Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 278
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(20): 5215-5229.e17, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34559986

ABSTRACT

Estrogen receptor α (ERα) is a hormone receptor and key driver for over 70% of breast cancers that has been studied for decades as a transcription factor. Unexpectedly, we discover that ERα is a potent non-canonical RNA-binding protein. We show that ERα RNA binding function is uncoupled from its activity to bind DNA and critical for breast cancer progression. Employing genome-wide cross-linking immunoprecipitation (CLIP) sequencing and a functional CRISPRi screen, we find that ERα-associated mRNAs sustain cancer cell fitness and elicit cellular responses to stress. Mechanistically, ERα controls different steps of RNA metabolism. In particular, we demonstrate that ERα RNA binding mediates alternative splicing of XBP1 and translation of the eIF4G2 and MCL1 mRNAs, which facilitates survival upon stress conditions and sustains tamoxifen resistance of cancer cells. ERα is therefore a multifaceted RNA-binding protein, and this activity transforms our knowledge of post-transcriptional regulation underlying cancer development and drug response.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Drug Resistance, Neoplasm , Estrogen Receptor alpha/metabolism , RNA-Binding Proteins/metabolism , Animals , Base Sequence , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Disease Progression , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/chemistry , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Genomics , Humans , Mice, Inbred NOD , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Oncogenes , Protein Binding/drug effects , Protein Domains , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Tamoxifen/pharmacology , X-Box Binding Protein 1/metabolism
2.
Cell ; 179(1): 132-146.e14, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31522887

ABSTRACT

Oligodendrocytes extend elaborate microtubule arbors that contact up to 50 axon segments per cell, then spiral around myelin sheaths, penetrating from outer to inner layers. However, how they establish this complex cytoarchitecture is unclear. Here, we show that oligodendrocytes contain Golgi outposts, an organelle that can function as an acentrosomal microtubule-organizing center (MTOC). We identify a specific marker for Golgi outposts-TPPP (tubulin polymerization promoting protein)-that we use to purify this organelle and characterize its proteome. In in vitro cell-free assays, recombinant TPPP nucleates microtubules. Primary oligodendrocytes from Tppp knockout (KO) mice have aberrant microtubule branching, mixed microtubule polarity, and shorter myelin sheaths when cultured on 3-dimensional (3D) microfibers. Tppp KO mice exhibit hypomyelination with shorter, thinner myelin sheaths and motor coordination deficits. Together, our data demonstrate that microtubule nucleation outside the cell body at Golgi outposts by TPPP is critical for elongation of the myelin sheath.


Subject(s)
Carrier Proteins/metabolism , Golgi Apparatus/metabolism , Microtubules/metabolism , Myelin Sheath/metabolism , Nerve Tissue Proteins/metabolism , Animals , Animals, Newborn , Axons/metabolism , Carrier Proteins/genetics , Cell-Free System/metabolism , Cells, Cultured , Escherichia coli/metabolism , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Organizing Center/metabolism , Nerve Tissue Proteins/genetics , Oligodendrocyte Precursor Cells/metabolism , Rats , Rats, Sprague-Dawley , Tubulin/metabolism
3.
Mol Cell ; 84(18): 3545-3563.e25, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39260367

ABSTRACT

Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translation. Nevertheless, a lack of technologies to enrich RAPs across sample types has prevented systematic analysis of RAP identities, dynamics, and functions. We have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including Dhx30 and Llph, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development linked to the translation of genes with long coding sequences. In addition, we showed that RAPIDASH can identify ribosome changes in cancer cells. Finally, we characterized ribosome composition remodeling during immune cell activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs in multiple cell types, tissues, and stimuli and is adaptable to characterize ribosome remodeling in several contexts.


Subject(s)
Macrophages , Ribosomal Proteins , Ribosomes , Animals , Ribosomes/metabolism , Ribosomes/genetics , Mice , Humans , Macrophages/metabolism , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Protein Biosynthesis , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Gene Expression Regulation, Developmental , Cell Line, Tumor , Mice, Inbred C57BL
4.
Immunity ; 55(4): 623-638.e5, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35385697

ABSTRACT

The epithelium is an integral component of mucosal barrier and host immunity. Following helminth infection, the intestinal epithelial cells secrete "alarmin" cytokines, such as interleukin-25 (IL-25) and IL-33, to initiate the type 2 immune responses for helminth expulsion and tolerance. However, it is unknown how helminth infection and the resulting cytokine milieu drive epithelial remodeling and orchestrate alarmin secretion. Here, we report that epithelial O-linked N-Acetylglucosamine (O-GlcNAc) protein modification was induced upon helminth infections. By modifying and activating the transcription factor STAT6, O-GlcNAc transferase promoted the transcription of lineage-defining Pou2f3 in tuft cell differentiation and IL-25 production. Meanwhile, STAT6 O-GlcNAcylation activated the expression of Gsdmc family genes. The membrane pore formed by GSDMC facilitated the unconventional secretion of IL-33. GSDMC-mediated IL-33 secretion was indispensable for effective anti-helminth immunity and contributed to induced intestinal inflammation. Protein O-GlcNAcylation can be harnessed for future treatment of type 2 inflammation-associated human diseases.


Subject(s)
Alarmins , Intestinal Mucosa , Acylation , Alarmins/immunology , Anthelmintics/immunology , Biomarkers, Tumor , Cytokines , DNA-Binding Proteins , Helminthiasis/immunology , Humans , Hyperplasia , Inflammation , Interleukin-33 , Intestinal Mucosa/immunology , Mebendazole , N-Acetylglucosaminyltransferases/immunology , Pore Forming Cytotoxic Proteins , STAT6 Transcription Factor/immunology
5.
Cell ; 166(6): 1411-1422.e16, 2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27610567

ABSTRACT

A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription.


Subject(s)
Mediator Complex/chemistry , Mediator Complex/metabolism , Models, Molecular , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Cryoelectron Microscopy , Gene Expression Regulation , Mass Spectrometry , Phosphorylation , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/metabolism , Saccharomyces cerevisiae Proteins/metabolism
6.
Nature ; 633(8028): 189-197, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39143206

ABSTRACT

Fasting is associated with a range of health benefits1-6. How fasting signals elicit changes in the proteome to establish metabolic programmes remains poorly understood. Here we show that hepatocytes selectively remodel the translatome while global translation is paradoxically downregulated during fasting7,8. We discover that phosphorylation of eukaryotic translation initiation factor 4E (P-eIF4E) is induced during fasting. We show that P-eIF4E is responsible for controlling the translation of genes involved in lipid catabolism and the production of ketone bodies. Inhibiting P-eIF4E impairs ketogenesis in response to fasting and a ketogenic diet. P-eIF4E regulates those messenger RNAs through a specific translation regulatory element within their 5' untranslated regions (5' UTRs). Our findings reveal a new signalling property of fatty acids, which are elevated during fasting. We found that fatty acids bind and induce AMP-activated protein kinase (AMPK) kinase activity that in turn enhances the phosphorylation of MAP kinase-interacting protein kinase (MNK), the kinase that phosphorylates eIF4E. The AMPK-MNK-eIF4E axis controls ketogenesis, revealing a new lipid-mediated kinase signalling pathway that links ketogenesis to translation control. Certain types of cancer use ketone bodies as an energy source9,10 that may rely on P-eIF4E. Our findings reveal that on a ketogenic diet, treatment with eFT508 (also known as tomivosertib; a P-eIF4E inhibitor) restrains pancreatic tumour growth. Thus, our findings unveil a new fatty acid-induced signalling pathway that activates selective translation, which underlies ketogenesis and provides a tailored diet intervention therapy for cancer.


Subject(s)
Carcinogenesis , Fatty Acids , Ketone Bodies , Protein Biosynthesis , Signal Transduction , Animals , Female , Humans , Mice , 5' Untranslated Regions/genetics , AMP-Activated Protein Kinases/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Diet, Ketogenic , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/metabolism , Fasting/physiology , Fatty Acids/metabolism , Hepatocytes/metabolism , Ketone Bodies/biosynthesis , Ketone Bodies/metabolism , Lipid Metabolism/genetics , Pancreatic Neoplasms/diet therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism
7.
Mol Cell ; 75(4): 700-710.e6, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442422

ABSTRACT

Microrchidia (MORC) ATPases are critical for gene silencing and chromatin compaction in multiple eukaryotic systems, but the mechanisms by which MORC proteins act are poorly understood. Here, we apply a series of biochemical, single-molecule, and cell-based imaging approaches to better understand the function of the Caenorhabditis elegans MORC-1 protein. We find that MORC-1 binds to DNA in a length-dependent but sequence non-specific manner and compacts DNA by forming DNA loops. MORC-1 molecules diffuse along DNA but become static as they grow into foci that are topologically entrapped on DNA. Consistent with the observed MORC-1 multimeric assemblies, MORC-1 forms nuclear puncta in cells and can also form phase-separated droplets in vitro. We also demonstrate that MORC-1 compacts nucleosome templates. These results suggest that MORCs affect genome structure and gene silencing by forming multimeric assemblages to topologically entrap and progressively loop and compact chromatin.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/chemistry , DNA, Helminth/chemistry , Nuclear Proteins/chemistry , Nucleic Acid Conformation , Nucleosomes/chemistry , Protein Multimerization , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/ultrastructure , DNA, Helminth/metabolism , Nucleosomes/metabolism , Nucleosomes/ultrastructure
8.
Plant Cell ; 35(3): 975-993, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36660928

ABSTRACT

Elucidating enzyme-substrate relationships in posttranslational modification (PTM) networks is crucial for understanding signal transduction pathways but is technically difficult because enzyme-substrate interactions tend to be transient. Here, we demonstrate that TurboID-based proximity labeling (TbPL) effectively and specifically captures the substrates of kinases and phosphatases. TbPL-mass spectrometry (TbPL-MS) identified over 400 proximal proteins of Arabidopsis thaliana BRASSINOSTEROID-INSENSITIVE2 (BIN2), a member of the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family that integrates signaling pathways controlling diverse developmental and acclimation processes. A large portion of the BIN2-proximal proteins showed BIN2-dependent phosphorylation in vivo or in vitro, suggesting that these are BIN2 substrates. Protein-protein interaction network analysis showed that the BIN2-proximal proteins include interactors of BIN2 substrates, revealing a high level of interactions among the BIN2-proximal proteins. Our proteomic analysis establishes the BIN2 signaling network and uncovers BIN2 functions in regulating key cellular processes such as transcription, RNA processing, translation initiation, vesicle trafficking, and cytoskeleton organization. We further discovered significant overlap between the GSK3 phosphorylome and the O-GlcNAcylome, suggesting an evolutionarily ancient relationship between GSK3 and the nutrient-sensing O-glycosylation pathway. Our work presents a powerful method for mapping PTM networks, a large dataset of GSK3 kinase substrates, and important insights into the signaling network that controls key cellular functions underlying plant growth and acclimation.


Subject(s)
Protein Kinases , Proteomics , Signal Transduction , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Biotin/chemistry , Biotinylation , Brassinosteroids/metabolism , Phosphorylation , Protein Kinases/genetics , Protein Kinases/metabolism , Proteomics/methods , Signal Transduction/physiology
10.
Nature ; 582(7810): 115-118, 2020 06.
Article in English | MEDLINE | ID: mdl-32494070

ABSTRACT

During cell division, remodelling of the nuclear envelope enables chromosome segregation by the mitotic spindle1. The reformation of sealed nuclei requires ESCRTs (endosomal sorting complexes required for transport) and LEM2, a transmembrane ESCRT adaptor2-4. Here we show how the ability of LEM2 to condense on microtubules governs the activation of ESCRTs and coordinated spindle disassembly. The LEM motif of LEM2 binds BAF, conferring on LEM2 an affinity for chromatin5,6, while an adjacent low-complexity domain (LCD) promotes LEM2 phase separation. A proline-arginine-rich sequence within the LCD binds to microtubules and targets condensation of LEM2 to spindle microtubules that traverse the nascent nuclear envelope. Furthermore, the winged-helix domain of LEM2 activates the ESCRT-II/ESCRT-III hybrid protein CHMP7 to form co-oligomeric rings. Disruption of these events in human cells prevented the recruitment of downstream ESCRTs, compromised spindle disassembly, and led to defects in nuclear integrity and DNA damage. We propose that during nuclear reassembly LEM2 condenses into a liquid-like phase and coassembles with CHMP7 to form a macromolecular O-ring seal at the confluence between membranes, chromatin and the spindle. The properties of LEM2 described here, and the homologous architectures of related inner nuclear membrane proteins7,8, suggest that phase separation may contribute to other critical envelope functions, including interphase repair8-13 and chromatin organization14-17.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Anaphase , Chromatin/metabolism , DNA Damage , DNA-Binding Proteins/metabolism , HeLa Cells , Humans , Microtubules/chemistry , Microtubules/metabolism , Nuclear Envelope/chemistry , Spindle Apparatus/metabolism
11.
J Neurosci ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251352

