Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Respir Crit Care Med ; 183(7): 865-75, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-20971830

ABSTRACT

RATIONALE: IL-9 is a pleiotropic cytokine that has multiple effects on structural as well as numerous hematopoietic cells, which are central to the pathogenesis of asthma. OBJECTIVES: The contribution of IL-9 to asthma pathogenesis has thus far been unclear, due to conflicting reports in the literature. These earlier studies focused on the role of IL-9 in acute inflammatory models; here we have investigated the effects of IL-9 blockade during chronic allergic inflammation. METHODS: Mice were exposed to either prolonged ovalbumin or house dust mite allergen challenge to induce chronic inflammation and airway remodeling. MEASUREMENTS AND MAIN RESULTS: We found that IL-9 governs allergen-induced mast cell (MC) numbers in the lung and has pronounced effects on chronic allergic inflammation. Anti-IL-9 antibody-treated mice were protected from airway remodeling with a concomitant reduction in mature MC numbers and activation, in addition to decreased expression of the profibrotic mediators transforming growth factor-ß1, vascular endothelial growth factor, and fibroblast growth factor-2 in the lung. Airway remodeling was associated with impaired lung function in the peripheral airways and this was reversed by IL-9 neutralization. In human asthmatic lung tissue, we identified MCs as the main IL-9 receptor expressing population and found them to be sources of vascular endothelial growth factor and fibroblast growth factor-2. CONCLUSIONS: Our data suggest an important role for an IL-9-MC axis in the pathology associated with chronic asthma and demonstrate that an impact on this axis could lead to a reduction in chronic inflammation and improved lung function in patients with asthma.


Subject(s)
Allergens/immunology , Asthma/immunology , Bronchoalveolar Lavage Fluid/cytology , Interleukin-9/immunology , Lung/immunology , Lung/pathology , Mast Cells/immunology , Allergens/administration & dosage , Analysis of Variance , Animals , Asthma/metabolism , Biomarkers/metabolism , Biopsy, Needle , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Mast Cells/metabolism , Mice , Mice, Inbred BALB C , Ovalbumin/pharmacology , RNA, Messenger/analysis , Random Allocation , Respiratory Function Tests , Statistics, Nonparametric
2.
Commun Biol ; 2: 92, 2019.
Article in English | MEDLINE | ID: mdl-30854484

ABSTRACT

Systemic administration of bio-therapeutics can result in only a fraction of drug reaching targeted tissues, with the majority of drug being distributed to tissues irrelevant to the drug's site of action. Targeted delivery to specific organs may allow for greater accumulation, better efficacy, and improved safety. We investigated how targeting plasmalemma vesicle-associated protein (PV1), a protein found in the endothelial caveolae of lungs and kidneys, can promote accumulation in these organs. Using ex vivo fluorescence imaging, we show that intravenously administered αPV1 antibodies localize to mouse lungs and kidneys. In a bleomycin-induced idiopathic pulmonary fibrosis (IPF) mouse model, αPV1 conjugated to Prostaglandin E2 (PGE2), a known anti-fibrotic agent, significantly reduced collagen content and fibrosis whereas a non-targeted PGE2 antibody conjugate failed to slow fibrosis progression. Our results demonstrate that PV1 targeting can be utilized to deliver therapeutics to lungs and this approach is potentially applicable for various lung diseases.


Subject(s)
Drug Carriers , Drug Delivery Systems , Idiopathic Pulmonary Fibrosis/drug therapy , Membrane Proteins/metabolism , Animals , Biomarkers , Bleomycin/adverse effects , Dinoprostone/metabolism , Disease Models, Animal , Gene Expression , Humans , Idiopathic Pulmonary Fibrosis/etiology , Idiopathic Pulmonary Fibrosis/pathology , Immunohistochemistry , Kidney/metabolism , Kidney/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice
3.
ACS Nano ; 11(10): 9825-9835, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28877431

