ABSTRACT
BACKGROUND: Long COVID potentially increases healthcare utilisation and costs. However, its impact on the NHS remains to be determined. METHODS: This study aims to assess the healthcare utilisation of individuals with long COVID. With the approval of NHS England, we conducted a matched cohort study using primary and secondary care data via OpenSAFELY, a platform for analysing anonymous electronic health records. The long COVID exposure group, defined by diagnostic codes, was matched with five comparators without long COVID between Nov 2020 and Jan 2023. We compared their total healthcare utilisation from GP consultations, prescriptions, hospital admissions, A&E visits, and outpatient appointments. Healthcare utilisation and costs were evaluated using a two-part model adjusting for covariates. Using a difference-in-difference model, we also compared healthcare utilisation after long COVID with pre-pandemic records. RESULTS: We identified 52,988 individuals with a long COVID diagnosis, matched to 264,867 comparators without a diagnosis. In the 12 months post-diagnosis, there was strong evidence that those with long COVID were more likely to use healthcare resources (OR: 8.29, 95% CI: 7.74-8.87), and have 49% more healthcare utilisation (RR: 1.49, 95% CI: 1.48-1.51). Our model estimated that the long COVID group had 30 healthcare visits per year (predicted mean: 29.23, 95% CI: 28.58-29.92), compared to 16 in the comparator group (predicted mean visits: 16.04, 95% CI: 15.73-16.36). Individuals with long COVID were more likely to have non-zero healthcare expenditures (OR = 7.66, 95% CI = 7.20-8.15), with costs being 44% higher than the comparator group (cost ratio = 1.44, 95% CI: 1.39-1.50). The long COVID group costs approximately £2500 per person per year (predicted mean cost: £2562.50, 95% CI: £2335.60-£2819.22), and the comparator group costs £1500 (predicted mean cost: £1527.43, 95% CI: £1404.33-1664.45). Historically, individuals with long COVID utilised healthcare resources more frequently, but their average healthcare utilisation increased more after being diagnosed with long COVID, compared to the comparator group. CONCLUSIONS: Long COVID increases healthcare utilisation and costs. Public health policies should allocate more resources towards preventing, treating, and supporting individuals with long COVID.
Subject(s)
COVID-19 , Patient Acceptance of Health Care , Humans , Male , Female , Patient Acceptance of Health Care/statistics & numerical data , Middle Aged , COVID-19/epidemiology , COVID-19/therapy , Cohort Studies , Aged , Adult , England/epidemiology , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Aged, 80 and over , Health Care Costs/statistics & numerical data , Young Adult , State Medicine/economics , State Medicine/statistics & numerical dataABSTRACT
BACKGROUND: Ethnicity is known to be an important correlate of health outcomes, particularly during the COVID-19 pandemic, where some ethnic groups were shown to be at higher risk of infection and adverse outcomes. The recording of patients' ethnic groups in primary care can support research and efforts to achieve equity in service provision and outcomes; however, the coding of ethnicity is known to present complex challenges. We therefore set out to describe ethnicity coding in detail with a view to supporting the use of this data in a wide range of settings, as part of wider efforts to robustly describe and define methods of using administrative data. METHODS: We describe the completeness and consistency of primary care ethnicity recording in the OpenSAFELY-TPP database, containing linked primary care and hospital records in > 25 million patients in England. We also compared the ethnic breakdown in OpenSAFELY-TPP with that of the 2021 UK census. RESULTS: 78.2% of patients registered in OpenSAFELY-TPP on 1 January 2022 had their ethnicity recorded in primary care records, rising to 92.5% when supplemented with hospital data. The completeness of ethnicity recording was higher for women than for men. The rate of primary care ethnicity recording ranged from 77% in the South East of England to 82.2% in the West Midlands. Ethnicity recording rates were higher in patients with chronic or other serious health conditions. For each of the five broad ethnicity groups, primary care recorded ethnicity was within 2.9 percentage points of the population rate as recorded in the 2021 Census for England as a whole. For patients with multiple ethnicity records, 98.7% of the latest recorded ethnicities matched the most frequently coded ethnicity. Patients whose latest recorded ethnicity was categorised as Other were most likely to have a discordant ethnicity recording (32.2%). CONCLUSIONS: Primary care ethnicity data in OpenSAFELY is present for over three quarters of all patients, and combined with data from other sources can achieve a high level of completeness. The overall distribution of ethnicities across all English OpenSAFELY-TPP practices was similar to the 2021 Census, with some regional variation. This report identifies the best available codelist for use in OpenSAFELY and similar electronic health record data.
Subject(s)
Ethnicity , Primary Health Care , State Medicine , Adult , Aged , Female , Humans , Male , Middle Aged , Cohort Studies , England , Ethnicity/statistics & numerical data , Primary Health Care/statistics & numerical data , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Young Adult , Aged, 80 and overABSTRACT
AIMS: The COVID-19 pandemic caused significant disruption to routine activity in primary care. Medication reviews are an important primary care activity ensuring safety and appropriateness of prescribing. A disruption could have significant negative implications for patient care. Using routinely collected data, our aim was first to describe codes used to record medication review activity and then to report the impact of COVID-19 on the rates of medication reviews. METHODS: With the approval of NHS England, we conducted a cohort study of 20 million adult patient records in general practice, in-situ using the OpenSAFELY platform. For each month, between April 2019 and March 2022, we report the percentage of patients with a medication review coded monthly and in the previous 12 months with breakdowns by regional, clinical and demographic subgroups and those prescribed high-risk medications. RESULTS: In April 2019, 32.3% of patients had a medication review coded in the previous 12 months. During the first COVID-19 lockdown, monthly activity decreased (-21.1% April 2020), but the 12-month rate was not substantially impacted (-10.5% March 2021). The rate of structured medication review in the last 12 months reached 2.9% by March 2022, with higher percentages in high-risk groups (care home residents 34.1%, age 90+ years 13.1%, high-risk medications 10.2%). The most used medication review code was Medication review done 314530002 (59.5%). CONCLUSIONS: There was a substantial reduction in the monthly rate of medication reviews during the pandemic but rates recovered by the end of the study period. Structured medication reviews were prioritized for high-risk patients.
Subject(s)
COVID-19 , Electronic Health Records , Primary Health Care , Humans , COVID-19/epidemiology , England/epidemiology , Adult , Middle Aged , Male , Female , Aged , Cohort Studies , SARS-CoV-2 , Young Adult , Aged, 80 and over , State MedicineABSTRACT
Electronic health records (EHRs) and other administrative health data are increasingly used in research to generate evidence on the effectiveness, safety, and utilisation of medical products and services, and to inform public health guidance and policy. Reproducibility is a fundamental step for research credibility and promotes trust in evidence generated from EHRs. At present, ensuring research using EHRs is reproducible can be challenging for researchers. Research software platforms can provide technical solutions to enhance the reproducibility of research conducted using EHRs. In response to the COVID-19 pandemic, we developed the secure, transparent, analytic open-source software platform OpenSAFELY designed with reproducible research in mind. OpenSAFELY mitigates common barriers to reproducible research by: standardising key workflows around data preparation; removing barriers to code-sharing in secure analysis environments; enforcing public sharing of programming code and codelists; ensuring the same computational environment is used everywhere; integrating new and existing tools that encourage and enable the use of reproducible working practices; and providing an audit trail for all code that is run against the real data to increase transparency. This paper describes OpenSAFELY's reproducibility-by-design approach in detail.
Subject(s)
COVID-19 , Electronic Health Records , Software , Humans , Reproducibility of Results , COVID-19/epidemiology , Research DesignABSTRACT
Background: Long COVID is a major problem affecting patient health, the health service, and the workforce. To optimise the design of future interventions against COVID-19, and to better plan and allocate health resources, it is critical to quantify the health and economic burden of this novel condition. We aimed to evaluate and estimate the differences in health impacts of long COVID across sociodemographic categories and quantify this in Quality-Adjusted Life-Years (QALYs), widely used measures across health systems. Methods: With the approval of NHS England, we utilised OpenPROMPT, a UK cohort study measuring the impact of long COVID on health-related quality-of-life (HRQoL). OpenPROMPT invited responses to Patient Reported Outcome Measures (PROMs) using a smartphone application and recruited between November 2022 and October 2023. We used the validated EuroQol EQ-5D questionnaire with the UK Value Set to develop disutility scores (1-utility) for respondents with and without Long COVID using linear mixed models, and we calculated subsequent Quality-Adjusted Life-Months (QALMs) for long COVID. Findings: The total OpenPROMPT cohort consisted of 7575 individuals who consented to data collection, with which we used data from 6070 participants who completed a baseline research questionnaire where 24.6% self-reported long COVID. In multivariable regressions, long COVID had a consistent impact on HRQoL, showing a higher likelihood or odds of reporting loss in quality-of-life (Odds Ratio (OR): 4.7, 95% CI: 3.72-5.93) compared with people who did not report long COVID. Reporting a disability was the largest predictor of losses of HRQoL (OR: 17.7, 95% CI: 10.37-30.33) across survey responses. Self-reported long COVID was associated with an 0.37 QALM loss. Interpretation: We found substantial impacts on quality-of-life due to long COVID, representing a major burden on patients and the health service. We highlight the need for continued support and research for long COVID, as HRQoL scores compared unfavourably to patients with conditions such as multiple sclerosis, heart failure, and renal disease. Funding: This research was supported by the National Institute for Health and Care Research (NIHR) (OpenPROMPT: COV-LT2-0073).
ABSTRACT
BACKGROUND: COVID-19 has been shown to differently affect various demographic and clinical population subgroups. We aimed to describe trends in absolute and relative COVID-19-related mortality risks across clinical and demographic population subgroups during successive SARS-CoV-2 pandemic waves. METHODS: We did a retrospective cohort study in England using the OpenSAFELY platform with the approval of National Health Service England, covering the first five SARS-CoV-2 pandemic waves (wave one [wild-type] from March 23 to May 30, 2020; wave two [alpha (B.1.1.7)] from Sept 7, 2020, to April 24, 2021; wave three [delta (B.1.617.2)] from May 28 to Dec 14, 2021; wave four [omicron (B.1.1.529)] from Dec 15, 2021, to April 29, 2022; and wave five [omicron] from June 24 to Aug 3, 2022). In each wave, we included people aged 18-110 years who were registered with a general practice on the first day of the wave and who had at least 3 months of continuous general practice registration up to this date. We estimated crude and sex-standardised and age-standardised wave-specific COVID-19-related death rates and relative risks of COVID-19-related death in population subgroups. FINDINGS: 18â895â870 adults were included in wave one, 19â014â720 in wave two, 18â932â050 in wave three, 19â097â970 in wave four, and 19â226â475 in wave five. Crude COVID-19-related death rates per 1000 person-years decreased from 4·48 deaths (95% CI 4·41-4·55) in wave one to 2·69 (2·66-2·72) in wave two, 0·64 (0·63-0·66) in wave three, 1·01 (0·99-1·03) in wave four, and 0·67 (0·64-0·71) in wave five. In wave one, the standardised COVID-19-related death rates were highest in people aged 80 years or older, people with chronic kidney disease stage 5 or 4, people receiving dialysis, people with dementia or learning disability, and people who had received a kidney transplant (ranging from 19·85 deaths per 1000 person-years to 44·41 deaths per 1000 person-years, compared with from 0·05 deaths per 1000 person-years to 15·93 deaths per 1000 person-years in other subgroups). In wave two compared with wave one, in a largely unvaccinated population, the decrease in COVID-19-related mortality was evenly distributed across population subgroups. In wave three compared with wave one, larger decreases in COVID-19-related death rates were seen in groups prioritised for primary SARS-CoV-2 vaccination, including people aged 80 years or older and people with neurological disease, learning disability, or severe mental illness (90-91% decrease). Conversely, smaller decreases in COVID-19-related death rates were observed in younger age groups, people who had received organ transplants, and people with chronic kidney disease, haematological malignancies, or immunosuppressive conditions (0-25% decrease). In wave four compared with wave one, the decrease in COVID-19-related death rates was smaller in groups with lower vaccination coverage (including younger age groups) and conditions associated with impaired vaccine response, including people who had received organ transplants and people with immunosuppressive conditions (26-61% decrease). INTERPRETATION: There was a substantial decrease in absolute COVID-19-related death rates over time in the overall population, but demographic and clinical relative risk profiles persisted and worsened for people with lower vaccination coverage or impaired immune response. Our findings provide an evidence base to inform UK public health policy for protecting these vulnerable population subgroups. FUNDING: UK Research and Innovation, Wellcome Trust, UK Medical Research Council, National Institute for Health and Care Research, and Health Data Research UK.