ABSTRACT

Vertebrate nervous systems use the axon initial segment (AIS) to initiate action potentials and maintain neuronal polarity. The microtubule-associated protein tripartite motif containing 46 (TRIM46) was reported to regulate axon specification, AIS assembly, and neuronal polarity through the bundling, or fasciculation, of microtubules in the proximal axon. However, these claims are based on TRIM46 knockdown in cultured neurons. To investigate TRIM46 function in vivo, we examined male and female TRIM46 knockout mice. Contrary to previous reports, we find that TRIM46 is dispensable for axon specification and AIS formation. TRIM46 knockout mice are viable, have normal behavior, and have normal brain structure. Thus, TRIM46 is not required for AIS formation, axon specification, or nervous system function. However, we confirm that TRIM46 is required for microtubule fasciculation. We also show TRIM46 enrichment in the first ∼100 µm of axon occurs independently of ankyrinG (AnkG) in vivo, although AnkG is required to restrict TRIM46 only to the AIS. Our results highlight the need for further investigation of the mechanisms by which the AIS and microtubules interact to shape neuronal structure and function.Significance statement A healthy nervous system requires the polarization of neurons into structurally and functionally distinct compartments, which depends on both the axon initial segment (AIS) and the microtubule cytoskeleton. In contrast to previous reports, we show that the microtubule-associated protein TRIM46 is required for microtubule fasciculation, but not for axon specification or AIS formation in mice. Our results emphasize the need for further investigation of the mechanisms by which the AIS and microtubules interact to shape neuronal structure and function.

12.
EMBO J ; 40(20): e107158, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34515347

ABSTRACT

Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid-liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA-RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.


Subject(s)
Cell Nucleolus/metabolism , Ganglia, Spinal/metabolism , Kinesins/metabolism , Neurons/metabolism , Phosphoproteins/chemistry , RNA-Binding Proteins/chemistry , Sciatic Nerve/metabolism , Amino Acid Sequence , Animals , Axonal Transport/genetics , Cell Line, Tumor , Cell Nucleolus/ultrastructure , Ganglia, Spinal/cytology , Gene Expression , HEK293 Cells , HeLa Cells , Humans , Kinesins/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mutation , Neurons/cytology , Phosphoproteins/genetics , Phosphoproteins/metabolism , Primary Cell Culture , Protein Domains , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sciatic Nerve/cytology , Nucleolin
13.
Mol Cell Proteomics ; 22(3): 100497, 2023 03.
Article in English | MEDLINE | ID: mdl-36642223

ABSTRACT

New protein synthesis is regulated both at the level of mRNA transcription and translation. RNA-Seq is effective at measuring levels of mRNA expression, but techniques to monitor mRNA translation are much more limited. Previously, we reported results from O-propargyl-puromycin (OPP) labeling of proteins undergoing active translation in a 2-h time frame, followed by biotinylation using click chemistry, affinity purification, and on-bead digestion to identify nascent proteins by mass spectrometry (OPP-ID). As with any on-bead digestion protocol, the problem of nonspecific binders complicated the rigorous categorization of nascent proteins by OPP-ID. Here, we incorporate a chemically cleavable linker, Dde biotin-azide, into the protocol (OPP-IDCL) to provide specific release of modified proteins from the streptavidin beads. Following capture, the Dde moiety is readily cleaved with 2% hydrazine, releasing nascent polypeptides bearing OPP plus a residual C3H8N4 tag. When results are compared side by side with the original OPP-ID method, change to a cleavable linker led to a dramatic reduction in the number of background proteins detected in controls and a concomitant increase in the number of proteins that could be characterized as newly synthesized. We evaluated the method's ability to detect nascent proteins at various submilligram protein input levels and showed that, when starting with only 100 µg of protein, ∼1500 nascent proteins could be identified with low background. Upon treatment of K562 cells with MLN128, a potent inhibitor of the mammalian target of rapamycin, prior to OPP treatment, we identified 1915 nascent proteins, the majority of which were downregulated upon inhibitor treatment. Repressed proteins with log2 FC <-1 revealed a complex network of functionally interacting proteins, with the largest cluster associated with translational initiation. Overall, incorporation of the Dde biotin-azide cleavable linker into our protocol has increased the depth and accuracy of profiling of nascent protein networks.


Subject(s)
Azides , Biotin , Proteins/chemistry , Peptides , RNA, Messenger
14.
Mol Cell Proteomics ; 22(4): 100522, 2023 04.
Article in English | MEDLINE | ID: mdl-36863607

ABSTRACT

PKC epsilon (PKCε) plays important roles in behavioral responses to alcohol and in anxiety-like behavior in rodents, making it a potential drug target for reducing alcohol consumption and anxiety. Identifying signals downstream of PKCε could reveal additional targets and strategies for interfering with PKCε signaling. We used a chemical genetic screen combined with mass spectrometry to identify direct substrates of PKCε in mouse brain and validated findings for 39 of them using peptide arrays and in vitro kinase assays. Prioritizing substrates with several public databases such as LINCS-L1000, STRING, GeneFriends, and GeneMAINA predicted interactions between these putative substrates and PKCε and identified substrates associated with alcohol-related behaviors, actions of benzodiazepines, and chronic stress. The 39 substrates could be broadly classified in three functional categories: cytoskeletal regulation, morphogenesis, and synaptic function. These results provide a list of brain PKCε substrates, many of which are novel, for future investigation to determine the role of PKCε signaling in alcohol responses, anxiety, responses to stress, and other related behaviors.


Subject(s)
Protein Kinase C-epsilon , Signal Transduction , Mice , Animals , Protein Kinase C-epsilon/genetics , Protein Kinase C-epsilon/metabolism , Ethanol , Alcohol Drinking/genetics , Brain/metabolism
15.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35074918

ABSTRACT

MeCP2 is associated with Rett syndrome (RTT), MECP2 duplication syndrome, and a number of conditions with isolated features of these diseases, including autism, intellectual disability, and motor dysfunction. MeCP2 is known to broadly bind methylated DNA, but the precise molecular mechanism driving disease pathogenesis remains to be determined. Using proximity-dependent biotinylation (BioID), we identified a transcription factor 20 (TCF20) complex that interacts with MeCP2 at the chromatin interface. Importantly, RTT-causing mutations in MECP2 disrupt this interaction. TCF20 and MeCP2 are highly coexpressed in neurons and coregulate the expression of key neuronal genes. Reducing Tcf20 partially rescued the behavioral deficits caused by MECP2 overexpression, demonstrating a functional relationship between MeCP2 and TCF20 in MECP2 duplication syndrome pathogenesis. We identified a patient exhibiting RTT-like neurological features with a missense mutation in the PHF14 subunit of the TCF20 complex that abolishes the MeCP2-PHF14-TCF20 interaction. Our data demonstrate the critical role of the MeCP2-TCF20 complex for brain function.


Subject(s)
Methyl-CpG-Binding Protein 2/metabolism , Multiprotein Complexes/metabolism , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/metabolism , Transcription Factors/metabolism , Alleles , Animals , Biomarkers , Brain/metabolism , Disease Models, Animal , Disease Susceptibility , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Knockout , Mice, Transgenic , Models, Biological , Mutation , Neurons/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Synapses/metabolism , Transcription Factors/genetics
16.
Nat Chem Biol ; 18(9): 934-941, 2022 09.
Article in English | MEDLINE | ID: mdl-35590003