ABSTRACT

Collagen, the major structural component of nearly all mammalian tissues, undergoes extensive proteolytic remodeling during developmental states and a variety of life-threatening diseases such as cancer, myocardial infarction, and fibrosis. While degraded collagen could be an important marker of tissue damage, it is difficult to detect and target using conventional tools. Here, we show that a designed peptide (collagen hybridizing peptide: CHP), which specifically hybridizes to the degraded, unfolded collagen chains, can be used to image degraded collagen and inform tissue remodeling activity in various tissues: labeled with 5-carboxyfluorescein and biotin, CHPs enabled direct localization and quantification of collagen degradation in isolated tissues within pathologic states ranging from osteoarthritis and myocardial infarction to glomerulonephritis and pulmonary fibrosis, as well as in normal tissues during developmental programs associated with embryonic bone formation and skin aging. The results indicate the general correlation between the level of collagen remodeling and the amount of denatured collagen in tissue and show that the CHP probes can be used across species and collagen types, providing a versatile tool for not only pathology and developmental biology research but also histology-based disease diagnosis, staging, and therapeutic screening. This study lays the foundation for further testing CHP as a targeting moiety for theranostic delivery in various animal models.


Subject(s)
Bone Remodeling , Collagen/chemistry , Glomerulonephritis/pathology , Myocardial Infarction/pathology , Osteoarthritis/pathology , Peptides/chemistry , Pulmonary Fibrosis/pathology , Aged , Animals , Humans , Male , Mice , Mice, Inbred C57BL , Swine
4.
Virol J ; 1: 5, 2004 Sep 23.
Article in English | MEDLINE | ID: mdl-15507126

ABSTRACT

Inflammatory cytokines and infiltrating T cells are readily detected in herpes simplex virus (HSV) infected mouse cornea and trigeminal ganglia (TG) during the acute phase of infection, and certain cytokines continue to be expressed at lower levels in infected TG during the subsequent latent phase. Recent results have shown that HSV infection activates Toll-like receptor signaling. Thus, we hypothesized that chemokines may be broadly expressed at both primary sites and latent sites of HSV infection for prolonged periods of time. Real-time reverse transcriptase-polymrease chain reaction (RT-PCR) to quantify expression levels of transcripts encoding chemokines and their receptors in cornea and TG following corneal infection. RNAs encoding the inflammatory-type chemokine receptors CCR1, CCR2, CCR5, and CXCR3, which are highly expressed on activated T cells, macrophages and most immature dendritic cells (DC), and the more broadly expressed CCR7, were highly expressed and strongly induced in infected cornea and TG at 3 and 10 days postinfection (dpi). Elevated levels of these RNAs persisted in both cornea and TG during the latent phase at 30 dpi. RNAs for the broadly expressed CXCR4 receptor was induced at 30 dpi but less so at 3 and 10 dpi in both cornea and TG. Transcripts for CCR3 and CCR6, receptors that are not highly expressed on activated T cells or macrophages, also appeared to be induced during acute and latent phases; however, their very low expression levels were near the limit of our detection. RNAs encoding the CCR1 and CCR5 chemokine ligands MIP-1alpha, MIP-1beta and RANTES, and the CCR2 ligand MCP-1 were also strongly induced and persisted in cornea and TG during the latent phase. These and other recent results argue that HSV antigens or DNA can stimulate expression of chemokines, perhaps through activation of Toll-like receptors, for long periods of time at both primary and latent sites of HSV infection. These chemokines recruit activated T cells and other immune cells, including DC, that express chemokine receptors to primary and secondary sites of infection. Prolonged activation of chemokine expression could provide mechanistic explanations for certain aspects of HSV biology and pathogenesis.


Subject(s)
Chemokines/genetics , Gene Expression Regulation , Herpes Simplex/genetics , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Receptors, Chemokine/genetics , Virus Latency , Animals , Cornea/metabolism , Ganglia/metabolism , Leukocytes/metabolism , Mice , Mice, Inbred ICR , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL