Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 107(5): 837-848, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33022221

ABSTRACT

Previous research has shown that polygenic risk scores (PRSs) can be used to stratify women according to their risk of developing primary invasive breast cancer. This study aimed to evaluate the association between a recently validated PRS of 313 germline variants (PRS313) and contralateral breast cancer (CBC) risk. We included 56,068 women of European ancestry diagnosed with first invasive breast cancer from 1990 onward with follow-up from the Breast Cancer Association Consortium. Metachronous CBC risk (N = 1,027) according to the distribution of PRS313 was quantified using Cox regression analyses. We assessed PRS313 interaction with age at first diagnosis, family history, morphology, ER status, PR status, and HER2 status, and (neo)adjuvant therapy. In studies of Asian women, with limited follow-up, CBC risk associated with PRS313 was assessed using logistic regression for 340 women with CBC compared with 12,133 women with unilateral breast cancer. Higher PRS313 was associated with increased CBC risk: hazard ratio per standard deviation (SD) = 1.25 (95%CI = 1.18-1.33) for Europeans, and an OR per SD = 1.15 (95%CI = 1.02-1.29) for Asians. The absolute lifetime risks of CBC, accounting for death as competing risk, were 12.4% for European women at the 10th percentile and 20.5% at the 90th percentile of PRS313. We found no evidence of confounding by or interaction with individual characteristics, characteristics of the primary tumor, or treatment. The C-index for the PRS313 alone was 0.563 (95%CI = 0.547-0.586). In conclusion, PRS313 is an independent factor associated with CBC risk and can be incorporated into CBC risk prediction models to help improve stratification and optimize surveillance and treatment strategies.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease , Genome, Human , Multifactorial Inheritance , Neoplasms, Second Primary/genetics , Adult , Aged , Asian People , Breast Neoplasms/diagnosis , Breast Neoplasms/ethnology , Breast Neoplasms/therapy , Cohort Studies , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Gene Expression , Genome-Wide Association Study , Humans , Middle Aged , Neoadjuvant Therapy/methods , Neoplasms, Second Primary/diagnosis , Neoplasms, Second Primary/ethnology , Neoplasms, Second Primary/therapy , Prognosis , Proportional Hazards Models , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Risk Assessment , White People
2.
Breast Cancer Res ; 24(1): 2, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34983606

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear. METHODS: Among 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes. RESULTS: Eighty-five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at p < 0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions. CONCLUSION: This report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.


Subject(s)
Breast Neoplasms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Genome-Wide Association Study , Humans , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Risk
3.
Am J Hum Genet ; 104(1): 21-34, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30554720

ABSTRACT

Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.


Subject(s)
Breast Neoplasms/classification , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Multifactorial Inheritance/genetics , Adult , Age Factors , Aged , Aged, 80 and over , Breast Neoplasms/diagnosis , Breast Neoplasms/prevention & control , Female , Humans , Medical History Taking , Middle Aged , Polymorphism, Single Nucleotide/genetics , Receptors, Estrogen/metabolism , Reproducibility of Results , Risk Assessment
4.
Arch Gynecol Obstet ; 306(6): 2115-2122, 2022 12.
Article in English | MEDLINE | ID: mdl-35467121

ABSTRACT

PURPOSE: Metabolites are in the spotlight of attention as promising novel breast cancer biomarkers. However, no study has been conducted concerning changes in the metabolomics profile of metastatic breast cancer patients according to previous therapy. METHODS: We performed a retrospective, single-center, nonrandomized, partially blinded, treatment-based study. Metastatic breast cancer (MBC) patients were enrolled between 03/2010 and 09/2016 at the beginning of a new systemic therapy. The endogenous metabolites in the plasma samples were analyzed using the AbsoluteIDQ® p180 Kit (Biocrates Life Sciences AG, Innsbruck) a targeted, quality and quantitative-controlled metabolomics approach. The statistical analysis was performed using R package, version 3.3.1. ANOVA was used to statistically assess age differences within groups. Furthermore, we analyzed the CTC status of the patients using the CellSearch™ assay. RESULTS: We included 178 patients in our study. Upon dividing the study population according to therapy before study inclusion, we found the following: 4 patients had received no therapy, 165 chemotherapy, and 135 anti-hormonal therapy, 30 with anti-Her2 therapy and 38 had received treatment with bevacizumab. Two metabolites were found to be significantly different, depending on the further therapy of the patients: methionine and serine. Whereas methionine levels were higher in the blood of patients who received an anti-Her2-therapy, serine was lower in patients with endocrine therapy only. CONCLUSION: We identified two metabolites for which concentrations differed significantly depending on previous therapies, which could help to choose the next therapy in patients who have already received numerous different treatments.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Humans , Female , Breast Neoplasms/pathology , Biomarkers, Tumor/metabolism , Neoplastic Cells, Circulating/pathology , Retrospective Studies , Receptor, ErbB-2/metabolism , Serine/therapeutic use , Methionine/therapeutic use
5.
Arch Gynecol Obstet ; 306(3): 875-885, 2022 09.
Article in English | MEDLINE | ID: mdl-35237856

ABSTRACT

PURPOSE: Circulating miRNAs can provide valid prognostic and predictive information for breast cancer diagnosis and subsequent management. They may comprise quintessential biomarkers that can be obtained minimally invasively from liquid biopsy in metastatic breast cancer patients. Therefore, they would be clinically crucial for monitoring therapy response, with the goal of detecting early relapse. This study investigated miRNA expression in patients with early and/or late relapse, and the predictive value for assessing overall (OS) and progression-free survival (PFS). METHODS: Forty-seven patients with metastatic breast cancer from the University Women's Hospital Heidelberg were enrolled in this study. Expression of miR-200a, miR-200b, miR-200c, miR-141, and miR-429 was analyzed by RT-qPCR before a new line of systemic therapy and after the first cycle of a respective therapy. Tumor response was assessed every 3 months using the RECIST criteria. Statistical analysis focused on the relation of miR-200s expression and early vs. late cancer relapse in relation to systemic treatment. The association of miRNAs with PFS and OS was investigated. RESULTS: Before starting a new line of systemic therapy, miR-429 (p = 0.024) expression was significantly higher in patients with early relapse (PFS ≤ 4 months) than in patients with late relapse (PFS > 4 months). After one cycle of systemic therapy, miR-200a (p = 0.039), miR-200b (p = 0.003), miR-141 (p = 0.017), and miR-429 (p = 0.010) expression was higher in early than in late progressive cancer. In addition, 4 out of 5 miR-200 family members (miR-200a, miR-200b, miR-141, and miR-429) predicted PFS (p = 0.048, p = 0.008, p = 0.026, and p = 0.016, respectively). Patients with heightened miRNA levels showed a significant reduction in OS and PFS. CONCLUSION: Circulating miR-200s were differentially expressed among patients with late and/or early relapse. 4 of 5 members of the miR-200 family predicted significantly early relapse after systemic treatment. Our results encourage the use of circulating miR-200s as valuable prognostic biomarkers during metastatic breast cancer therapy.


Subject(s)
Breast Neoplasms , MicroRNAs , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/metabolism , Neoplasm Recurrence, Local/genetics , Prognosis
6.
Int J Mol Sci ; 23(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36076930

ABSTRACT

The extracellular circulating microRNA (miR)-200 regulates epithelial-mesenchymal transition and, thus, plays an essential role in the metastatic cascade and has shown itself to be a promising prognostic and predictive biomarker in metastatic breast cancer (MBC). Expression levels of the plasma miR-200 family were analyzed in relationship to systemic treatment, circulating tumor cells (CTC) count, progression-free survival (PFS), and overall survival (OS). Expression of miR-200a, miR-200b, miR-200c, miR-141, and miR-429, and CTC status (CTC-positive ≥ 5 CTC/7.5 mL) was assessed in 47 patients at baseline (BL), after the first completed cycle of a new line of systemic therapy (1C), and upon the progression of disease (PD). MiR-200a, miR-200b, and miR-141 expression was reduced at 1C compared to BL. Upon PD, all miR-200s were upregulated compared to 1C. At all timepoints, the levels of miR-200s were elevated in CTC-positive versus CTC-negative patients. Further, heightened miR-200s expression and positive CTC status were associated with poorer OS at BL and 1C. In MBC patients, circulating miR-200 family members decreased after one cycle of a new line of systemic therapy, were elevated during PD, and were indicative of CTC status. Notably, increased levels of miR-200s and elevated CTC count correlated with poorer OS and PFS. As such, both are promising biomarkers for optimizing the clinical management of MBC.


Subject(s)
Breast Neoplasms , Circulating MicroRNA , MicroRNAs , Neoplastic Cells, Circulating , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Circulating MicroRNA/genetics , Circulating MicroRNA/therapeutic use , Epithelial-Mesenchymal Transition/genetics , Female , Humans , MicroRNAs/genetics , MicroRNAs/therapeutic use , Neoplastic Cells, Circulating/pathology
7.
Genet Epidemiol ; 44(5): 442-468, 2020 07.
Article in English | MEDLINE | ID: mdl-32115800

ABSTRACT

Previous transcriptome-wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome-wide association studies (GWAS), but analyses of breast cancer subtype-specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta-analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER-). We further compared associations with ER+ and ER- subtypes, using a case-only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER- breast cancer. We further identified 30 TWAS-significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast-cancer gene in three of six regions harboring multiple TWAS-significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER- breast cancer.


Subject(s)
Breast Neoplasms/genetics , Genome-Wide Association Study , Receptors, Estrogen/metabolism , Breast Neoplasms/metabolism , Estrogens/metabolism , Female , Genetic Predisposition to Disease , Genomics , Humans , Risk Assessment , Transcriptome , Vesicular Transport Proteins/genetics
8.
Br J Cancer ; 124(4): 842-854, 2021 02.
Article in English | MEDLINE | ID: mdl-33495599

ABSTRACT

BACKGROUND: Epidemiological studies provide strong evidence for a role of endogenous sex hormones in the aetiology of breast cancer. The aim of this analysis was to identify genetic variants that are associated with urinary sex-hormone levels and breast cancer risk. METHODS: We carried out a genome-wide association study of urinary oestrone-3-glucuronide and pregnanediol-3-glucuronide levels in 560 premenopausal women, with additional analysis of progesterone levels in 298 premenopausal women. To test for the association with breast cancer risk, we carried out follow-up genotyping in 90,916 cases and 89,893 controls from the Breast Cancer Association Consortium. All women were of European ancestry. RESULTS: For pregnanediol-3-glucuronide, there were no genome-wide significant associations; for oestrone-3-glucuronide, we identified a single peak mapping to the CYP3A locus, annotated by rs45446698. The minor rs45446698-C allele was associated with lower oestrone-3-glucuronide (-49.2%, 95% CI -56.1% to -41.1%, P = 3.1 × 10-18); in follow-up analyses, rs45446698-C was also associated with lower progesterone (-26.7%, 95% CI -39.4% to -11.6%, P = 0.001) and reduced risk of oestrogen and progesterone receptor-positive breast cancer (OR = 0.86, 95% CI 0.82-0.91, P = 6.9 × 10-8). CONCLUSIONS: The CYP3A7*1C allele is associated with reduced risk of hormone receptor-positive breast cancer possibly mediated via an effect on the metabolism of endogenous sex hormones in premenopausal women.


Subject(s)
Breast Neoplasms/genetics , Cytochrome P-450 CYP3A/genetics , Estrone/analogs & derivatives , Pregnanediol/analogs & derivatives , Progesterone/urine , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Alleles , Breast Neoplasms/enzymology , Breast Neoplasms/urine , Case-Control Studies , Cytochrome P-450 CYP3A/metabolism , Estrone/genetics , Estrone/urine , Female , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Pregnanediol/genetics , Pregnanediol/urine , Premenopause
9.
Br J Cancer ; 125(8): 1135-1145, 2021 10.
Article in English | MEDLINE | ID: mdl-34341517

ABSTRACT

BACKGROUND: Despite a modest association between tobacco smoking and breast cancer risk reported by recent epidemiological studies, it is still equivocal whether smoking is causally related to breast cancer risk. METHODS: We applied Mendelian randomisation (MR) to evaluate a potential causal effect of cigarette smoking on breast cancer risk. Both individual-level data as well as summary statistics for 164 single-nucleotide polymorphisms (SNPs) reported in genome-wide association studies of lifetime smoking index (LSI) or cigarette per day (CPD) were used to obtain MR effect estimates. Data from 108,420 invasive breast cancer cases and 87,681 controls were used for the LSI analysis and for the CPD analysis conducted among ever-smokers from 26,147 cancer cases and 26,072 controls. Sensitivity analyses were conducted to address pleiotropy. RESULTS: Genetically predicted LSI was associated with increased breast cancer risk (OR 1.18 per SD, 95% CI: 1.07-1.30, P = 0.11 × 10-2), but there was no evidence of association for genetically predicted CPD (OR 1.02, 95% CI: 0.78-1.19, P = 0.85). The sensitivity analyses yielded similar results and showed no strong evidence of pleiotropic effect. CONCLUSION: Our MR study provides supportive evidence for a potential causal association with breast cancer risk for lifetime smoking exposure but not cigarettes per day among smokers.


Subject(s)
Breast Neoplasms/epidemiology , Cigarette Smoking/epidemiology , Polymorphism, Single Nucleotide , Breast Neoplasms/etiology , Breast Neoplasms/genetics , Case-Control Studies , Cigarette Smoking/adverse effects , Cigarette Smoking/genetics , Female , Genetic Pleiotropy , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotyping Techniques , Humans , Mendelian Randomization Analysis
10.
Trends Biochem Sci ; 41(10): 883-892, 2016 10.
Article in English | MEDLINE | ID: mdl-27597517

ABSTRACT

Since their discovery in 2008, extracellular miRNAs (ex-miRNAs) have persisted as one of the major themes of molecular and cellular biology. The main reason for this remarkable interest is the increasing number of research papers reporting that cell-free circulating miRNA mediates both short-range and distant communication between various cells, and could impact on diverse physiological and pathological processes. However, there are also multiple conflicting lines of evidence that challenge the biological significance of circulating ex-miRNA, suggesting that they are merely byproducts of cell activity and cell death without any particular function. This review aims to summarize these contrasting opinions and to foster further experimental validation of both paradigms.


Subject(s)
Argonaute Proteins/metabolism , DEAD-box RNA Helicases/metabolism , Eukaryotic Cells/metabolism , MicroRNAs/metabolism , RNA-Induced Silencing Complex/metabolism , Ribonuclease III/metabolism , Animals , Argonaute Proteins/genetics , Cell Communication , DEAD-box RNA Helicases/genetics , Eukaryotic Cells/cytology , Extracellular Space/metabolism , Humans , MicroRNAs/genetics , Protein Binding , RNA Cleavage , RNA-Induced Silencing Complex/genetics , Ribonuclease III/genetics , Signal Transduction , Transcription, Genetic
11.
Int J Mol Sci ; 21(4)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059403

ABSTRACT

One of the main disadvantages of using DNA microarrays for miRNA expression profiling is the inability of adequate comparison of expression values across different miRNAs. This leads to a large amount of miRNAs with high scores which are actually not expressed in examined samples, i.e., false positives. We propose a post-processing algorithm which performs scoring of miRNAs in the results of microarray analysis based on expression values, time of discovery of miRNA, and correlation level between the expressions of miRNA and corresponding pre-miRNA in considered samples. The algorithm was successfully validated by the comparison of the results of its application to miRNA microarray breast tumor samples with publicly available miRNA-seq breast tumor data. Additionally, we obtained possible reasons why miRNA can appear as a false positive in microarray study using paired miRNA sequencing and array data. The use of DNA microarrays for estimating miRNA expression profile is limited by several factors. One of them consists of problems with comparing expression values of different miRNAs. In this work, we show that situation can be significantly improved if some additional information is taken into consideration in a comparison.


Subject(s)
Algorithms , MicroRNAs/genetics , Oligonucleotide Array Sequence Analysis/methods , Breast Neoplasms/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Sensitivity and Specificity , Sequence Analysis, RNA
12.
Int J Mol Sci ; 21(15)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751332

ABSTRACT

An individual's inherited genetic variation may contribute to the 'angiogenic switch', which is essential for blood supply and tumor growth of microscopic and macroscopic tumors. Polymorphisms in angiogenesis-related genes potentially predispose to colorectal cancer (CRC) or affect the survival of CRC patients. We investigated the association of 392 single nucleotide polymorphisms (SNPs) in 33 angiogenesis-related genes with CRC risk and survival of CRC patients in 1754 CRC cases and 1781 healthy controls within DACHS (Darmkrebs: Chancen der Verhütung durch Screening), a German population-based case-control study. Odds ratios and 95% confidence intervals (CI) were estimated from unconditional logistic regression to test for genetic associations with CRC risk. The Cox proportional hazard model was used to estimate hazard ratios (HR) and 95% CIs for survival. Multiple testing was adjusted for by a false discovery rate. No variant was associated with CRC risk. Variants in EFNB2, MMP2 and JAG1 were significantly associated with overall survival. The association of the EFNB2 tagging SNP rs9520090 (p < 0.0001) was confirmed in two validation datasets (p-values: 0.01 and 0.05). The associations of the tagging SNPs rs6040062 in JAG1 (p-value 0.0003) and rs2241145 in MMP2 (p-value 0.0005) showed the same direction of association with overall survival in the first and second validation sets, respectively, although they did not reach significance (p-values: 0.09 and 0.25, respectively). EFNB2, MMP2 and JAG1 are known for their functional role in angiogenesis and the present study points to novel evidence for the impact of angiogenesis-related genetic variants on the CRC outcome.


Subject(s)
Adenocarcinoma/genetics , Colorectal Neoplasms/genetics , Ephrin-B2/genetics , Jagged-1 Protein/genetics , Matrix Metalloproteinase 2/genetics , Neovascularization, Pathologic/genetics , Polymorphism, Single Nucleotide , Adenocarcinoma/diagnosis , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Aged , Aged, 80 and over , Case-Control Studies , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Genotype , Humans , Male , Middle Aged , Neovascularization, Pathologic/diagnosis , Neovascularization, Pathologic/mortality , Neovascularization, Pathologic/pathology , Odds Ratio , Prognosis , Proportional Hazards Models , Risk Factors , Signal Transduction
13.
Gut ; 68(1): 101-110, 2019 01.
Article in English | MEDLINE | ID: mdl-29101262

ABSTRACT

OBJECTIVE: Pathological staging used for the prediction of patient survival in colorectal cancer (CRC) provides only limited information. DESIGN: Here, a genome-wide study of DNA methylation was conducted for two cohorts of patients with non-metastatic CRC (screening cohort (n=572) and validation cohort (n=274)). A variable screening for prognostic CpG sites was performed in the screening cohort using marginal testing based on a Cox model and subsequent adjustment of the p-values via independent hypothesis weighting using the methylation difference between 34 pairs of tumour and normal mucosa tissue as auxiliary covariate. From the 1000 CpG sites with the smallest adjusted p-value, 20 CpG sites with the smallest Brier score for overall survival (OS) were selected. Applying principal component analysis, we derived a prognostic methylation-based classifier for patients with non-metastatic CRC (ProMCol classifier). RESULTS: This classifier was associated with OS in the screening (HR 0.51, 95% CI 0.41 to 0.63, p=6.2E-10) and the validation cohort (HR 0.61, 95% CI 0.45 to 0.82, p=0.001). The independent validation of the ProMCol classifier revealed a reduction of the prediction error for 3-year OS from 0.127, calculated only with standard clinical variables, to 0.120 combining the clinical variables with the classifier and for 4-year OS from 0.153 to 0.140. All results were confirmed for disease-specific survival. CONCLUSION: The ProMCol classifier could improve the prognostic accuracy for patients with non-metastatic CRC.


Subject(s)
Colorectal Neoplasms/genetics , CpG Islands/genetics , DNA Methylation , Genome-Wide Association Study , Adult , Aged , Aged, 80 and over , Case-Control Studies , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Genes, Neoplasm/genetics , Germany , Humans , Male , Middle Aged , Predictive Value of Tests , Principal Component Analysis , Prognosis , Risk Assessment , Survival Rate
14.
Int J Cancer ; 144(11): 2833-2842, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30426507

ABSTRACT

In recent years, metabolites have attracted substantial attention as promising novel biomarkers of various diseases. However, breast cancer plasma metabolite studies are still in their infancy. Here, we investigated the potential of metabolites to serve as minimally invasive, early detection markers of primary breast cancer. We profiled metabolites extracted from the plasma of primary breast cancer patients and healthy controls using tandem mass spectrometry (UHPLC-MS/MS and FIA-MS/MS). Two metabolites were found to be upregulated, while 16 metabolites were downregulated in primary breast cancer patients compared to healthy controls in both the training and validation cohorts. A panel of seven metabolites was selected by LASSO regression analysis. This panel could differentiate primary breast cancer patients from healthy controls, with an AUC of 0.87 (95% CI: 0.81 ~ 0.92) in the training cohort and an AUC of 0.80 (95% CI: 0.71 ~ 0.87) in the validation cohort. These significantly differentiated metabolites are mainly involved in the amino acid metabolism and breast cancer cell growth pathways. In conclusion, using a metabolomics approach, we identified metabolites that have potential value for development of a multimarker blood-based test to complement and improve early breast cancer detection. The panel identified herein might be part of a prescreening tool, especially for younger women or for closely observing women with certain risks, to facilitate decision making regarding which individuals should undergo further diagnostic tests. In the future, the combination of metabolites and other blood-based molecular marker sets, such as DNA methylation, microRNA, and cell-free DNA mutation markers, will be an attractive option.


Subject(s)
Biomarkers, Tumor/blood , Breast Neoplasms/diagnosis , Early Detection of Cancer/methods , Adult , Age Factors , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Breast Neoplasms/blood , Breast Neoplasms/metabolism , Cohort Studies , Female , Humans , Metabolomics/methods , Middle Aged , ROC Curve
15.
Br J Cancer ; 120(6): 647-657, 2019 03.
Article in English | MEDLINE | ID: mdl-30787463

ABSTRACT

BACKGROUND: We examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry. METHODS: Meta-analyses included summary estimates based on Cox models of twelve datasets using ~10.4 million variants for 96,661 women with breast cancer and 7697 events (breast cancer-specific deaths). Oestrogen receptor (ER)-specific analyses were based on 64,171 ER-positive (4116) and 16,172 ER-negative (2125) patients. We evaluated the probability of a signal to be a true positive using the Bayesian false discovery probability (BFDP). RESULTS: We did not find any variant associated with breast cancer-specific mortality at P < 5 × 10-8. For ER-positive disease, the most significantly associated variant was chr7:rs4717568 (BFDP = 7%, P = 1.28 × 10-7, hazard ratio [HR] = 0.88, 95% confidence interval [CI] = 0.84-0.92); the closest gene is AUTS2. For ER-negative disease, the most significant variant was chr7:rs67918676 (BFDP = 11%, P = 1.38 × 10-7, HR = 1.27, 95% CI = 1.16-1.39); located within a long intergenic non-coding RNA gene (AC004009.3), close to the HOXA gene cluster. CONCLUSIONS: We uncovered germline variants on chromosome 7 at BFDP < 15% close to genes for which there is biological evidence related to breast cancer outcome. However, the paucity of variants associated with mortality at genome-wide significance underpins the challenge in providing genetic-based individualised prognostic information for breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/mortality , Bayes Theorem , Breast Neoplasms/metabolism , Chromosomes, Human, Pair 7 , Female , Genetic Variation , Genome-Wide Association Study , Humans , Prognosis , Proportional Hazards Models , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , White People/genetics
16.
Am J Hum Genet ; 99(4): 903-911, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27640304

ABSTRACT

Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495-45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen-receptor-positive (ER+) breast cancer (per-g allele OR ER+ = 1.15; 95% CI 1.13-1.18; p = 8.35 × 10-30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER-) breast cancer (lead SNP rs6864776: per-a allele OR ER- = 1.10; 95% CI 1.05-1.14; p conditional = 1.44 × 10-12), and a single signal 3 SNP (rs200229088: per-t allele OR ER+ = 1.12; 95% CI 1.09-1.15; p conditional = 1.12 × 10-05). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Chromosomes, Human, Pair 5/genetics , Fibroblast Growth Factor 10/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, Estrogen/metabolism , Alleles , Case-Control Studies , Cell Line, Tumor , Enhancer Elements, Genetic/genetics , Fibroblast Growth Factor 10/metabolism , Haplotypes/genetics , Humans , Promoter Regions, Genetic/genetics , Quantitative Trait Loci/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism
17.
Breast Cancer Res Treat ; 173(1): 155-165, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30276763

ABSTRACT

PURPOSE: Serial longitudinal enumeration of circulating tumor cells (CTCs) has shown its prognostic value on progression-free survival and overall survival (OS) in patients with stage IV breast cancer. This study prospectively evaluated the role of CTCs as a prognostic marker during further progression of metastatic breast cancer (MBC). METHODS: Among 476 MBC patients recruited between 2010 and 2015, the 103 patients with a known CTC status at baseline (CTCBL) and within 4 weeks of tumor progression (CTCPD) were included. Progressive disease (PD) was defined according to the Response Evaluation Criteria in Solid Tumors (RECIST, version 1.1). Using the CellSearch method, < 5 and ≥ 5 CTCs per 7.5 ml blood were determined as negative and positive, respectively. A shift in CTC status from baseline to progression ([Formula: see text] to [Formula: see text] and vice versa) was considered as alternating KineticsBL-PD. RESULTS: Median follow-up was 29.9 [21.2, 40.0] months. CTCPD positivity (37%, n = 38) was associated with a significantly shorter OS than CTCPD negativity (8.0 [5.1, 10.9] vs 22.6 [15.3, 39.8] months; P < 0.001). Alternating KineticsBL-PD was observed in 24% of the patients. This significantly changed the OS prediction of [Formula: see text] patients ([Formula: see text] vs [Formula: see text], 11.4 [9.7, not available (NA)] vs. 7.6 [4.4, 11.5] months; P = 0.044) and [Formula: see text] patients ([Formula: see text] vs. [Formula: see text], 8.4 [4.0, NA] vs. 22.6 [18.9, NA] months, respectively; P < 0.001). Prediction of survival was significantly improved (P = 0.002) by adding CTCPD status to clinicopathological characteristics and CTCBL status. CONCLUSIONS: CTC status upon further disease progression is a prognostic factor that could significantly improve well-established models. Thus, it represents a potential additional instrument supporting treatment decision.


Subject(s)
Breast Neoplasms/mortality , Breast Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Female , Humans , Middle Aged , Prognosis , Prospective Studies , Regression Analysis
18.
Hum Mutat ; 39(5): 729-741, 2018 05.
Article in English | MEDLINE | ID: mdl-29460995

ABSTRACT

Although the spliceogenic nature of the BRCA2 c.68-7T > A variant has been demonstrated, its association with cancer risk remains controversial. In this study, we accurately quantified by real-time PCR and digital PCR (dPCR), the BRCA2 isoforms retaining or missing exon 3. In addition, the combined odds ratio for causality of the variant was estimated using genetic and clinical data, and its associated cancer risk was estimated by case-control analysis in 83,636 individuals. Co-occurrence in trans with pathogenic BRCA2 variants was assessed in 5,382 families. Exon 3 exclusion rate was 4.5-fold higher in variant carriers (13%) than controls (3%), indicating an exclusion rate for the c.68-7T > A allele of approximately 20%. The posterior probability of pathogenicity was 7.44 × 10-115 . There was neither evidence for increased risk of breast cancer (OR 1.03; 95% CI 0.86-1.24) nor for a deleterious effect of the variant when co-occurring with pathogenic variants. Our data provide for the first time robust evidence of the nonpathogenicity of the BRCA2 c.68-7T > A. Genetic and quantitative transcript analyses together inform the threshold for the ratio between functional and altered BRCA2 isoforms compatible with normal cell function. These findings might be exploited to assess the relevance for cancer risk of other BRCA2 spliceogenic variants.


Subject(s)
BRCA2 Protein/genetics , Genetic Variation , Models, Genetic , RNA Splicing/genetics , BRCA2 Protein/metabolism , Base Sequence , Calibration , Cell Line , Exons/genetics , Female , Genetic Predisposition to Disease , Humans , Mitomycin/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Int J Cancer ; 142(4): 757-768, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29044504

ABSTRACT

Only a fraction of breast cancer (BC) cases can be yet explained by mutations in genes or genomic variants discovered in linkage, genome-wide association and sequencing studies. The known genes entailing medium or high risk for BC are strongly enriched for a function in DNA double strand repair. Thus, aiming at identifying low frequency variants conferring an intermediate risk, we here investigated 17 variants (MAF: 0.01-0.1) in 10 candidate genes involved in DNA repair or cell cycle control. In an exploration cohort of 437 cases and 1189 controls, we show the variant rs3810813 in the SLX4/FANCP gene to be significantly associated with both BC (≤60 years; OR = 2.6(1.6-3.9), p = 1.6E-05) and decreased DNA repair capacity (≤60 years; beta = 37.8(17.9-57.8), p = 5.3E-4). BC association was confirmed in a verification cohort (N = 2441). Both associations were absent from cases diagnosed >60 years and stronger the earlier the diagnosis. By imputation we show that rs3810813 tags a haplotype with 5 additional variants with the same allele frequency (R2 > 0.9), and a pattern of association very similar for both phenotypes (cases <60 years, p < 0.001, the Bonferroni threshold derived from unlinked variants in the region). In young cases (≤60 years) carrying the risk haplotype, micronucleus test results are predictive for BC (AUC > 0.9). Our findings propose a risk variant with high penetrance on the haplotype spanning SLX4/FANCP to be functionally associated to BC predisposition via decreased repair capacity and suggest this variant is carried by a fraction of these haplotypes that is enriched in early onset BC cases.


Subject(s)
Breast Neoplasms/genetics , DNA Repair , Recombinases/genetics , Adult , Age Factors , Breast Neoplasms/enzymology , Breast Neoplasms/epidemiology , Case-Control Studies , DNA Breaks, Double-Stranded , Female , Gene Frequency , Germany/epidemiology , Haplotypes , Humans , Middle Aged , Penetrance
20.
Hum Mol Genet ; 25(11): 2256-2268, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27008870

ABSTRACT

A recent analysis using family history weighting and co-observation classification modeling indicated that BRCA1 c.594-2A > C (IVS9-2A > C), previously described to cause exon 10 skipping (a truncating alteration), displays characteristics inconsistent with those of a high risk pathogenic BRCA1 variant. We used large-scale genetic and clinical resources from the ENIGMA, CIMBA and BCAC consortia to assess pathogenicity of c.594-2A > C. The combined odds for causality considering case-control, segregation and breast tumor pathology information was 3.23 × 10-8 Our data indicate that c.594-2A > C is always in cis with c.641A > G. The spliceogenic effect of c.[594-2A > C;641A > G] was characterized using RNA analysis of human samples and splicing minigenes. As expected, c.[594-2A > C; 641A > G] caused exon 10 skipping, albeit not due to c.594-2A > C impairing the acceptor site but rather by c.641A > G modifying exon 10 splicing regulatory element(s). Multiple blood-based RNA assays indicated that the variant allele did not produce detectable levels of full-length transcripts, with a per allele BRCA1 expression profile composed of ≈70-80% truncating transcripts, and ≈20-30% of in-frame Δ9,10 transcripts predicted to encode a BRCA1 protein with tumor suppression function.We confirm that BRCA1c.[594-2A > C;641A > G] should not be considered a high-risk pathogenic variant. Importantly, results from our detailed mRNA analysis suggest that BRCA-associated cancer risk is likely not markedly increased for individuals who carry a truncating variant in BRCA1 exons 9 or 10, or any other BRCA1 allele that permits 20-30% of tumor suppressor function. More generally, our findings highlight the importance of assessing naturally occurring alternative splicing for clinical evaluation of variants in disease-causing genes.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Mutation/genetics , Ovarian Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Adult , Aged , Alternative Splicing/genetics , Breast Neoplasms/pathology , DNA Mutational Analysis , Exons/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Ovarian Neoplasms/pathology , RNA Splice Sites/genetics , RNA Splicing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL