitaemia. METHODS: Matched pre-treatment blood and saliva samples were collected from patients at Msambweni District Hospital, Kenya. Parasitaemia was determined and only those confirmed to be Plasmodium falciparum mono-infected were recruited. PfLDH was quantified in saliva using a commercial ELISA kit. A total of 175 samples were collected. Relationship between blood parasitaemia and concentration of PfLDH in saliva was determined using Pearson correlation statistics. F test was used to determine whether there is a significant difference between levels of PfLDH in saliva of patients with moderate to high parasitaemia and those with low parasitaemia. RESULTS: One-hundred and seventy-five patient samples were positive for malaria by microscopy. Of these, 62 (35%) tested positive for PfLDH in saliva, 113 (65%) were false negatives. For those that tested positive, (53) 85% were from patients with moderate to high parasitaemia while 9 (15%) were from patients with low parasitaemia. A correlation co-efficient of 0.18 indicated a weak positive relationship between the concentration of PfLDH in saliva and blood parasitaemia. There was a marginal difference between levels of PfLDH in saliva of patients with moderate to high parasitaemia and those with low parasitaemia [F (1, 59) = 1.83, p = 0.1807]. CONCLUSION: The results indicate that there is a weak correlation between levels of PfLDH in saliva and blood parasitaemia. This is weak association could be as a result of low sensitivity of the assay used as well as presence of inhibitors and proteases in saliva. Further studies should be focused towards reducing the number of false negatives and developing a customised assay that is specific for detection of PfLDH in saliva.
Subject(s)
L-Lactate Dehydrogenase/analysis , Malaria, Falciparum/diagnosis , Malaria, Falciparum/pathology , Parasite Load , Parasitemia/parasitology , Plasmodium falciparum/isolation & purification , Saliva/chemistry , Adolescent , Adult , Aged , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Kenya , Male , Microscopy , Middle Aged , Plasmodium falciparum/enzymology , Statistics as Topic , Young AdultABSTRACT
BACKGROUND: Human Coronaviruses (HCoV) are a common cause of respiratory illnesses and are responsible for considerable morbidity and hospitalization across all age groups especially in individuals with compromised immunity. There are six known species of HCoV: HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, MERS-CoV and SARS-HCoV. Although studies have shown evidence of global distribution of HCoVs, there is limited information on their presence and distribution in Kenya. METHODS: HCoV strains that circulated in Kenya were retrospectively diagnosed and molecularly characterized. A total of 417 nasopharyngeal specimens obtained between January 2009 and December 2012 from around Kenya were analyzed by a real time RT-PCR using HCoV-specific primers. HCoV-positive specimens were subsequently inoculated onto monolayers of LL-CMK2 cells. The isolated viruses were characterized by RT-PCR amplification and sequencing of the partial polymerase (pol) gene. RESULTS: The prevalence of HCoV infection was as follows: out of the 417 specimens, 35 (8.4 %) were positive for HCoV, comprising 10 (2.4 %) HCoV-NL63, 12 (2.9 %) HCoV-OC43, 9 (2.1 %) HCoV-HKU1, and 4 (1 %) HCoV-229E. The Kenyan HCoV strains displayed high sequence homology to the prototypes and contemporaneous strains. Evolution analysis showed that the Kenyan HCoV-OC43 and HCoV-NL63 isolates were under purifying selection. Phylogenetic evolutionary analyses confirmed the identities of three HCoV-HKU1, five HCoV-NL63, eight HCoV-OC43 and three HCoV-229E. CONCLUSIONS: There were yearly variations in the prevalence and circulation patterns of individual HCoVs in Kenya. This paper reports on the first molecular characterization of human Coronaviruses in Kenya, which play an important role in causing acute respiratory infections among children.
Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus/classification , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus Infections/history , Genes, pol , History, 21st Century , Humans , Kenya/epidemiology , Phylogeny , Population Surveillance , Prevalence , RNA, ViralABSTRACT
The prevalence of a genetic polymorphism(s) at codon 268 in the cytochrome b gene, which is associated with failure of atovaquone-proguanil treatment, was analyzed in 227 Plasmodium falciparum parasites from western Kenya. The prevalence of the wild-type allele was 63%, and that of the Y268S (denoting a Y-to-S change at position 268) mutant allele was 2%. There were no pure Y268C or Y268N mutant alleles, only mixtures of a mutant allele(s) with the wild type. There was a correlation between parasite 50% inhibitory concentration (IC50) and parasite genetic polymorphism; mutant alleles had higher IC50s than the wild type.
Subject(s)
Antimalarials/pharmacology , Atovaquone/pharmacology , Cytochromes b/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Alleles , Codon/genetics , DNA, Protozoan/genetics , Drug Combinations , Kenya , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Microbial Sensitivity Tests/methods , Mutation/genetics , Polymorphism, Genetic/genetics , Proguanil/pharmacology , Protozoan Proteins/geneticsABSTRACT
In combination with antibiotics, quinine is recommended as the second-line treatment for uncomplicated malaria, an alternative first-line treatment for severe malaria, and for treatment of malaria in the first trimester of pregnancy. Quinine has been shown to have frequent clinical failures, and yet the mechanisms of action and resistance have not been fully elucidated. However, resistance is linked to polymorphisms in multiple genes, including multidrug resistance 1 (Pfmdr1), the chloroquine resistance transporter (Pfcrt), and the sodium/hydrogen exchanger gene (Pfnhe1). Here, we investigated the association between in vitro quinine susceptibility and genetic polymorphisms in Pfmdr1codons 86 and 184, Pfcrt codon 76, and Pfnhe1 ms4760 in 88 field isolates from western Kenya. In vitro activity was assessed based on the drug concentration that inhibited 50% of parasite growth (the IC50), and parasite genetic polymorphisms were determined from DNA sequencing. Data revealed there were significant associations between polymorphism in Pfmdr1-86Y, Pfmdr1-184F, or Pfcrt-76T and quinine susceptibility (P < 0.0001 for all three associations). Eighty-two percent of parasites resistant to quinine carried mutant alleles at these codons (Pfmdr1-86Y, Pfmdr1-184F, and Pfcrt-76T), whereas 74% of parasites susceptible to quinine carried the wild-type allele (Pfmdr1-N86, Pfmdr1-Y184, and Pfcrt-K76, respectively). In addition, quinine IC50 values for parasites with Pfnhe1 ms4760 3 DNNND repeats were significantly higher than for those with 1 or 2 repeats (P = 0.033 and P = 0.0043, respectively). Clinical efficacy studies are now required to confirm the validity of these markers and the importance of parasite genetic background.
Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Genes, Protozoan/genetics , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Quinine/pharmacology , Sodium-Hydrogen Exchangers/genetics , Alleles , Animals , DNA, Protozoan/genetics , Genes, Protozoan/physiology , Genotype , Humans , Kenya , Malaria, Falciparum/parasitology , Membrane Transport Proteins/physiology , Microsatellite Repeats , Molecular Sequence Data , Multidrug Resistance-Associated Proteins/physiology , Parasitic Sensitivity Tests , Polymorphism, Genetic/genetics , Protozoan Proteins/physiology , Sodium-Hydrogen Exchangers/physiologyABSTRACT
BACKGROUND: Multispectral imaging microscopy is a novel microscopic technique that integrates spectroscopy with optical imaging to record both spectral and spatial information of a specimen. This enables acquisition of a large and more informative dataset than is achievable in conventional optical microscopy. However, such data are characterized by high signal correlation and are difficult to interpret using univariate data analysis techniques. METHODS: In this work, the development and application of a novel method which uses principal component analysis (PCA) in the processing of spectral images obtained from a simple multispectral-multimodal imaging microscope to detect Plasmodium parasites in unstained thin blood smear for malaria diagnostics is reported. The optical microscope used in this work has been modified by replacing the broadband light source (tungsten halogen lamp) with a set of light emitting diodes (LEDs) emitting thirteen different wavelengths of monochromatic light in the UV-vis-NIR range. The LEDs are activated sequentially to illuminate same spot of the unstained thin blood smears on glass slides, and grey level images are recorded at each wavelength. PCA was used to perform data dimensionality reduction and to enhance score images for visualization as well as for feature extraction through clusters in score space. RESULTS: Using this approach, haemozoin was uniquely distinguished from haemoglobin in unstained thin blood smears on glass slides and the 590-700 spectral range identified as an important band for optical imaging of haemozoin as a biomarker for malaria diagnosis. CONCLUSION: This work is of great significance in reducing the time spent on staining malaria specimens and thus drastically reducing diagnosis time duration. The approach has the potential of replacing a trained human eye with a trained computerized vision system for malaria parasite blood screening.
Subject(s)
Blood/parasitology , Clinical Laboratory Techniques/methods , Image Processing, Computer-Assisted/methods , Malaria/diagnosis , Microscopy/methods , Plasmodium/chemistry , Plasmodium/cytology , Humans , Optical Imaging/methods , Principal Component Analysis , Spatial Analysis , Spectrum Analysis/methodsABSTRACT
BACKGROUND: Sulphadoxine-pyrimethamine (SP), an antifolate, was replaced by artemether-lumefantrine as the first-line malaria drug treatment in Kenya in 2004 due to the wide spread of resistance. However, SP still remains the recommended drug for intermittent preventive treatment in pregnant women and infants (IPTP/I) owing to its safety profile. This study assessed the prevalence of mutations in dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes associated with SP resistance in samples collected in Kenya between 2008 and 2012. METHODS: Field isolates collected from Kisumu, Kisii, Kericho and Malindi district hospitals were assessed for genetic polymorphism at various loci within Pfdhfr and Pfdhps genes by sequencing. RESULTS: Among the Pfdhfr mutations, codons N51I, C59R, S108N showed highest prevalence in all the field sites at 95.5%, 84.1% and 98.6% respectively. Pfdhfr S108N prevalence was highest in Kisii at 100%. A temporal trend analysis showed steady prevalence of mutations over time except for codon Pfdhps 581 which showed an increase in mixed genotypes. Triple Pfdhfr N51I/C59R/S108N and double Pfdhps A437G/ K540E had high prevalence rates of 86.6% and 87.9% respectively. The Pfdhfr/Pfdhps quintuple, N51I/C59R/S108N/A437G/K540E mutant which has been shown to be the most clinically relevant marker for SP resistance was observed in 75.7% of the samples. CONCLUSION: SP resistance is still persistently high in western Kenya, which is likely due to fixation of key mutations in the Pfdhfr and Pfdhps genes as well as drug pressure from other antifolate drugs being used for the treatment of malaria and other infections. In addition, there is emergence and increasing prevalence of new mutations in Kenyan parasite population. Since SP is used for IPTP/I, molecular surveillance and in vitro susceptibility assays must be sustained to provide information on the emergence and spread of SP resistance.
Subject(s)
Antimalarials/pharmacology , Dihydropteroate Synthase/genetics , Drug Resistance , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Tetrahydrofolate Dehydrogenase/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Kenya , Male , Middle Aged , Plasmodium falciparum/genetics , Polymorphism, Genetic , Pregnancy , Sequence Analysis, DNA , Young AdultABSTRACT
Human parainfluenza virus type 1 (HPIV-1), a paramyxovirus, is a leading cause of pediatric respiratory hospitalizations globally. Currently, there is no clinically successful vaccine against HPIV-1. Hence, there is a need to characterize circulating strains of this virus to establish the feasibility of developing a vaccine against the virus. The variable HPIV-1 hemagglutin-neuraminidase (HN) protein is found in the envelope of HPIV-1, where it initiates the infection process by binding to cellular receptors. HN is also the major antigen against which the human immune response is directed against. The present study focused on identifying mutations in the HN gene that would be useful in understanding the evolution of HPIV-1. 21 HPIV-1 isolates were obtained after screening nasopharyngeal samples from patients with influenza-like illness. The samples were collected from Mbagathi District Hospital Nairobi from the period July 2007 to December 2010. RT-PCR was carried out on the isolates using HN-specific primers to amplify a 360 nt in the most polymorphic region and the amplicons sequenced. Genomic data were analysed using a suite of bioinformatic software. Forty eight polymorphic sites with a total of 55 mutations were identified at the nucleotide level and 47 mutations at 23 positions at the amino acid level. There was more radical nonsynonymous amino acid changes (seven positions) observed than conservative nonsynonymous changes (one position) on the HN gene fragment. No positively selected sites were found in the HN protein. The result from the analysis of 21 HPIV-1 Mbagathi isolates demonstrated that the HN gene which is the major antigenic target was under purifying (negative) selection displaying evolutionary stasis.
Subject(s)
Parainfluenza Virus 1, Human/genetics , Parainfluenza Virus 1, Human/isolation & purification , Respirovirus Infections/virology , Base Sequence , Child, Preschool , Female , Hospitals, District , Humans , Infant , Kenya , Molecular Sequence Data , Parainfluenza Virus 1, Human/classification , Phylogeny , Retrospective StudiesABSTRACT
BACKGROUND: Influenza data gaps in sub-Saharan Africa include incidence, case fatality, seasonal patterns, and associations with prevalent disorders. METHODS: Nasopharyngeal samples from children aged <12 years who were admitted to Kilifi District Hospital during 2007-2010 with severe or very severe pneumonia and resided in the local demographic surveillance system were screened for influenza A, B, and C viruses by molecular methods. Outpatient children provided comparative data. RESULTS: Of 2002 admissions, influenza A virus infection was diagnosed in 3.5% (71), influenza B virus infection, in 0.9% (19); and influenza C virus infection, in 0.8% (11 of 1404 tested). Four patients with influenza died. Among outpatients, 13 of 331 (3.9%) with acute respiratory infection and 1 of 196 without acute respiratory infection were influenza positive. The annual incidence of severe or very severe pneumonia, of influenza (any type), and of influenza A, was 1321, 60, and 43 cases per 100,000 <5 years of age, respectively. Peak occurrence was in quarters 3-4 each year, and approximately 50% of cases involved infants: temporal association with bacteremia was absent. Hypoxia was more frequent among pneumonia cases involving influenza (odds ratio, 1.78; 95% confidence interval, 1.04-1.96). Influenza A virus subtypes were seasonal H3N2 (57%), seasonal H1N1 (12%), and 2009 pandemic H1N1 (7%). CONCLUSIONS: The burden of influenza was small during 2007-2010 in this pediatric hospital in Kenya. Influenza A virus subtype H3N2 predominated, and 2009 pandemic influenza A virus subtype H1N1 had little impact.
Subject(s)
Gammainfluenzavirus/isolation & purification , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Child , Child, Preschool , Female , Hospitalization , Hospitals, District , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Male , Nasopharynx/virology , PrevalenceABSTRACT
BACKGROUND: The US Army Medical Research Unit-Kenya (USAMRU-K) conducts surveillance for influenza-like illness (ILI) in Kenya. We describe the temporal and geographic progression of A(H1N1)pdm09 as it emerged in Kenya and characterize the outpatient population with A(H1N1)pdm09 infection. METHODS: We included patients with ILI aged 2 months to 18 years enrolled during June 2009-August 2010. Respiratory specimens were tested by real-time reverse-transcription polymerase chain reaction for influenza virus. Patients with A(H1N1)pdm09 infection were compared to those with seasonal influenza A virus infection and those with ILI who had no virus or a virus other than influenza virus identified (hereafter, "noninfluenza ILI"). RESULTS: Of 4251 patients with ILI, 193 had laboratory-confirmed A(H1N1)pdm09 infection. The first pandemic influenza case detected by USAMRU-K surveillance was in August 2009; peak activity nationwide occurred during October-November 2009. Patients with A(H1N1)pdm09 infection were more likely to be school-aged, compared with patients with seasonal influenza A virus infection (prevalence ratio [PR], 2.0; 95% confidence interval [CI], 1.3-3.1) or noninfluenza ILI (PR, 3.2; 95% CI, 2.4-4.3). CONCLUSIONS: USAMRU-K ILI surveillance detected the geographic and temporal distribution of pandemic influenza in Kenya. The age distribution of A(H1N1)pdm09 infections included more school-aged children, compared with seasonal influenza A virus infection and noninfluenza ILI.
Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Adolescent , Age Distribution , Bodily Secretions/virology , Child , Child, Preschool , Female , Humans , Infant , Influenza, Human/pathology , Kenya/epidemiology , Male , Prevalence , Respiratory System/virology , Time Factors , Topography, MedicalABSTRACT
BACKGROUND: Among influenza viruses, type A viruses exhibit the greatest genetic diversity, infect the widest range of host species, and cause the vast majority of cases of severe disease in humans, including cases during the great pandemics. The hemagglutinin 1 (HA1) domain of the HA protein contains the highest concentration of epitopes and, correspondingly, experiences the most intense positive selection pressure. OBJECTIVES: We sought to isolate and genetically characterize influenza A virus subtype H1N1 (A[H1N1]) circulating in Kenya during 2007-2008, using the HA1 protein. METHODS: Nasopharyngeal swab specimens were collected from patients aged ≥ 2 months who presented to 8 healthcare facilities in Kenya with influenza-like illness. We tested specimens for seasonal influenza A viruses, using real-time reverse-transcription polymerase chain reaction (RT-PCR). Viruses were subtyped using subtype-specific primers. Specimens positive for seasonal A(H1N1) were inoculated onto Madin-Darby canine kidney cells for virus isolation. Viral RNAs were extracted from isolates, and the HA1 gene was amplified by RT-PCR, followed by nucleotide sequencing. Nucleotide sequences were assembled using BioEdit and translated into amino acid codes, using DS Gene, version 1.5. Multiple sequence alignments were performed using MUSCLE, version 3.6, and phylogenetic analysis was performed using MrBayes software. RESULTS: We found that, similar to A/Brisbane/59/2007 (H1N1)-like virus, which was included in the southern hemisphere vaccine for the 2009 influenza season, all 2007 Kenyan viruses had D39N, R77K, T132V, K149R, and E277K amino acid substitutions, compared with A/Solomon Islands/3/2006 (H1N1)-like virus, a component of the southern hemisphere vaccine for the 2008 influenza season. However, the majority of 2008 viruses from Kenya also had R192K and R226Q substitutions, compared with A/Solomon Islands/3/2006 (H1N1)-like virus. These 2 changes occurred at the receptor binding site. The majority of the 2008 Kenyan isolates contained N187S, G189N, and A193T mutations, which differed from A/Brisbane/59/2007 (H1N1)-like virus. The A193T substitution is involved in binding the sialic acid receptor. Phylogenetically, the 2008 Kenyan isolates grouped into 2 clusters. The main cluster contained viruses with N187S and A193T changes; residue 187 is involved in receptor binding, whereas residue 193 is at antigenic site Sb. CONCLUSION: Overall, the major genetic variations that occurred in seasonal A(H1) viruses either affected receptor binding or altered epitopes at the immunodominant sites. These genetic variations in seasonal A(H1N1) isolated in Kenya during 2007-2008 highlight the importance of continuing surveillance and characterization of emerging drift variants of influenza virus in Africa.
Subject(s)
Genetic Variation , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Phylogeny , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Influenza A Virus, H1N1 Subtype/classification , Kenya/epidemiology , Male , Middle Aged , Molecular Epidemiology , Molecular Sequence Data , Nasopharynx/virology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Virus Cultivation , Young AdultABSTRACT
Background: Human Respiratory Syncytial Virus (HRSV), Human Parainfluenza Virus (HPIV), and Human Adenovirus (HAdV) epidemics differ in geographical location, time, and virus type. Regions prone to infections can be identified using geographic information systems (GIS) and available methods for detecting spatial and time clusters. We sought to find statistically significant spatial and time clusters of HRSV, HPIV, and HAdV cases in different parts of Kenya. Methods: To analyse retrospective data, we used a geographical information system (GIS) and the spatial scan statistic. The information was gathered from surveillance sites and aggregated at the county level in order to identify purely spatial and Spatio-temporal clusters. To detect the presence of spatial autocorrelation, the local Moran's I test was used. To detect the spatial clusters of HRSV, HPIV, and HAdV cases, we performed the purely spatial scan statistic. Furthermore, space-time clusters were identified using space-time scan statistics. Both spatial and space-time analyses were based on the discrete Poisson model with a pre-specified statistical significance levelof p<0.05. Results: The findings showed that HRSV, HPIV, and HAdV cases had significant autocorrelation within the study areas. Furthermore, in the Western region of the country, the three respiratory viruses had local clusters with significant positive autocorrelation (p<0.05). Statistically, the Western region had significant spatial clusters of HRSV, HPIV, and HAdV occurrence. Furthermore, the space-time analysis revealed that the HPIV primary cluster persisted in the Western region from 2007 to 2013. However, primary clusters of HRSV and HAdV were observed in the Coastal region in 2009-11 and 2008-09, respectively. Conclusion: Human respiratory syncytial virus (HRSV), human parainfluenza virus (HPIV), and human adenovirus (HAdV) hotspots (clusters) occurred in Kenya's Western and Coastal regions from 2007 to 2013. The Western region appeared to be more prone to the occurrence of allthree respiratory viruses throughout the study period. Strategic mitigation should focus on these locations to prevent future clusters of HRSV, HPIV, and HAdV infections that could lead to epidemics.
ABSTRACT
BACKGROUND: Non-tuberculous mycobacteria (NTM) treatment constitutes a macrolide-based antibiotic regimen in combination with aminoglycosides for Rapid-Growing Mycobacteria (RGM), and rifampicin for Slow-Growing Mycobacteria (SGM). Mutations in the anti-NTM drug target regions promote NTM evolution to mutant strains that are insusceptible to NTM drugs leading to treatment failure. We, therefore, described the mutation patterns of anti-NTM drug target genes including rrl, rrs, and rpoB in NTM isolates from Kenya. Methods: We carried out a cross-sectional study that included 122 NTM obtained from the sputum of symptomatic tuberculosis-negative patients in Kenya. All 122 NTM underwent targeted sequencing of the rrl gene. The 54 RGM were also sequenced for rrs, and the 68 SGM were sequenced for rpoB genes using ABI 3730XL analyzer. The obtained sequences were aligned to their wild-type reference sequences for each gene using Geneious then mutations were identified. Pearson chi-square at a 95% confidence interval tested the association of NTM to mutation patterns for each gene. RESULTS: NTM harboring mutations associated with resistance to at least one of the antibiotics used in the macrolide-based therapy were 23% (28/122). Of these NTM, 10.4% (12/122) had mutations in the rrl gene with 58.3% (7/12) comprising RGM and 41.7% (5/12) being SGM. Mutation at position 2058 (A2058G, A2058C, A2058T) of the rrl gene was seen for 83.3% (10/12) of NTM, while 16.6% (2/12) harbored a A2059G mutation. Of the 54 RGM included for rrs characterization, 11.1% (6/54) exhibited mutations at position 1408(A1408G), while 14.7% (10/68) of the SGM had mutations in the rpoB gene at positions S531W, S531L, S531Y, F506L, E509H with M.gastri having multiple mutations at positions D516V, H526D and, S531F. CONCLUSION: We demonstrated a significant level of mutations associated with drug resistance for macrolides, aminoglycosides, and rifampicin in NTM isolated from symptomatic TB negative patients in Kenya.
Subject(s)
Aminoglycosides , Rifampin , Humans , Aminoglycosides/pharmacology , Aminoglycosides/therapeutic use , Rifampin/pharmacology , Rifampin/therapeutic use , Nontuberculous Mycobacteria/genetics , Kenya , Macrolides/pharmacology , Macrolides/therapeutic use , Cross-Sectional Studies , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , MutationABSTRACT
The effects of genetic variation of cytochrome P450 2B6 (CYP2B6) and constitutive androstane receptor (CAR) on efavirenz (EFV) plasma concentration was evaluated among 312 HIV patients in Nairobi Kenya. The EFV plasma concentration at steady-state were determined using ultra-high-performance liquid chromatography with a tandem quadruple mass spectrometer (LC-MS/MS). Thirteen CYP2B6 (329G>T, 341T>C, 444 G>T/C, 15582C>T, 516G>T, 548T>G, 637T>C, 785A>G, 18492C>T, 835G>C, 1459C>T and 21563C>T) and one CAR (540C>T) single nucleotide polymorphisms (SNPs) were genotyped using real-time polymerase chain reaction. HIV drug resistance mutations were detected using an in-house genotypic assay. The EFV concentration of patients ranged from 4 ng/mL to 332697 ng/mL (median 2739.5 ng/mL, IQR 1878-4891.5 ng/mL). Overall, 22% patients had EFV concentrations beyond therapeutic range of 1000-4000 ng/mL (4.5%% < 1000 ng/mL and 31.7% > 4000 ng/mL). Five SNPs (15582C>T, 516G>T, 785A>G, 983T>C and 21563C>T) were associated with higher EFV plasma concentration while 18492C>T with lower EFV plasma concentration (p<0.05). Strong linkage disequilibrium (LD) was observed for 15582C>T, 516G>T, 785A>G, 18492C>T, 983T>C, 21563C>T, 1459C>T and CAR 540C>T. Sixteen haplotypes were observed and CTGCTTCC, CTGCTTCT, TTGCTTCT and CGACCCCT were associated with high EFV plasma concentration. In multivariate analysis, factors significantly associated with EFV plasma concentration included; the presence of skin rash (ß = 1379, 95% confidence interval (CI) = 3216.9-3416.3; p < 0.039), T allele of CYP2B6 516G>T (ß = 1868.9, 95% CI 3216.9-3416.3; p < 0.018), the C allele of CYP2B6 983T>C (ß = 2638.3, 95% CI = 1348-3929; p < 0.0001), T allele of CYP2B6 21563C>T (ß = 1737, 95% CI = 972.2-2681.9; p < 0.0001) and the presence of 5 to 7 numbers of SNPs per patient (ß = 570, 95% CI = 362-778; p < 0.0001) and HIV viral load ≤1000 cells/mL (ß = -4199.3, 95% CI = -7914.9 --483.6; p = 0.027). About 36.2% of the patients had EFV plasma concentrations beyond therapeutic window, posing high risk of treatment failure or toxicity. The SNPs of CYP2B6 516G>T, CYP2B6 983T>C, 21563C>T, presence of higher numbers of SNPs per patient and haplotypes CTGCTTCC, CTGCTTCT, TTGCTTCT and CGACCCCT could efficiently serves as genetic markers for EFV plasma concentration and could guide personalization of EFV based ART treatment in Kenya.
Subject(s)
Cytochrome P-450 CYP2B6ABSTRACT
BACKGROUND: Human respiratory syncytial virus (HRSV) is a major cause of severe viral acute respiratory illness and contributes significantly to severe pneumonia cases in Africa. Little is known about its spatial-temporal distribution as defined by its genetic diversity. METHODS: A retrospective study conducted utilizing archived nasopharyngeal specimens from patients attending outpatient clinics in hospitals located in five demographically and climatically distinct regions of Kenya; Coast, Western, Highlands, Eastern and Nairobi. The viral total RNA was extracted and tested using multiplex real time RT-PCR (reverse transcriptase polymerase chain reaction). A segment of the G-gene was amplified using one-step RT-PCR and sequenced by Sanger di-deoxy method. Bayesian analysis of phylogeny was utilized and subsequently median joining methods for haplotype network reconstruction. RESULTS: Three genotypes of HRSVA were detected; GA5 (14.0%), GA2 (33.1%), and NA1 (52.9%). HRSVA prevalence varied by location from 33% to 13.2% in the Highlands and the Eastern regions respectively. The mean nucleotide diversity (Pi[π]) varied by genotype: highest of 0.018 for GA5 and lowest of 0.005 for NA1. A total of 58 haplotypes were identified (GA5 10; GA2 20; NA1 28). These haplotypes were introduced into the population locally by single haplotypes and additional subsidiary seeds amongst the GA2 and the NA1 haplotypes. CONCLUSIONS: HRSVA was found across all the regions throughout the study period and comprised three genotypes; GA5, GA2, and NA1 genotypes. The genotypes were disproportionately distributed across the regions with GA5 gradually increasing toward the Western zones and decreasing toward the Eastern zones of the country.
Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Bayes Theorem , Genotype , Humans , Infant , Kenya/epidemiology , Phylogeny , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics , Retrospective Studies , Sequence Analysis, DNAABSTRACT
Background: Dermaseptins (Drs) are peptides found in the skin secretions of a variety of Hylid frogs, particularly those belonging to the Agalychnis and Phyllomedusa families. Dermaseptin B2 (Drs B2), an amphipathic, α-helical polypeptide was reported as the most active of the Dermaseptin B family. We have previously shown that Drs B2 has strong anti-proliferative activities against RD cells in vitro and thus required further evaluations for future medical applications. Aim: The aim the study was to evaluate the 14-day sub-acute and 90-day sub-chronic toxicities Drs B2 in vivo. Materials and Methods: BALB/c mice were treated with increasing concentrations of 5-25 mg/kg of Drs B2. Rats were treated with 2, 4 and 10-fold concentrations of the calculated LD50 of Drs B2 following OECD recommendations. At the end of the experimentation periods, the animals were sacrificed and dissected to collect blood and selected organs for analysis of any effects caused by Drs B2 treatment on the biochemical, haematological, and histological parameters. Results: The 14-day sub-acute toxicity tests did not cause significant alteration in the biochemical, hematological and histological parameters. The 90-day sub-chronic toxicity study showed lower ALT and AST than control at doses 1.9 mg/kg and 4.6 mg/kg, respectively. Their haematology results also showed higher platelet count than the controls but the differences were not statistically significant. Histological analysis showed increased megakaryocytes in the spleen for both the mice and the rats. Conclusion: The results of this study indicate that short term treatment of Drs B2 could be safe to the animals, however, long-term treatment can have mild effects on the liver parameters and cause an inflammatory response in the spleen.
ABSTRACT
A cornerstone of effective disease surveillance programs comprises the early identification of infectious threats and the subsequent rapid response to prevent further spread. Effectively identifying, tracking and responding to these threats is often difficult and requires international cooperation due to the rapidity with which diseases cross national borders and spread throughout the global community as a result of travel and migration by humans and animals. From Oct.1, 2008 to Sept. 30, 2009, the United States Department of Defense's (DoD) Armed Forces Health Surveillance Center Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) identified 76 outbreaks in 53 countries. Emerging infectious disease outbreaks were identified by the global network and included a wide spectrum of support activities in collaboration with host country partners, several of which were in direct support of the World Health Organization's (WHO) International Health Regulations (IHR) (2005). The network also supported military forces around the world affected by the novel influenza A/H1N1 pandemic of 2009. With IHR (2005) as the guiding framework for action, the AFHSC-GEIS network of international partners and overseas research laboratories continues to develop into a far-reaching system for identifying, analyzing and responding to emerging disease threats.
Subject(s)
Communicable Disease Control/methods , Disease Outbreaks/prevention & control , Global Health , Sentinel Surveillance , Communicable Disease Control/organization & administration , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Government Agencies , Humans , International Cooperation , Military Personnel , United States , World Health OrganizationABSTRACT
Capacity-building initiatives related to public health are defined as developing laboratory infrastructure, strengthening host-country disease surveillance initiatives, transferring technical expertise and training personnel. These initiatives represented a major piece of the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) contributions to worldwide emerging infectious disease (EID) surveillance and response. Capacity-building initiatives were undertaken with over 80 local and regional Ministries of Health, Agriculture and Defense, as well as other government entities and institutions worldwide. The efforts supported at least 52 national influenza centers and other country-specific influenza, regional and U.S.-based EID reference laboratories (44 civilian, eight military) in 46 countries worldwide. Equally important, reference testing, laboratory infrastructure and equipment support was provided to over 500 field sites in 74 countries worldwide from October 2008 to September 2009. These activities allowed countries to better meet the milestones of implementation of the 2005 International Health Regulations and complemented many initiatives undertaken by other U.S. government agencies, such as the U.S. Department of Health and Human Services, the U.S. Agency for International Development and the U.S. Department of State.