Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 25(2): 646-671, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177922

ABSTRACT

The dorsoventral gradient of BMP signaling plays an essential role in embryonic patterning. Zinc Finger SWIM-Type Containing 4 (zswim4) is expressed in the Spemann-Mangold organizer at the onset of Xenopus gastrulation and is then enriched in the developing neuroectoderm at the mid-gastrula stages. Knockdown or knockout of zswim4 causes ventralization. Overexpression of zswim4 decreases, whereas knockdown of zswim4 increases the expression levels of ventrolateral mesoderm marker genes. Mechanistically, ZSWIM4 attenuates the BMP signal by reducing the protein stability of SMAD1 in the nucleus. Stable isotope labeling by amino acids in cell culture (SILAC) identifies Elongin B (ELOB) and Elongin C (ELOC) as the interaction partners of ZSWIM4. Accordingly, ZSWIM4 forms a complex with the Cul2-RING ubiquitin ligase and ELOB and ELOC, promoting the ubiquitination and degradation of SMAD1 in the nucleus. Our study identifies a novel mechanism that restricts BMP signaling in the nucleus.


Subject(s)
Bone Morphogenetic Proteins , Carrier Proteins , Animals , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Organizers, Embryonic/metabolism , Xenopus laevis/metabolism , Body Patterning/physiology , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Gene Expression Regulation, Developmental
2.
Development ; 148(10)2021 05 15.
Article in English | MEDLINE | ID: mdl-33999995

ABSTRACT

The focal adhesion protein Kindlin2 is essential for integrin activation, a process that is fundamental to cell-extracellular matrix adhesion. Kindlin 2 (Fermt2) is widely expressed in mouse embryos, and its absence causes lethality at the peri-implantation stage due to the failure to trigger integrin activation. The function of kindlin2 during embryogenesis has not yet been fully elucidated as a result of this early embryonic lethality. Here, we showed that kindlin2 is essential for neural crest (NC) formation in Xenopus embryos. Loss-of-function assays performed with kindlin2-specific morpholino antisense oligos (MOs) or with CRISPR/Cas9 techniques in Xenopus embryos severely inhibit the specification of the NC. Moreover, integrin-binding-deficient mutants of Kindlin2 rescued the phenotype caused by loss of kindlin2, suggesting that the function of kindlin2 during NC specification is independent of integrins. Mechanistically, we found that Kindlin2 regulates the fibroblast growth factor (FGF) pathway, and promotes the stability of FGF receptor 1. Our study reveals a novel function of Kindlin2 in regulating the FGF signaling pathway and provides mechanistic insights into the function of Kindlin2 during NC specification.


Subject(s)
Fibroblast Growth Factors/metabolism , Membrane Proteins/metabolism , Neural Crest/embryology , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Animals , CRISPR-Cas Systems/genetics , Cell Line , Embryo, Nonmammalian/metabolism , Embryonic Development/genetics , Embryonic Development/physiology , Gene Expression Regulation, Developmental/genetics , Gene Knockout Techniques , HEK293 Cells , HeLa Cells , Humans , Integrins/metabolism , Membrane Proteins/genetics , Morpholinos/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction/genetics , Xenopus Proteins/genetics
3.
Gen Comp Endocrinol ; 350: 114472, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38373462

ABSTRACT

Heart development is a delicate and complex process regulated by coordination of various signaling pathways. In this study, we investigated the role of sox18 in heart development by modulating Wnt/ß-Catenin signaling pathways. Our spatiotemporal expression analysis revealed that sox18 is mainly expressed in the heart, branchial arch, pharyngeal arch, spinal cord, and intersegmental vessels at the tailbud stage of Xenopus tropicalis embryo. Overexpression of sox18 in the X. tropicalis embryos causes heart edema, while loss-of-function of sox18 can change the signal of developmental heart marker gata4 at different stages, suggesting that sox18 plays an essential role in the development of the heart. Knockdown of SOX18 in human umbilical vein endothelial cells suggests a link between Sox18 and ß-CATENIN, a key regulator of the Wnt signaling pathway. Sox18 negatively regulates islet1 and tbx3, the downstream factors of Wnt/ß-Catenin signaling, during the linear heart tube formation and the heart looping stage. Taken together, our findings highlight the crucial role of Sox18 in the development of the heart via inhibiting Wnt/ß-Catenin signaling.


Subject(s)
SOXF Transcription Factors , Xenopus Proteins , beta Catenin , Animals , Humans , beta Catenin/genetics , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , Wnt Signaling Pathway , Xenopus/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
4.
J Environ Manage ; 365: 121608, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943751

ABSTRACT

In this work, a novel double-chamber system (PFC-Fenton), combined photocatalytic fuel cell (PFC) with Fenton, was constructed for tetracycline hydrochloride (TCH) and hexavalent chromium (Cr(VI)) removal and electricity production. Therein, Zn5(OH)6(CO3)2/Fe2O3/BiVO4/fluorine-doped SnO2 (ZIO/BiVO4/FTO) and carboxylated carbon nanotubes/polypyrrole/graphite felt (CCNTs/Ppy/GF) were served as photoanode and cathode, respectively. Under light irradiation, the removal efficiencies of TCH and Cr(VI) with the addition of H2O2 (2 mL) could reach 93.1% and 80.4%, respectively. Moreover, the first-order kinetic constants (7.37 × 10-3 min-1 of TCH and 3.94 × 10-3 min-1 of Cr(VI)) were 5.26 and 5.57 times as much as the absence of H2O2. Simultaneously, the maximum power density could be obtained 0.022 mW/cm2 at a current density of 0.353 mA/cm2. Therein, the main contribution of TCH degradation was ·OH and holes in anode chamber. The synergistic effect of photoelectrons, generated ·O2-, and H2O2 played a crucial role in the reduction of Cr(VI) in cathode chamber. The high-performance liquid chromatography-mass spectrometry indicated that TCH could be partially mineralized into CO2 and H2O. X-ray photoelectron spectroscope and X-ray absorption near-edge structure spectra showed that Cr(VI) could be reduced to Cr(III). After 5 times of cycling, the removal efficiencies of TCH and Cr(VI) were still greater than 70%, indicating the remarkable stability of the PFC-Fenton system. Overall, this system could remove TCH/Cr(VI) and generate power simultaneously without iron sludge formation, demonstrating a promising method to further develop PFC-Fenton technology.

5.
Development ; 147(4)2020 02 17.
Article in English | MEDLINE | ID: mdl-31988189

ABSTRACT

Cellular proliferation is a basic process during organ development, tissue homeostasis and disease progression. Likewise, after injury typically multiple cell lineages respond to various cues and proliferate to initiate repair and/or remodeling of the injured tissue. Unravelling the specific role of proliferation of one cell type and its lineage in the context of the whole organism during tissue regeneration and/or disease progression would provide valuable information on these processes. Here, we report a new genetic system that allows cell proliferation to be inhibited in a tissue-specific manner. We generated Cre- or Dre-inducible p21-GFP (ip21-GFP) transgenic mice that enable experimentally induced permanent cell cycle arrest of specific cell lineages of interest, while genetically marking these cells. This system allows for the inhibition of pathogenic cell proliferation. We found that cardiac fibroblast proliferation inhibition significantly reduced scar formation, and promoted neovascularization and cardiomyocyte survival. Additionally, we found that inhibition of one type of cell proliferation (namely, hepatocytes) induces the lineage conversion of another type cells (i.e. ductal cells) during tissue regeneration. These results validate the use of ip21-GFP mice as a new genetic tool for cell lineage-specific inhibition of cell proliferation in vivo.


Subject(s)
Cell Proliferation , Gene Expression Regulation , Genetic Techniques , Alleles , Animals , Cell Lineage , Cyclin-Dependent Kinase Inhibitor p21/physiology , Female , Fibroblasts/physiology , Green Fluorescent Proteins , Heart/growth & development , Heart/physiology , Hepatocytes/cytology , Hepatocytes/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Infarction/pathology , Myocytes, Cardiac/cytology
6.
J Cell Mol Med ; 26(20): 5135-5149, 2022 10.
Article in English | MEDLINE | ID: mdl-36117396

ABSTRACT

The regulation of fibrotic activities is key to improving pathological remodelling post-myocardial infarction (MI). Currently, in the clinic, safe and curative therapies for cardiac fibrosis and improvement of the pathological fibrotic environment, scar formation and pathological remodelling post-MI are lacking. Previous studies have shown that miR-486 is involved in the regulation of fibrosis. However, it is still unclear how miR-486 functions in post-MI regeneration. Here, we first demonstrated that miR-486 targeting SRSF3/p21 mediates the senescence of cardiac myofibroblasts to improve their fibrotic activity, which benefits the regeneration of MI by limiting scar size and post-MI remodelling. miR-486-targeted silencing has high potential as a novel target to improve fibrotic activity, cardiac fibrosis and pathological remodelling.


Subject(s)
MicroRNAs , Myocardial Infarction , Cicatrix/pathology , Fibrosis , Humans , MicroRNAs/genetics , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/therapy , Myocardium/pathology , Myofibroblasts/pathology , Serine-Arginine Splicing Factors/genetics
7.
Langmuir ; 38(21): 6579-6591, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35576243

ABSTRACT

A novel nanocomposite [Fc-MIL-100(Fe)] was constructed by combining ferrocene (Fc) with the porous structural metal-organic framework [MIL-100(Fe)]. The proposed composite material could simultaneously and efficiently remove hexavalent chromium [Cr(VI)] and imidacloprid and reduced strongly noxious Cr(VI) to weakly noxious trivalent chromium [Cr(III)]. The removal efficiencies of the composite material for Cr(VI) and imidacloprid could reach 95% after 15 h. The adsorption process was determined by kinetics, isotherms, and thermodynamics. The results demonstrated that the adsorption kinetics of Cr(VI) followed the pseudo-second-order model mainly by chemisorption; meanwhile, the adsorption of imidacloprid by the material conformed to the pseudo-first-order kinetics, which indicated that physical adsorption was the main process. Additionally, the intraparticle diffusion model revealed that the uptake of imidacloprid and Cr(VI) occurred via intraparticle diffusion at the composite material. The adsorption procedure for Cr(VI) was fitted to the Langmuir model (R2 = 0.995) via monolayer adsorption, and that for imidacloprid was fitted to the Freundlich model (R2 = 0.995) due to multilayer or heterogeneous adsorption. The thermodynamic research confirmed that the adsorption procedure was exothermic and spontaneous. Infrared spectroscopy, X-ray photoelectron spectra, and the pH effect implied that intermolecular hydrogen bonding and electrostatic interaction played a crucial role during the removal process. Fc-MIL-100(Fe) also exhibited long-term stability and satisfactory regeneration and reusability. Therefore, this method may enhance an environmentally friendly and prospective approach for concurrently removing imidacloprid and Cr(VI) from wastewater.

8.
Langmuir ; 38(18): 5557-5567, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35451849

ABSTRACT

Herein, a novel magnetic iron-based carbon microsphere was prepared by cohydrothermal treatment of tobacco waste liquid (TWL) and waste iron residue (WIR) to form WIR@TWL. After that, WIR@TWL was coated with sodium polyacrylate (S.P.) to fabricate WIR@TWL@SP, whose removal efficiency for bivalent cadmium (Cd(II)) was studied in water and soil. As a result, WIR@TWL@SP possessed a high Cd(II) removal efficiency, which could reach 98.5% within 2 h. The adsorption process was consistent with the pseudo-second-order kinetic model because of the higher value of adjusted R2 (0.99). The thermodynamic data showed that the adsorption process was spontaneous (ΔG° < 0) and exothermic (ΔH° = 32.42 KJ·mol-1 > 0). Cd(II) removal mechanisms also include cation exchange, electrostatic attraction, hydrogen-bond interaction, and cation-π interaction. Notably, pot experiments demonstrated that WIR@TWL@SP could effectively reduce Cd absorption by plants in water and soil. Thus, this study offers an effective method for remediating Cd(II)-contaminated water and soil and may have a practical application value.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Cadmium/chemistry , Carbon , Iron/chemistry , Kinetics , Microspheres , Soil , Nicotiana , Water , Water Pollutants, Chemical/analysis , Water Purification/methods
9.
Langmuir ; 38(29): 9021-9029, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35834193

ABSTRACT

A fuel cell, an energy transducer, can convert chemical energy into electrical energy. In this work, graphite felt (GF) loaded with polypyrrole (PPy) and carboxylic carbon nanotubes (CNTs-COOH) was used as a cathode (GF/PPy/CNTs-COOH) in a double-chamber nonbiofuel cell (D-nBFC) to remove Cr(VI) efficiently. Therein, Na2S2O3 in an alkaline solution and Cr(VI) in a strongly acidic solution were employed as anode and cathode solutions, respectively. An agar salt bridge, consisting of saturated KCl solution, was used to transport ions between the anode and cathode. This system suggested that the removal efficiency of Cr(VI) could reach 99.6%. The maximum current, power, and power density could achieve 136.8 µA, 18.7 µW, and 20.8 mW/m2 at 90 min, respectively. Additionally, GF/PPy/CNTs-COOH also had good electrocatalytic stability and reusability after four cycles, which played an important role in the development of the D-nBFC system. Therefore, this study provides an environmentally friendly and efficient method to remove Cr(VI) and generate electricity simultaneously.

10.
Mikrochim Acta ; 189(5): 201, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35474041

ABSTRACT

A promising sensing platform was constructed based on an electrochemically reduced graphene oxide (ErGO)/copper metal-organic framework (Cu-MOF)/platinum nanoparticles (ErGO/Cu-MOF/PtNPs) modified glassy carbon electrode for the detection of tetracycline. The ErGO/Cu-MOF/PtNPs composite electrode possessed an excellent electrochemical performance to tetracycline detection mainly due to the synergistic effect of ErGO, Cu-MOF and PtNPs. The electrochemical kinetics and catalytical mechanism of tetracycline were systematically studied, showing that tetracycline's electrocatalytic oxidation reaction was an absorption-controlled two-step process involving two electrons and one proton transfer, respectively. Low concentration of tetracycline was detected by amperometry with the a linear range of 1 ~ 200 µM (R2 = 0.9900) and a detection limit of 0.03 µM (S/R = 3). The proposed sensor was successfully applied to the detection of tetracycline in the real water samples with recoveries of 93.5% ~ 106%, and relative standard deviations (RSD) of 4.65% ~ 5.21% (n = 3). Furthermore, acceptable stability, repeatability and reproducibility were verified for continuous determination of tetracycline under optimized conditions. The ErGO/Cu-MOF/PtNPs composite electrode also demonstrated better anti-interference performance compared to other types of antibiotics than that of similar structural tetracyclines. Therefore, the proposed ErGO/Cu-MOF/PtNPs composites might provide a potential sensing platform for detecting analogous tetracyclines or total tetracyclines in the environment.


Subject(s)
Metal Nanoparticles , Metal-Organic Frameworks , Anti-Bacterial Agents , Copper/chemistry , Electrochemical Techniques , Graphite , Metal Nanoparticles/chemistry , Metal-Organic Frameworks/chemistry , Platinum , Reproducibility of Results , Tetracycline
11.
Biochem Biophys Res Commun ; 555: 190-195, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33823365

ABSTRACT

Primary cilia are microtubule-based organelles that are involved in sensing micro-environmental cues and regulating cellular homeostasis via triggering signaling cascades. Hypoxia is one of the most common environmental stresses that organ and tissue cells may often encounter during embryogenesis, cell differentiation, infection, inflammation, injury, cerebral and cardiac ischemia, or tumorigenesis. Although hypoxia has been reported to promote or inhibit primary ciliogenesis in different tissues or cultured cell lines, the role of hypoxia in ciliogenesis is controversial and still unclear. Here we investigated the primary cilia change under cobalt chloride (CoCl2)-simulated hypoxia in immortalized human retina pigment epithelial-1 (hTERT RPE-1) cells. We found CoCl2 treatment elongated primary cilia in a time- and dose-dependent manner. The prolonged cilia recovered back to near normal length when CoCl2 was washed out from the cell culture medium. Under CoCl2-simulated hypoxia, the protein expression levels of HIF-1/2α and acetylated-α-tubulin (cilia marker) were increased, while the protein expression level of Rabaptin-5 is decreased during hypoxia. Taken together, our results suggest that hypoxia may elongate primary cilia by downregulating Rabaptin-5 involved endocytosis. The coordination between endocytosis and ciliogenesis may be utilized by cells to adapt to hypoxia.


Subject(s)
Cell Hypoxia/drug effects , Cilia/drug effects , Cobalt/toxicity , Retinal Pigment Epithelium/cytology , Cell Hypoxia/physiology , Cell Line, Transformed , Cobalt/administration & dosage , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Humans , Prolyl Hydroxylases/metabolism , Retinal Pigment Epithelium/drug effects , Telomerase/genetics , Vesicular Transport Proteins/metabolism
12.
FASEB J ; 34(9): 12726-12738, 2020 09.
Article in English | MEDLINE | ID: mdl-32713114

ABSTRACT

The proto-oncogene ets1 is highly expressed in the pre-migratory and migratory neural crest (NC), and has been implicated in the delamination and migration of the NC cells. To identify the downstream target genes of Ets1 in this process, we did RNA sequencing (RNA-Seq) on wild-type and ets1 mutant X. tropicalis embryos. A list of genes with significantly differential expression was obtained by analyzing the RNA-Seq data. We validated the RNA-Seq data by quantitative PCR, and examined the expression pattern of the genes identified from this assay with whole mount in situ hybridization. A majority of the identified genes showed expression in migrating NC. Among them, the expression of microseminoprotein beta gene 3 (msmb3) was positively regulated by Ets1 in both X. laevis and X. tropicalis. Knockdown of msmb3 with antisense morpholino oligonucleotides or disruption of msmb3 by CRISPR/Cas9 both impaired the migratory streams of NC. Our study identified msmb3 as an Ets1 target gene and uncovered its function in maintaining neural crest migration pattern.


Subject(s)
Embryo, Nonmammalian/cytology , Neural Crest/cytology , Prostatic Secretory Proteins/physiology , Proto-Oncogene Protein c-ets-1/physiology , Xenopus/embryology , Animals , Cell Movement , Embryonic Development , Gene Expression Regulation, Developmental , Proto-Oncogene Mas , RNA-Seq
13.
J Environ Manage ; 290: 112626, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33878630

ABSTRACT

In this study, a magnetic nanocomposite (denoted as FZ) was fabricated using Fe3O4and zeolitic imidazolate framework-8 (ZIF-8), based on a coprecipitation method. FZ could efficiently remove Cu2+(Cu(II)) and AsO2- (As(III)) ions simultaneously from water, soil, and swine urine samples through hydrogen bonding and electrostatic interactions. The Cu(II) and As(III) removal efficiencies of the optimal FZ sample increased gradually with time and reached 99.1% and 98.4%, respectively, in 180 min. The maximum adsorption capacities of FZ4 for Cu(II) and As(III) were determined to be 33.48 mg/g and 21.12 mg/g, respectively. Additionally, the FZ with a high saturation magnetization (49.8 emu/g) was easily recovered from aqueous solutions and soil samples. Furthermore, zebrafish experiments indicated that FZ possessed a high biosafety. Thus, this study introduces a promising method for treating water, soil, and swine urine samples contaminated with Cu(II) and As(III), and verifies that FZ is suitable for practical application.


Subject(s)
Arsenic , Nanocomposites , Water Pollutants, Chemical , Zeolites , Adsorption , Animals , Copper , Hydrogen-Ion Concentration , Kinetics , Soil , Swine , Water , Water Pollutants, Chemical/analysis , Zebrafish
14.
J Cell Mol Med ; 24(4): 2531-2541, 2020 02.
Article in English | MEDLINE | ID: mdl-31930692

ABSTRACT

Recent research has revealed that cardiac telocytes (CTs) play an important role in cardiac physiopathology and the regeneration of injured myocardium. Recently, we reported that the adult Xenopus tropicalis heart can regenerate perfectly in a nearly scar-free manner after injury via apical resection. However, whether telocytes exist in the X tropicalis heart and are affected in the regeneration of injured X tropicalis myocardium is still unknown. The present ultrastructural and immunofluorescent double staining results clearly showed that CTs exist in the X tropicalis myocardium. CTs in the X tropicalis myocardium were mainly twined around the surface of cardiomyocyte trabeculae and linked via nanocontacts between the ends of the telopodes, forming a three-dimensional network. CTs might play a role in the regeneration of injured myocardium.


Subject(s)
Heart Diseases/pathology , Heart/physiology , Telocytes/pathology , Xenopus/physiology , Animals , Myocytes, Cardiac/pathology , Regeneration/physiology , Telopodes/pathology
15.
Circ Res ; 122(7): 984-993, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29374073

ABSTRACT

RATIONALE: Endocardium is the major source of coronary endothelial cells (ECs) in the fetal and neonatal hearts. It remains unclear whether endocardium in the adult stage is also the main origin of neovascularization after cardiac injury. OBJECTIVE: To define the vascular potential of adult endocardium in homeostasis and after cardiac injuries by fate-mapping studies. METHODS AND RESULTS: We generate an inducible adult endocardial Cre line (Npr3 [natriuretic peptide receptor C]-CreER) and show that Npr3-CreER efficiently and specifically labels endocardial cells but not coronary blood vessels in the adult heart. The adult endocardial cells do not contribute to any vascular ECs during cardiac homeostasis. To examine the formation of blood vessels from endocardium after injury, we generate 4 cardiac injury models with Npr3-CreER mice: myocardial infarction, myocardial ischemia-reperfusion, cryoinjury, and transverse aortic constriction. Lineage tracing experiments show that adult endocardium minimally contributes to coronary ECs after myocardial infarction. In the myocardial ischemia-reperfusion, cryoinjury, or transverse aortic constriction models, adult endocardial cells do not give rise to any vascular ECs, and they remain on the inner surface of myocardium that connects with lumen circulation. In the myocardial infarction model, very few endocardial cells are trapped in the infarct zone of myocardium shortly after ligation of coronary artery, indicating the involvement of endocardial entrapment during blood vessels formation. When these adult endocardial cells are relocated and trapped in the infarcted myocardium by transplantation or myocardial constriction model, very few endocardial cells survive and gain vascular EC properties, and their contribution to neovascularization in the injured myocardium remains minimal. CONCLUSIONS: Unlike its fetal or neonatal counterpart, adult endocardium naturally generates minimal, if any, coronary arteries or vascular ECs during cardiac homeostasis or after injuries.


Subject(s)
Cell Lineage/genetics , Endocardium/cytology , Endothelium, Vascular/cytology , Neovascularization, Physiologic , Stem Cell Transplantation/methods , Animals , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Aortic Valve Stenosis/therapy , Cell Line , Cell Transdifferentiation , Coronary Vessels/cytology , Coronary Vessels/metabolism , Endocardium/metabolism , Endothelium, Vascular/metabolism , Humans , Mice , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/therapy , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/metabolism
16.
Exp Brain Res ; 238(1): 111-119, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31802149

ABSTRACT

After exiting the hindbrain, branchial motor axons reach their targets in association with sensory ganglia. The trigeminal ganglion has been shown to promote motor axon growth from rhombomeres 2/3 and 4/5, but it is unknown whether this effect is ganglion specific and through which signals it is mediated. Here, we addressed these questions by co-cultures of ventral rhombomere 8 explants with cranial and spinal sensory ganglia in a collagen gel matrix. Our results show that all cranial sensory ganglia and even a trunk dorsal root ganglion can promote motor axon growth and that ganglia isolated from older embryos had a stronger effect on the axonal growth than younger ones. We found that brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are necessary and sufficient for this effect. Altogether, our results demonstrate that the promoting effect of sensory ganglia on cranial motor axon growth is stage dependent, but not ganglion specific and is mediated by BDNF and NGF signals.


Subject(s)
Axons/physiology , Brain-Derived Neurotrophic Factor/physiology , Cranial Nerves/growth & development , Ganglia, Sensory/growth & development , Motor Neurons/physiology , Nerve Growth Factor/physiology , Animals , Chick Embryo , Ganglia, Spinal/growth & development
17.
J Cell Mol Med ; 23(12): 8328-8342, 2019 12.
Article in English | MEDLINE | ID: mdl-31612566

ABSTRACT

Thus far, the cellular and molecular mechanisms related to early (especially within 24 hours after acute myocardial infarct (MI)) exercise-mediated beneficial effects on MI have not yet been thoroughly established. In the present study, we demonstrated that acute MI rats that underwent early moderate exercise training beginning one day after MI showed no increase in mortality and displayed significant improvements in MI healing and ventricular remodelling, including an improvement in cardiac function, a decrease in infarct size, cardiomyocyte apoptosis, cardiac fibrosis and cardiomyocyte hypertrophy, and an increase in myocardial angiogenesis, left ventricular wall thickness and the number of cardiac telocytes in the border zone. Integrated miRNA-mRNA profiling analysis performed by the ingenuity pathway analysis system revealed that the inhibition of the TGFB1 regulatory network, activation of leucocytes and migration of leucocytes into the infarct zone comprise the molecular mechanism underlying early moderate exercise-mediated improvements in cardiac fibrosis and the pathological inflammatory response. The findings of the present study demonstrate that early moderate exercise training beginning one day after MI is safe and leads to significantly enhanced MI healing and ventricular remodelling. Understanding the mechanism behind the positive effects of this early training protocol will help us to further tailor suitable cardiac rehabilitation programmes for humans.


Subject(s)
Inflammation/physiopathology , Myocardial Infarction/physiopathology , Physical Conditioning, Animal/physiology , Ventricular Remodeling/physiology , Animals , Apoptosis/genetics , Disease Models, Animal , Echocardiography , Female , Gene Expression Profiling/methods , Gene Regulatory Networks , Heart/physiopathology , Humans , Inflammation/genetics , Inflammation/pathology , MicroRNAs/genetics , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , RNA, Messenger/genetics , Rats, Sprague-Dawley , Ventricular Remodeling/genetics
18.
Circulation ; 138(8): 793-805, 2018 08 21.
Article in English | MEDLINE | ID: mdl-29700121

ABSTRACT

BACKGROUND: Whether the adult mammalian heart harbors cardiac stem cells for regeneration of cardiomyocytes is an important yet contentious topic in the field of cardiovascular regeneration. The putative myocyte stem cell populations recognized without specific cell markers, such as the cardiosphere-derived cells, or with markers such as Sca1+, Bmi1+, Isl1+, or Abcg2+ cardiac stem cells have been reported. Moreover, it remains unclear whether putative cardiac stem cells with unknown or unidentified markers exist and give rise to de novo cardiomyocytes in the adult heart. METHODS: To address this question without relying on a particular stem cell marker, we developed a new genetic lineage tracing system to label all nonmyocyte populations that contain putative cardiac stem cells. Using dual lineage tracing system, we assessed whether nonmyocytes generated any new myocytes during embryonic development, during adult homeostasis, and after myocardial infarction. Skeletal muscle was also examined after injury for internal control of new myocyte generation from nonmyocytes. RESULTS: By this stem cell marker-free and dual recombinases-mediated cell tracking approach, our fate mapping data show that new myocytes arise from nonmyocytes in the embryonic heart, but not in the adult heart during homeostasis or after myocardial infarction. As positive control, our lineage tracing system detected new myocytes derived from nonmyocytes in the skeletal muscle after injury. CONCLUSIONS: This study provides in vivo genetic evidence for nonmyocyte to myocyte conversion in embryonic but not adult heart, arguing again the myogenic potential of putative stem cell populations for cardiac regeneration in the adult stage. This study also provides a new genetic strategy to identify endogenous stem cells, if any, in other organ systems for tissue repair and regeneration.


Subject(s)
Adult Stem Cells/physiology , Cell Differentiation , Cell Lineage , Cell Tracking/methods , Heart/embryology , Integrases/genetics , Mouse Embryonic Stem Cells/physiology , Myocytes, Cardiac/physiology , Adult Stem Cells/metabolism , Animals , Cell Proliferation , Disease Models, Animal , Escherichia coli Proteins/genetics , Female , Gene Expression Regulation, Developmental , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Mouse Embryonic Stem Cells/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/metabolism , Phenotype , Recombinases/genetics , Regeneration , Signal Transduction
19.
FASEB J ; : fj201800093, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29897811

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system has emerged as a powerful tool for knock-in of DNA fragments via donor plasmid and homology-independent DNA repair mechanism; however, conventional integration includes unnecessary plasmid backbone and may result in the unfaithful expression of the modified endogenous genes. Here, we report an efficient and precise CRISPR/Cas9-mediated integration strategy using a donor plasmid that harbors 2 of the same cleavage sites that flank the cassette at both sides. After the delivery of donor plasmid, together with Cas9 mRNA and guide RNA, into cells or fertilized eggs, concurrent cleavages at both sides of the exogenous cassette and the desired chromosomal site result in precise targeted integration without plasmid backbone. We successfully used this approach to precisely integrate the EGFP reporter gene into the myh6 locus or the GAPDH locus in Xenopus tropicalis or human cells, respectively. Furthermore, we demonstrate that replacing conventional terminators with the endogenous 3UTR of target genes in the cassette greatly improves the expression of reporter gene after integration. Our efficient and precise method will be useful for a variety of targeted genome modifications, not only in X. tropicalis, but also in mammalian cells, and can be readily adapted to many other organisms.-Mao, C.-Z., Zheng, L., Zhou, Y.-M., Wu, H.-Y., Xia, J.-B., Liang, C.-Q., Guo, X.-F., Peng, W.-T., Zhao, H., Cai, W.-B., Kim, S.-K., Park, K.-S., Cai, D.-Q., Qi, X.-F. CRISPR/Cas9-mediated efficient and precise targeted integration of donor DNA harboring double cleavage sites in Xenopus tropicalis.

20.
J Cell Physiol ; 233(5): 4245-4257, 2018 05.
Article in English | MEDLINE | ID: mdl-29057537

ABSTRACT

Unmethylated CpG oligodeoxynucleotide (CpG-ODN), a Toll-like receptor 9 (TLR9) ligand, has been shown to protect against myocardial ischemia/reperfusion injury. However, the potential effects of CpG-ODN on myocardial infarction (MI) induced by persistent ischemia remains unclear. Here, we investigated whether and how CpG-ODN preconditioning protects against MI in mice. C57BL/6 mice were treated with CpG-ODN by i.p. injection 2 hr prior to MI induction, and cardiac function, and histology were analyzed 2 weeks after MI. Both 1826-CpG and KSK-CpG preconditioning significantly improved the left ventricular (LV) ejection fraction (LVEF) and LV fractional shortening (LVFS) when compared with non-CpG controls. Histological analysis further confirmed the cardioprotection of CpG-ODN preconditioning. In vitro studies further demonstrated that CpG-ODN preconditioning increases cardiomyocyte survival under hypoxic/ischemic conditions by enhancing stress tolerance through TLR9-mediated inhibition of the SERCA2/ATP and activation of AMPK pathways. Moreover, CpG-ODN preconditioning significantly increased angiogenesis in the infarcted myocardium compared with non-CpG. However, persistent TLR9 activation mediated by lentiviral infection failed to improve cardiac function after MI. Although CpG-ODN preconditioning increased angiogenesis in vitro, both the persistent stimulation of CpG-ODN and stable overexpression of TLR9 suppressed the tube formation of cardiac microvascular endothelial cells. CpG-ODN preconditioning significantly protects cardiac function against MI by suppressing the energy metabolism of cardiomyocytes and promoting angiogenesis. Our data also indicate that CpG-ODN preconditioning may be useful in MI therapy.


Subject(s)
Myocardial Infarction/drug therapy , Neovascularization, Pathologic/drug therapy , Oligodeoxyribonucleotides/administration & dosage , Ventricular Function, Left/drug effects , Animals , Disease Models, Animal , Energy Metabolism/drug effects , Humans , Ischemic Preconditioning, Myocardial/methods , Mice , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Toll-Like Receptor 9/genetics
SELECTION OF CITATIONS
SEARCH DETAIL