ABSTRACT

The expansion of the target landscape of covalent inhibitors requires the engagement of nucleophiles beyond cysteine. Although the conserved catalytic lysine in protein kinases is an attractive candidate for a covalent approach, selectivity remains an obvious challenge. Moreover, few covalent inhibitors have been shown to engage the kinase catalytic lysine in animals. We hypothesized that reversible, lysine-targeted inhibitors could provide sustained kinase engagement in vivo, with selectivity driven in part by differences in residence time. By strategically linking benzaldehydes to a promiscuous kinase binding scaffold, we developed chemoproteomic probes that reversibly and covalently engage >200 protein kinases in cells and mice. Probe-kinase residence time was dramatically enhanced by a hydroxyl group ortho to the aldehyde. Remarkably, only a few kinases, including Aurora A, showed sustained, quasi-irreversible occupancy in vivo, the structural basis for which was revealed by X-ray crystallography. We anticipate broad application of salicylaldehyde-based probes to proteins that lack a druggable cysteine.


Subject(s)
Lysine , Protein Kinase Inhibitors , Animals , Cysteine/metabolism , Lysine/metabolism , Mice , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism
17.
Mol Cell Proteomics ; 21(11): 100418, 2022 11.
Article in English | MEDLINE | ID: mdl-36180036

ABSTRACT

Importin ß1 (KPNB1) is a nucleocytoplasmic transport factor with critical roles in both cytoplasmic and nucleocytoplasmic transport, hence there is keen interest in the characterization of its subcellular interactomes. We found limited efficiency of BioID in the detection of importin complex cargos and therefore generated a highly specific and sensitive anti-KPNB1 monoclonal antibody to enable biotinylation by antibody recognition analysis of importin ß1 interactomes. The monoclonal antibody recognizes an epitope comprising residues 301-320 of human KPBN1 and strikingly is highly specific for cytoplasmic KPNB1 in diverse applications, with little reaction with KPNB1 in the nucleus. Biotinylation by antibody recognition with this novel antibody revealed numerous new interactors of importin ß1, expanding the KPNB1 interactome to cytoplasmic and signaling complexes that highlight potential new functions for the importins complex beyond nucleocytoplasmic transport. Data are available via ProteomeXchange with identifier PXD032728.


Subject(s)
Antibodies, Monoclonal , Karyopherins , Humans , Karyopherins/metabolism , Antibodies, Monoclonal/metabolism , beta Karyopherins/metabolism , Active Transport, Cell Nucleus , Cytoplasm/metabolism , Cell Nucleus/metabolism
18.
Nucleic Acids Res ; 50(10): 5772-5792, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35556128

ABSTRACT

Axonally synthesized proteins support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this and other aspects of post-transcriptional regulation of neuronal mRNAs, but only a limited number of axonal RBPs are known. We used targeted proteomics to profile RBPs in peripheral nerve axons. We detected 76 proteins with reported RNA binding activity in axoplasm, and levels of several change with axon injury and regeneration. RBPs with altered levels include KHSRP that decreases neurite outgrowth in developing CNS neurons. Axonal KHSRP levels rapidly increase after injury remaining elevated up to 28 days post axotomy. Khsrp mRNA localizes into axons and the rapid increase in axonal KHSRP is through local translation of Khsrp mRNA in axons. KHSRP can bind to mRNAs with 3'UTR AU-rich elements and targets those transcripts to the cytoplasmic exosome for degradation. KHSRP knockout mice show increased axonal levels of KHSRP target mRNAs, Gap43, Snap25, and Fubp1, following sciatic nerve injury and these mice show accelerated nerve regeneration in vivo. Together, our data indicate that axonal translation of the RNA binding protein Khsrp mRNA following nerve injury serves to promote decay of other axonal mRNAs and slow axon regeneration.


Subject(s)
Axons , Nerve Regeneration , 3' Untranslated Regions/genetics , Animals , Axons/metabolism , Mice , Nerve Regeneration/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats , Rats, Sprague-Dawley , Sciatic Nerve/metabolism
19.
J Neurosci ; 42(10): 2065-2079, 2022 03 09.
Article in English | MEDLINE | ID: mdl-34987108

ABSTRACT

Ferroptosis is a caspase-independent, iron-dependent form of regulated necrosis extant in traumatic brain injury, Huntington disease, and hemorrhagic stroke. It can be activated by cystine deprivation leading to glutathione depletion, the insufficiency of the antioxidant glutathione peroxidase-4, and the hemolysis products hemoglobin and hemin. A cardinal feature of ferroptosis is extracellular signal-regulated kinase (ERK)1/2 activation culminating in its translocation to the nucleus. We have previously confirmed that the mitogen-activated protein (MAP) kinase kinase (MEK) inhibitor U0126 inhibits persistent ERK1/2 phosphorylation and ferroptosis. Here, we show that hemin exposure, a model of secondary injury in brain hemorrhage and ferroptosis, activated ERK1/2 in mouse neurons. Accordingly, MEK inhibitor U0126 protected against hemin-induced ferroptosis. Unexpectedly, U0126 prevented hemin-induced ferroptosis independent of its ability to inhibit ERK1/2 signaling. In contrast to classical ferroptosis in neurons or cancer cells, chemically diverse inhibitors of MEK did not block hemin-induced ferroptosis, nor did the forced expression of the ERK-selective MAP kinase phosphatase (MKP)3. We conclude that hemin or hemoglobin-induced ferroptosis, unlike glutathione depletion, is ERK1/2-independent. Together with recent studies, our findings suggest the existence of a novel subtype of neuronal ferroptosis relevant to bleeding in the brain that is 5-lipoxygenase-dependent, ERK-independent, and transcription-independent. Remarkably, our unbiased phosphoproteome analysis revealed dramatic differences in phosphorylation induced by two ferroptosis subtypes. As U0126 also reduced cell death and improved functional recovery after hemorrhagic stroke in male mice, our analysis also provides a template on which to build a search for U0126's effects in a variant of neuronal ferroptosis.SIGNIFICANCE STATEMENT Ferroptosis is an iron-dependent mechanism of regulated necrosis that has been linked to hemorrhagic stroke. Common features of ferroptotic death induced by diverse stimuli are the depletion of the antioxidant glutathione, production of lipoxygenase-dependent reactive lipids, sensitivity to iron chelation, and persistent activation of extracellular signal-regulated kinase (ERK) signaling. Unlike classical ferroptosis induced in neurons or cancer cells, here we show that ferroptosis induced by hemin is ERK-independent. Paradoxically, the canonical MAP kinase kinase (MEK) inhibitor U0126 blocks brain hemorrhage-induced death. Altogether, these data suggest that a variant of ferroptosis is unleashed in hemorrhagic stroke. We present the first, unbiased phosphoproteomic analysis of ferroptosis as a template on which to understand distinct paths to cell death that meet the definition of ferroptosis.


Subject(s)
Ferroptosis , Hemorrhagic Stroke , Animals , Antioxidants/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Glutathione/metabolism , Hemin/metabolism , Hemin/pharmacology , Hemoglobins/metabolism , Intracranial Hemorrhages/metabolism , Iron/metabolism , Male , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Necrosis/metabolism , Neurons/metabolism , Phosphorylation
20.
Cell ; 134(5): 866-76, 2008 Sep 05.
Article in English | MEDLINE | ID: mdl-18722006

ABSTRACT

The nearly 600 proteases in the human genome regulate a diversity of biological processes, including programmed cell death. Comprehensive characterization of protease signaling in complex biological samples is limited by available proteomic methods. We have developed a general approach for global identification of proteolytic cleavage sites using an engineered enzyme to selectively biotinylate free protein N termini for positive enrichment of corresponding N-terminal peptides. Using this method to study apoptosis, we have sequenced 333 caspase-like cleavage sites distributed among 292 protein substrates. These sites are generally not predicted by in vitro caspase substrate specificity but can be used to predict other physiological caspase cleavage sites. Structural bioinformatic studies show that caspase cleavage sites often appear in surface-accessible loops and even occasionally in helical regions. Strikingly, we also find that a disproportionate number of caspase substrates physically interact, suggesting that these dimeric proteases target protein complexes and networks to elicit apoptosis.


Subject(s)
Apoptosis/drug effects , Caspases/metabolism , Proteins/analysis , Proteins/metabolism , Proteomics , Antineoplastic Agents, Phytogenic/pharmacology , Caspases/chemistry , Etoposide/pharmacology , Humans , Jurkat Cells , Protein Binding , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL