ABSTRACT
Matrix-assisted laser desorption/ionization - imaging mass spectrometry is an alternative tool, which can be implemented in order to obtain and visualize the "omic" signature of tissue samples. Its application to clinical study enables simultaneous imaging-based morphological observations and mass spectrometry analysis. Application of fully informative material like tissue allows obtaining the complex and unique profile of analyzed samples. This knowledge leads to diagnosing disease, studying the mechanism of cancer development, selecting the potential biomarkers as well as correlating obtained images with prognosis. Nevertheless, it is worth noticing that this method is found to be objective but the result of the analysis is mainly influenced by the sample preparation protocol, including the collection of biological material, its preservation, and processing. However, the application of this approach requires a special sample preparation procedure. The main goal of the study is to present the current knowledge on the clinical application of matrix-assisted laser desorption/ionization with imaging mass spectrometry in cancer research, with particular emphasis on the sample preparation step. For this purpose, several protocols based on cryosections and formalin-fixed paraffin-embedded tissue were compiled and compared, taking into account the measured metabolites of potential diagnostic importance for a given type of cancer.
Subject(s)
Formaldehyde , Molecular Imaging , Formaldehyde/chemistry , Lasers , Paraffin Embedding , Spectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationABSTRACT
The present study reports on the in vivo application of (Bio)silver nanocomposite formulations (LBPC-AgNCs) on wound healing. Additionally, the present study emphasizes the limited uptake of silver by liver and blood tissues as well as the high viability of PBMCs following external LBPC-AgNCs treatment. The wound closure was monitored via stereoscopic microscope, a localization case study in liver and blood tissue was carried out by (Inductively Coupled Plasma-Mass Spectrometers (ICP/MS), and peripheral blood mononuclear cells (PMBC) viability was determined via flow cytometry technique. The silver formulation was applied externally on the site of the wound infection for a period of ten days. At the beginning of the experiment, a moderate decrease in body weight and atypical behavior was observed. However, during the last period of the experiment, no abnormal mouse behaviors were noticed. The wound-healing process took place in a gradual manner, presenting the regeneration effect at around 30% from the fourth day. From the seventh day, the wounds treated with the silver formulation showed 80% of the wound healing potential. The viability of PBMCs was found to be 97%, whereas the concentrations of silver in the liver and blood samples were determined to be 0.022 µg/g and 9.3 µg/g, respectively. Furthermore, the present report becomes a pilot study in transferring from in vitro to in vivo scale (e.g., medical field application) once LBPC-AgNCs have demonstrated a unique wound healing potential as well as a non-toxic effect on the liver and blood.
Subject(s)
Leukocytes, Mononuclear , Silver , Mice , Animals , Silver/pharmacology , Pilot Projects , Wound Healing , LiverABSTRACT
Investigation of interactions between the target protein molecule and ligand allows for an understanding of the nature of the molecular recognition, functions, and biological activity of protein-ligand complexation. In the present work, non-specific interactions between a model protein (Bovine Serum Albumin) and four cyclitols were investigated. D-sorbitol and adonitol represent the group of linear-structure cyclitols, while shikimic acid and D-(-)-quinic acid have cyclic-structure molecules. Various analytical methods, including chromatographic analysis (HPLC-MS/MS), electrophoretic analysis (SDS-PAGE), spectroscopic analysis (spectrofluorimetry, Fourier transform infrared spectroscopy, and Raman spectroscopy), and isothermal titration calorimetry (ITC), were applied for the description of protein-cyclitol interactions. Additionally, computational calculations were performed to predict the possible binding places. Kinetic studies allowed us to clarify interaction mechanisms that may take place during BSA and cyclitol interaction. The results allow us, among other things, to evaluate the impact of the cyclitol's structure on the character of its interactions with the protein.
Subject(s)
Cyclitols , Binding Sites , Kinetics , Ligands , Molecular Docking Simulation , Protein Binding , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Tandem Mass Spectrometry , ThermodynamicsABSTRACT
Searching for the mechanisms of the polycystic ovary syndrome (PCOS) pathophysiology has become a crucial aspect of research performed in the last decades. However, the pathogenesis of this complex and heterogeneous endocrinopathy remains unknown. Thus, there is a need to investigate the metabolic pathways, which could be involved in the pathophysiology of PCOS and to find the metabolic markers of this disorder. The application of metabolomics gives a promising insight into the research on PCOS. It is a valuable and rapidly expanding tool, enabling the discovery of novel metabolites, which may be the potential biomarkers of several metabolic and endocrine disorders. The utilization of this approach could also improve the process of diagnosis and therefore, make treatment more effective. This review article aims to summarize actual and meaningful metabolomic studies in PCOS and point to the potential biomarkers detected in serum, urine, and follicular fluid of the affected women.
Subject(s)
Polycystic Ovary Syndrome/metabolism , Biomarkers/metabolism , Female , Humans , Metabolic Networks and Pathways/physiology , Metabolomics/methodsABSTRACT
Urinary pterins have been found as potential biomarkers in many pathophysiological conditions including inflammation, viral infections, and cancer. However, pterins determination in biological samples is difficult due to their degradation under exposure to air, light, and heat. Besides, they occur at shallow concentration levels, and thus, standard UV detectors cannot be used without additional sample preconcentration. On the other hand, ultra-sensitive laser-induced fluorescence (LIF) detection can be used since pterins exhibit native fluorescence. The main factor that limits an everyday use of LIF detectors is its high price. Here, an alternative detector, i.e., light-emitted diode induced fluorescence (LEDIF) detector, was evaluated for the determination of pterins in urine samples after capillary electrophoresis (CE) separation. An optimized method was validated in terms of linearity range, limit of detection (LOD), limit of quantification (LOQ), intra- and interday precision and accuracy, sample stability in the autosampler, and sample stability during the freezing/thawing cycle. The obtained LOD (0.1 µM) and LOQ (0.3 µM) values were three-order of magnitude lower compared to UV detector, and two orders of magnitude higher compared to previously reported house-built LIF detector. The applicability of the validated method was demonstrated in the analysis of urine samples from healthy individuals and cancer patients.
Subject(s)
Biomarkers, Tumor/urine , Pterins/urine , Case-Control Studies , Electrophoresis, Capillary , Humans , Limit of Detection , Oxidation-Reduction , Spectrometry, Fluorescence/instrumentation , Urologic Neoplasms/diagnosisABSTRACT
The resistance of pathogenic bacteria to antibiotics has become a serious problem. The emphasis is placed on the development of new, effective antimicrobial strategies. One of them is the use of AgNPs in association with antibiotic drugs. The aim of this study was to obtain silver nanoparticles functionalized with ampicillin and to investigate the mechanism of binding antibiotics to nanoparticle using high-performance liquid chromatography approach. To confirm the occurrence of silver nanoparticles functionalization, FTIR, MALDI-TOF MS, and DLS analysis and zeta potential measurements were performed. Moreover we assessed the antibacterial activity of biologically synthesized nanoparticles functionalized with ampicillin against a range of gram (+) and gram (-) bacteria strains such as Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus epidermidis, and Escherichia coli.
Subject(s)
Ampicillin/chemistry , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Chromatography, High Pressure Liquid , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Microbial Sensitivity Tests , Particle Size , Surface PropertiesABSTRACT
A comparative study was conducted to assess the injection precision in capillary electrophoresis for cationic analytes (arecoline, codeine, papaverine). The precision was measured in respect to methods sensitivity in various injection modes in capillary electrophoresis: standard hydrodynamic injection (3.45 kPa for 6 s), large volume sample stacking (3.45 kPa for 40 s), and field-amplified sample injection (10 kV for 65 s). All measurements were conducted for aqueous solutions of standards to minimize the errors linked to the sample preparation step. The methods were submitted to precision assessment at three concentration levels: at the limit of quantification, three-fold and ten-fold of limit of quantification. The results were compared to those from high-performance liquid chromatography as a reference technique. The field-amplified sample injection method was shown to provide greatest sensitivity (quantification limits down to 4 ng/mL for all three tested compounds) but the lowest precision. High-performance liquid chromatography was established as the most reliable technique (coefficient of variation in all intraday experiments was below 1%). It was also shown that with a use of large volume sample injection technique, similar sensitivity as in high-performance liquid chromatography can be easily reached.
ABSTRACT
This study describes application of liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS) for evaluation of vitamin C stability, the objective being prediction of the degradation products. Detection was performed with an UV detector (UV-Vis) in sequence with a triple-quad mass spectrometer in the multiple reaction mode. The negative ion mode of ESI and MS-MRM transitions of m/z 175â115 (quantifier) and 175â89 (qualifier) for ascorbic acid was used. All the validation parameters were within the range of acceptance proposed by the Food and Drug Administration. The method was fully validated in terms of linearity, LOD, LOQ, accuracy, and interday precision. Validation experiments revealed good linearity with R(2) = 0.999 within the established concentration range, and excellent repeatability (9.3%). The LOD of the method was 0.1524 ng/mL whereas the LOQ was 0.4679 ng/mL. LC-MS methodology proves to be an improved, simple, and fast approach to determining the content of vitamin C and its degradation products with high sensitivity, selectivity, and resolving power within 6 minutes of analysis.
Subject(s)
Ascorbic Acid/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Ascorbic Acid/chemistry , Hydrogen Peroxide , Linear Models , Reproducibility of Results , Sensitivity and SpecificityABSTRACT
Wound healing is still a serious medical problem due to process complexity and lack of effective medicaments. This is particularly true in the treatment of wounds arising in the course of such diseases as AIDS or diabetes. Therefore, scientific efforts are focused on the search for new compounds of natural origin, which could be used as medicines or evaluated for subsequent drug design. In folk medicine, grasshopper (Chorthippus spp.) abdominal secretion has been used to accelerate the wound healing process. In this context, the knowledge of the composition of grasshopper abdominal secretion is crucial. The aim of this study was to determine the main water-soluble components of grasshopper abdominal secretion with the use of GC/MS/MS. Liquid-liquid extraction was used as a pretreatment method to clean up, concentrate and fractionate compounds from the complex insect matrix. To obtain more stable and volatile compounds, necessary for GC/MS/MS analysis, a double-step derivatization process was carried out with the use of methoxyamine hydrochloride and a mixture of bis-N,O-trimethylsilyl trifluoroacetamide and chlorotrimethylsilane. As a result, 2,108 compounds were identified, mainly as amino acids, carbohydrates and organic acids. Some of the identified compounds are emphasized due to antimicrobial, antifungal or antioxidant activities reported in the literature. Moreover, a set of compounds characteristic for Chorthippus spp. samples has been selected. In the last part of the study, a statistical analysis was performed to demonstrate differences in composition of aqueous fractions of abdominal secretions from grasshoppers collected at two distant locations: Starogard Gdanski and Lubianka meadows.
ABSTRACT
This study explores the potential of zinc and silver nanocomposites, synthesized with ß-lactoglobulin, a whey protein, in promoting wound healing, using the C57BL/6J mouse model. Our research is distinct in its dual focus: assessing the antimicrobial efficacy of these nanocomposites and their impact on wound healing processes. The antimicrobial properties were investigated through minimum inhibitory concentration (MIC) assessments and colony-forming unit (CFU) tests, providing insights into their effectiveness against wound-associated microorganisms. Notably, the formulation's effective antibacterial concentration did not exhibit toxicity to mouse fibroblasts. A key aspect of our methodology involved the use of a stereoscopic microscope for detailed monitoring of the wound closure process. Additionally, the distribution and potential systemic effects of the zinc and silver ions were analyzed using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). This analysis was crucial in evaluating metal ion absorption through the wound site and estimating any toxic effects on the body. Our findings are particularly significant in the field of regenerative medicine. Transmission electron microscopy (TEM) revealed that the tested nanocomposites notably enhanced collagen deposition, a vital component in the wound healing process. Furthermore, a reduction in glycogen levels in hepatocytes was observed following treatment with these metal-protein dressings. This novel finding warrants further investigation. Overall, our findings highlight the diverse roles of zinc and silver nanocomposites in wound healing. This study not only contributes to our understanding of metal-protein complexes in tissue regeneration but also opens new avenues for research into the delivery mechanisms of such treatments for hard-to-heal wounds.
ABSTRACT
Hyperandrogenism is one of the most pronounced symptoms of Polycystic Ovary Syndrome (PCOS) and seems to play a key role in the pathogenesis of this complex disorder. Nevertheless, there is still a lack of consistent results regarding common steroid predictors of PCOS. Therefore, a liquid chromatography tandem mass spectrometry (HPLC-QqQ/MS) method was developed and validated to determine the concentrations of four classic androgens: androstenedione (An-dione), testosterone (T), 5α-dihydrotestosterone (DHT) and androsterone (An) in urine samples obtained from women with PCOS and healthy controls. The limits of detection were between 0.04 and 0.09 ng/mL, while the limits of quantification ranged from 0.1 to 0.3 ng/mL respectively. As a pre-treatment procedure prior to analysis, hydrolysis using ß-glucuronidase and thin film solid-phase microextraction (TF-SPME) was applied. The methodology was employed to perform targeted metabolomics of urinary steroids in women with PCOS and healthy controls. All measured androgens: An-dione (p < 0.0001), T (p = 0.0001), DHT (p < 0.0001) and An (p = 0.0002) showed significantly higher concentrations in the urine of women with PCOS. The largest difference in the mean concentration was found for DHT, which was 2.8 times higher in the PCOS group (13.9 ± 14.1 ng/mg creatinine) in comparison to healthy controls (4.9 ± 3.4 ng/mg creatinine). The results of receiver operating characteristic curve indicated that determination of the panel of three urinary androgens: T+DHT+An-dione with, under the study assumptions, was the best predictor of PCOS diagnosis (AUC of ROC curve = 0.91 (95 % CI: 0.8212-0.9905). The application of an LC-MS/MS-based analysis, together with highly sensitive extraction techniques like TF-SPME, is a suitable approach to perform fast assays and obtain reliable results - crucial in the search for valuable and significant steroids predictors of PCOS.
Subject(s)
Androgens , Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/diagnosis , Chromatography, Liquid , Creatinine , Solid Phase Microextraction , Tandem Mass Spectrometry , Testosterone , Dihydrotestosterone , SteroidsABSTRACT
Despite a large number of studies, the pathogenesis of polycystic ovary syndrome (PCOS) still remains unexplained. In light of ambiguous observations reported in metabolomics, there is a need to carry out studies focusing on confirming the discriminating power of the proposed metabolomics biomarkers. Our research aimed to perform a validation study of metabolites detected in our previous study from serum samples, on the new set of samples obtained from PCOS women and healthy controls to confirm previously selected compounds. Additionally, the second biological matrix - urine - was used to get a more comprehensive insight into metabolic alterations. We applied two analytical techniques - gas chromatography and liquid chromatography coupled with mass spectrometry to analyze both serum and urine samples obtained from 35 PCOS patients and 35 healthy women. Thank to our approach, we identified and described a comprehensive set of metabolites altered in PCOS patients. Results of our study indicate increased steroid hormone synthesis, alteration in sphingo- and phospholipids metabolism, and disturbed fatty acids metabolism. Moreover, the citric acid cycle, γ-glutamyl cycle, vitamin B metabolism, and a few primary amino acids like tryptophan, phenylalanine, histidine, and alanine are altered.
Subject(s)
Polycystic Ovary Syndrome , Humans , Female , Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Mass Spectrometry/methods , Chromatography, Liquid/methodsABSTRACT
Despite numerous studies, the molecular mechanism of prostate cancer development is still unknown. Recent investigations indicated that citric acid and lipids-with a special emphasis on fatty acids, steroids and hormones (ex. prolactin)-play a significant role in prostate cancer development and progression. However, citric acid is assumed to be a potential biomarker of prostate cancer, due to which, the diagnosis at an early stage of the disease could be possible. For this reason, the main goal of this study is to determine the citric acid concentration in three different matrices. To the best of our knowledge, this is the first time for citric acid to be determined in three different matrices (tissue, urine and blood). Samples were collected from patients diagnosed with prostate cancer and from a selected control group (individuals with benign prostatic hyperplasia). The analyses were performed using the rapid fluorometric test. The obtained results were correlated with both the histopathological data (the Gleason scale as well as the Classification of Malignant Tumors (pTNM) staging scale) and the biochemical data (the values of the following factors: prostate specific antigen, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglyceride, total cholesterol, creatinine and prolactin) using chemometric methods. For tissue samples, the results indicated a decreased level of citric acid in the case of prostate cancer. The analyte average concentrations in serum and urine appeared to be corresponding and superior in the positive cohort. This trend was statistically significant in the case of urinary citric acid. Moreover, a significant negative correlation was demonstrated between the concentration of citric acid and the tumor stage. A negative correlation between the total cholesterol and high-density lipoprotein and prolactin was particularly prominent in cancer cases. Conversely, a negative association between low-density lipoprotein and prolactin levels was observed solely in the control group. On the basis of the results, one may assume the influence of hormones, particularly prolactin, on the development of prostate cancer. The present research allowed us to verify the possibility of using citric acid as a potential biomarker for prostate cancer.
ABSTRACT
Introduction: Surgical oncology strives to remove the primary cancer tumor together with its local lymphatic tissue. One of the techniques improving the staging of lymph nodes is sentinel node biopsy. The most common agent used in SNB is indocyanine green (ICG). Indocyanine green is characterized by its high affinity for human serum albumin (HSA). In practice, the visualization of the sentinel node is enhanced by attaching a relatively large carrier to the ICG molecule. The aim of this study was to investigate whether the covalent linking of ICG to a nanocolloid would extend the time of detection of the dye as it binds to HSA, assessed by fluorescence measurements in vitro. Material and methods: The influence of the molar concentration of ICG on its ability to form a complex with HSA was investigated. The dye luminescence was measured, with an increasing amount of dye in the presence of a constant concentration of HSA. The stability of the ICG:HSA complex was also investigated. Results: The binding of ICG and human protein in a solution ratio of 3 : 1 made it possible to detect the ICG luminescence with better and prolonged visibility. In the case of the two lowest ratios, complex formation was not observed. The use of ICG bound to a nanocolloid based on human serum albumin increases the luminescence of the HSA : ICG complex up to 98%. Conclusions: Properly selected proportions of human albumin protein and ICH allowed higher and longer luminescence to be achieved. Nevertheless, further studies are necessary to establish the optimal concentration ratio.
ABSTRACT
Butter is an important source of essential fatty acids, lipid-soluble vitamins, and antioxidants in the diet. However, this study showed that the presence of the Lacticaseibacillus paracasei strain has a great influence on the fatty acid profile as well as provitamin D3 and vitamin D3 content in the cream-the raw material from which the butter is obtained. The addition of this lactic acid bacteria enriches the cream in 9-hexadecenoic acid, oleic acid, octadeca-9,12-dienoic acid, and conjugated linoleic acid, which exhibit antimutagenic and anticarcinogenic properties. Moreover, a higher level of monounsaturated fatty acids can extend the shelf life of butter in the future. In the present work, we observed that the presence of lactic acid bacteria contributed to an increase in the level of provitamin D after 6 h of incubation and an increase in the levels of vitamin D3 after 24 and 48 h. Fatty acid profiles and the content of vitamins were largely dependent on the presence of light and mixing, which are probably associated with the status of lipid peroxidation.
ABSTRACT
The simultaneous determination of metabolites from biological fluids may provide more accurate information about the current body condition. So far, the metabolomics approach has been successfully applied to study the mechanism of several disorders and to search for novel biomarkers. Urine and plasma are widely accepted matrices for the evaluation of several pathologies, while prostate cancer (CaP) development is still unknown. For this reason, an alternative matrix, the seminal fluid, was proposed to expand the knowledge about the CaP pathomechanism. The main aim of this study was to develop and optimize the sample preparation protocol to ensure the highest coverage of the metabolome of ejaculate samples. Parameters like the type and composition of the solvent mixture, time of extraction, and applied volume of the solvent were tested. The optimized method was applied for the untargeted metabolomics profiling of seminal fluid samples obtained from CaP patients. Moreover, urine and serum samples were also prepared for untargeted metabolomics analysis. Analyses were carried out with the use of two complementary analytical techniques: GC-EI-QqQ/MS and LC-ESI-TOF/MS. Finally, the metabolic signature of seminal fluid (n = 7), urine (n = 7), and plasma (n = 7) samples was compared. Furthermore, the hypothesis of the increased level of metabolites in ejaculate samples related to the CaP development was evaluated. The results indicated that the developed and optimized sample preparation protocol for seminal fluid may be successfully applied for metabolomics study. Untargeted analysis of ejaculate enabled to determine the following classes of compounds: fatty acids, sphingolipids, phospholipids, sugars, and their derivatives, as well as amino acids. Finally, a comparison of the three tested matrices was carried out. To our best knowledge, it is the first time when the metabolic profile of the three matrices, namely, urine, plasma, and seminal fluid, was compared. Based on the results, it can be pointed out that ejaculate comprises the metabolic signature of both matrices (polar compounds characteristic for urine, and non-polar ones present in plasma samples). Compared to plasma, semen samples revealed to have a similar profile; however, determined levels of metabolites were lower in case of ejaculate. In case of urine samples, compared to semen metabolic profiles, the levels of detected metabolites were decreased in the latter ones.
ABSTRACT
The presence of certain microorganisms in dairy products or silage is highly desirable. Among them are probiotic strains of lactic acid bacteria (LAB), which show many beneficial features, including antimicrobial properties that support the development of beneficial microflora; in addition, owing to their biochemical activity, they influence the nutritional, dietary, and organoleptic properties of food products. Before being placed on the market, each strain requires separate testing to determine its probiotic properties and effectiveness. The aim of this study was to isolate LAB strains from a pickled beetroot sample that could be used in the dairy industry and with the potential to be considered as a probiotic in the future. Two strains identified using the MALDI technique were selected-Lactococcus lactis and Weissella cibaria. The optimal growth conditions of the strains were determined, and their proteolytic properties were assessed with the use of the o-PA reagent and spectrophotometry. The lipid profile was analyzed using the SALDI (surface-assisted laser desorption/ionization) technique and silver nanoparticles. High-performance liquid chromatography was used to assess the ability of the strains to synthesize beneficial metabolites, such as B vitamins (B2, B3, and B9) or lactic acid, and gas chromatography was used to analyze the substances responsible for organoleptic properties. Moreover, the ability to inhibit the growth of pathogenic strains was also tested in the selected strains. Both tested strains demonstrated the desired properties of starter cultures for future use in functional food production, showing that fermented plant products can serve as valuable potential probiotic sources.
ABSTRACT
The main goal of this study was to explore the phospholipid alterations associated with the development of prostate cancer (PCa) using two imaging methods: matrix-assisted laser desorption ionization with time-of-flight mass spectrometer (MALDI-TOF/MS), and electrospray ionization with triple quadrupole mass spectrometer (ESI-QqQ/MS). For this purpose, samples of PCa tissue (n = 40) were evaluated in comparison to the controls (n = 40). As a result, few classes of compounds, namely phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), sphingomyelins (SMs), and phosphatidylethanolamines (PEs), were determined. The obtained results were evaluated by univariate (Mann-Whitney U-test) and multivariate statistical analysis (principal component analysis, correlation analysis, volcano plot, artificial neural network, and random forest algorithm), in order to select the most discriminative features and to search for the relationships between the responses of these groups of substances, also in terms of the used analytical technique. Based on previous literature and our results, it can be assumed that PCa is linked with both the synthesis of fatty acids and lipid oxidation. Among the compounds, phospholipids, namely PC 16:0/16:1, PC 16:0/18:2, PC 18:0/22:5, PC 18:1/18:2, PC 18:1/20:0, PC 18:1/20:4, and SM d18:1/24:0, were assigned as metabolites with the best discriminative power for the tested groups. Based on the results, lipidomics can be found as alternative diagnostic tool for CaP diagnosis.
ABSTRACT
Prostate cancer (PCa) is one of the leading types of cancer in men. Although the diagnosis of this disease is currently quite effective, there is still a need to search for noninvasive diagnostic and monitoring methods. Consequently, identifying the mechanisms underlying the development and progression of PCa is crucial. It has been confirmed that the hallmarks of PCa include changes in metabolism, particularly that of fatty acids. Therefore, the application of lipidomics with an accurate histopathological assessment can provide the necessary information and reveal the metabolites that are characteristic of the disease. The use of formalin-fixed, paraffin-embedded (FFPE) tissue samples as an alternative matrix in retrospective research makes this approach highly innovative. The main goal of this study was to perform an untargeted lipidomic analysis of FFPE PCa tissue samples (n = 52) using gas chromatography coupled with mass spectrometry (GC-MS), in comparison to controls (n = 50). To our knowledge, this study is the first to simultaneously conduct a metabolic analysis and histopathological assessment. In the latter, the samples were evaluated based on Gleason grading score and pTNM stage. The obtained results were evaluated by univariate (Student's t-test or Mann-Whitney U-test) as well as multivariate statistical analysis (principal component analysis, partial least squares-discriminant analysis, variable importance into projection, and selectivity ratio) in order to select the metabolites with the most discriminative power. Additionally, the correlation between the level of metabolites and pathological characteristics was determined. The results of the analyses confirmed the changes in the lipid metabolism pathway in PCa. It can be assumed that PCa is linked with elevated de novo biosynthesis of steroid hormone-related fatty acids and beta-oxidation of fatty acids. An increased level of three fatty acids, namely 9-octadecanoic acid, 9,12-octadecadienoic acid, and 5, 8, 1,14-eicosatetraenoic acid, was observed in the PCa samples. These fatty acids were assigned as metabolites with the best discriminative power for the two tested groups. In practice, these compounds could be considered as specific biochemical factors that may be implemented in the diagnosis of PCa, but their significance should be validated on a more extensive set of samples. Undoubtedly, these results are valuable as they provide important information on prostate cancerogenesis in the context of a metabolic switch.
Subject(s)
Fatty Acids , Prostatic Neoplasms , Formaldehyde , Gas Chromatography-Mass Spectrometry , Humans , Male , Metabolomics , Paraffin Embedding , Retrospective StudiesABSTRACT
Mycotoxins are low-molecular weight compounds produced mainly by fungi, with Fusarium and Aspergillus origin. Secondary, metabolites, are mostly found on plants. However, the contamination of the feed and forage has been also reported. Because of their pharmacological activity, mycotoxins can be used as chemical warfare agents, drugs or growth promotants. Additionally, mycotoxins are found as one of the most dangerous genotoxic factors which cause the damage of DNA and lead to disease development. This review includes the knowledge of mycotoxins as both, an invisible danger of forage and as food additives. Special emphasis shall be given on mycotoxins with proven cancerogenic activity; including aflatoxins, fumonisins, ochratoxins, trichothecenes, and zearalenone. Factors such as species, mechanisms/modes of action, metabolism, and defense mechanisms were taken into account. The main concern was focused on zearalenone characterization, because of its estrogenic activity, caused by structural similarity to estrogens, naturally occurring in cells. By binding to estrogenic receptors, toxins are, accumulated in organisms and long-term exposure may cause the disturbances, especially in the reproductive system. The next part of this paper contains the description of main strategies of toxins determination. Finally, in the review, several potential methods for the dioxins neutralization were discussed.