Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Ecotoxicol Environ Saf ; 270: 115847, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38118333

ABSTRACT

Cadmium (Cd) is a dangerous heavy metal with high toxicity that is known to impair development. Astilbin (ASB) is a protective flavonoid compound. We aimed to explore whether ASB can antagonize the myocardial developmental toxicity of Cd exposure. Cd (2 µg) and/or ASB (0.002 µg) were injected into embryonized eggs that were 1 day old. Histological examinations revealed Cd-induced ventricular dilation, reduced wall thickness, and disrupted myocardial fiber connections, while co-administration of ASB mitigated these effects. Electron microscopy confirmed ASB's ability to counteract Cd-induced myocardial cell myofibril damage. Real-time quantitative PCR (QRT-PCR) and western blot (WB) molecular investigations revealed that Cd increased endoplasmic reticulum stress in myocardial tissue and primary cardiomyocytes, as shown by raised expression of stress-related genes (GRP78, XBP1, GRP94, ATF4, ATF6, IRE1, and CHOP). Moreover, Cd disrupted calcium homeostasis, affecting important genes linked to Ca2+ channels and causing an excess of Ca2+ in the cytoplasm. In addition, we detected genes related to development and differentiation-related genes in myocardial tissue and primary cardiomyocytes. The results showed that the downregulation of transcription factors in the IrxA cluster, Mefs, and Tbxs families after Cd exposure indicated that cardiac transcription was hindered and cardiac markers (TnnT2, TnnC1, Gata4, Gata6, and Nkx2-5) were abnormally expressed. ASB successfully mitigated these disturbances. During the cell cycle, primary cardiomyocytes undergo growth arrest in flow cytometry. These results suggest that the maturation and differentiation of cardiomyocytes are inhibited after Cd exposure, and ASB has an antagonistic effect on Cd. The present study indicated that Cd could trigger developmental cardiotoxicity in chicken embryos and primary cardiomyocytes by endoplasmic reticulum stress and Ca2+ overload, respectively, while ASB has an antagonistic effect.


Subject(s)
Cadmium , Cardiotoxicity , Flavonols , Chick Embryo , Animals , Humans , Cadmium/metabolism , Chickens/metabolism , Calcium/metabolism , Apoptosis , Endoplasmic Reticulum Stress , Homeostasis
2.
Pestic Biochem Physiol ; 200: 105830, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582593

ABSTRACT

Chlorantraniliprole (CAP) is a bis-amide pesticide used for pest control mainly in agricultural production activities and rice-fish co-culture systems. CAP residues cause liver damage in non-target organism freshwater fish. However, it is unclear whether CAP-exposure-induced liver injury in fish is associated with mitochondrial dysfunction-mediated mitophagy, ferroptosis, and cytokines. Therefore, we established grass carp hepatocyte models exposed to different concentrations of CAP (20, 40, and 80 µM) in vitro. MitoSOX probe, JC-1 staining, immunofluorescence double staining, Fe2+ staining, lipid peroxidation staining, qRT-PCR, and Western blot were used to verify the physiological regulatory mechanism of CAP induced liver injury. In the present study, the CAP-treated groups exhibited down-regulation of antioxidant-related enzyme activities and accumulation of peroxides. CAP treatment induced an increase in mitochondrial reactive oxygen species (mtROS) levels and altered expression of mitochondrial fission/fusion (Drp1, Fis1, Mfn1, Mfn2, and Opa1) genes in grass carp hepatocytes. In addition, mitophagy (Parkin, Pink1, p62, LC3II/I, and Beclin-1), ferroptosis (GPX4, COX2, ACSL4, FTH, and NCOA4), and cytokine (IFN-γ, IL-18, IL-17, IL-6, IL-10, IL-1ß, IL-2, and TNF-α)-related gene expression was significantly altered. Collectively, these findings suggest that CAP exposure drives mitophagy activation, ferroptosis occurrence, and cytokine homeostasis imbalance in grass carp hepatocytes by triggering mitochondrial dysfunction mediated by the mtROS-mitochondrial fission/fusion axis. This study partly explained the physiological regulation mechanism of grass carp hepatocyte injury induced by insecticide CAP from the physiological and biochemical point of view and provided a basis for evaluating the safety of CAP environmental residues to non-target organisms.


Subject(s)
Carps , Chemical and Drug Induced Liver Injury, Chronic , Ferroptosis , Mitochondrial Diseases , ortho-Aminobenzoates , Animals , Cytokines/genetics , Signal Transduction , Mitochondrial Dynamics , Mitophagy , Hepatocytes , Homeostasis
3.
Fish Shellfish Immunol ; 139: 108929, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37414307

ABSTRACT

Lambda-cyhalothrin (LCY) is a widely used toxic pesticide that causes harmful effects on the immune organs of fish and aquatic species. Micro-algal astaxanthin (MAA), a heme pigment found in haematococcus pluvialis, has been shown to benefit antioxidants and immunity in aquaculture. To investigate how MAA protects carp lymphocytes from LCY-induced immunotoxicity, a model of fish lymphocytes treated with LCY and/or MAA was established. Lymphocytes from carp (Cyprinus carpio L.) were given LCY (80 µM) and/or MAA (50 µM) as a treatment for a period of 24 h. Firstly, LCY exposure resulted in excessive ROS and malondialdehyde production and reduces antioxidant enzymes (SOD and CAT), indicating a reduced capacity of the antioxidant system. Secondly, the results of flow cytometry and AO/EB labeling proved that lymphocytes treated with LCY have a larger ratio of necroptosis. In addition, LCY upregulated the levels of necroptosis-related regulatory factors (RIP1, RIP3 and MLKL) via the ROS-mediated NF-κB signaling pathway in lymphocytes. Thirdly, LCY treatment caused increased secretion of inflammatory genes (IL-6, INF-γ, IL-4, IL-1ß and TNF-α), leading to immune dysfunction in lymphocytes. Surprisingly, LCY-induced immunotoxicity was inhibited by MAA treatment, indicating that it effectively attenuated the LCY-induced changes described above. Overall, we concluded that MAA treatment could ameliorate LCY-induced necroptosis and immune dysfunction by inhibiting the ROS-mediated NF-κB signaling in lymphocytes. It provides insights into the protection of farmed fish from agrobiological threats in fish under LCY and the value of MAA applications in aquaculture.


Subject(s)
Carps , NF-kappa B , Animals , NF-kappa B/metabolism , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Carps/metabolism , Necroptosis , Signal Transduction , Lymphocytes/metabolism
4.
Fish Shellfish Immunol ; 141: 109046, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37661035

ABSTRACT

Lambda-cyhalothrin (LC), a pyrethroid insecticide widely used in agriculture, causes immunotoxicity to aquatic organisms in the aquatic environment. Microalgal astaxanthin (MA) is a natural carotenoid that enhances viability of a variety of fish. To investigate the immunotoxicity of LC and the improvement effect of MA in lymphocytes (Cyprinus carpio), lymphocytes were treated with LC (80 M) and/or MA (50 M) for 24 h. Firstly, CCK8 combined with PI staining results showed that MA significantly attenuated the LC-induced lymphocyte death rate. Secondly, LC exposure resulted in excessively damaged mitochondrial and mtROS, diminished mitochondrial membrane potential and ATP content, which could be improved by MA. Thirdly, MA upregulated the levels of mitophagy-related regulatory factors (Beclin1, LC3, ATG5, Tom20 and Lamp2) induced by LC. Importantly, MA decreased the levels of pyroptosis-related genes treated with LC, including NLRP3, Cas-4, GSDMD and active Cas-1. Further study indicated that LC treatment caused excessive miRNA-194-5p and reduced levels of FoxO1, PINK1 and Parkin, which was inhibited by MA treatment. Overall, we concluded that MA could enhance damaged mitochondrial elimination by promoting the miRNA-194-5p-FoxO1-PINK1/Parkin-mitophagy in lymphocytes, which reduced mtROS accumulation and alleviated pyroptosis. It offers insights into the importance of MA application in aquaculture as well as the defense of farmed fish against agrobiological hazards in fish under LC.

5.
Cell Mol Life Sci ; 79(2): 106, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35094204

ABSTRACT

BACKGROUND: Txnrd3 as selenoprotein plays key roles in antioxidant process and sperm maturation. Inflammatory bowel diseases, such as ulcerative colitis and Crohn's disease, are becoming significantly increasing disease worldwide in recent years which are proved relative to diet, especially selenium intake. METHODS: In the present study, 8-week-old C57BL/6N male Txnrd3-/-, Txnrd3-/ + , Txnrd3 + / + mice, weight 25-30 g, were randomly chosen and each group with 30 mice. Feed 3.5% DSS drinking water and normal water continuously for 7 days. Mouse colon cancer cells (CT26) were cultured in vitro to establish Txnrd3 overexpressed/knocked-down model by cell transfection technology. Morphology and ultrastructure, calcium levels, ROS level, cell death were observed and detected in vivo and vitro. RESULTS: In Txnrd3-/-mice, ulcerative colitis was more severe, the morphological and ultrastructural lesions were also more prominent compared with wild-type mice, accompanied by the significantly increased expression of NLRP3, Caspase1, RIPK3, and MLKL. Overexpression of Txnrd3 could lead to increased oxidative stress through intracellular calcium outflow-induced oxidative stress increase followed by necrosis and pyroptosis pathway activation and further inhibit the growth and proliferation of colon cancer cells. CONCLUSION: Txnrd3 overexpression leads to intracellular calcium outflow and increased ROS, which eventually leads to necrosis and focal death of colon cancer cells, while causing Txnrd3-/- mice depth of the crypt deeper, weakened intestinal secretion and immune function and aggravate the occurrence of ulcerative colitis. The present study lays a foundation for the prevention and treatment of ulcerative colitis and colon carcinoma in clinic treatment.


Subject(s)
Carcinogenesis/genetics , Colitis, Ulcerative/genetics , Disease Models, Animal , Pyroptosis/genetics , Thioredoxin-Disulfide Reductase/genetics , Animals , Calcium/metabolism , Carcinogenesis/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colon/metabolism , Colon/pathology , Colon/ultrastructure , Dextran Sulfate , Gene Expression , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Necrosis/genetics , Reactive Oxygen Species/metabolism , Thioredoxin-Disulfide Reductase/metabolism
6.
Cell Mol Life Sci ; 79(7): 354, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35678878

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is related to a dysregulation of mitophagy, a process that is not fully understood. Parkin-related mitophagy can sustain mitochondrial homeostasis and hepatocyte viability. Herein, we report that selenoprotein M (SELENOM) plays a central role in maintaining mitophagy in high-fat diet (HFD)-mediated NAFLD. We show that SELENOM was significantly downregulated in the liver of HFD-fed mice. SELENOM deletion aggravated HFD-mediated hepatic steatosis, inflammation, and fibrosis; accompanied by enhanced fatty acid oxidation and oxidative stress in the liver. Molecular analyses show that lipotoxicity was related to increased mitochondrial apoptosis as evidenced by enhanced mitochondrial ROS production, and attenuation of mitochondrial potential in the liver of HFD-fed SELENOM-/- mice. Additionally, SELENOM deletion reduced mitophagy and aggravated hepatic injury in NAFLD. Mechanistically, SELENOM overexpression activated Parkin-mediated mitophagy to reduce mitochondrial apoptosis and remove HFD-damaged mitochondria. We further found that SELENOM regulates Parkin expression via the AMPKα1-MFN2 pathway; blockade of AMPKα1 prevented SELENOM activation of Parkin-mediated mitophagy. Our work identified SELENOM downregulation as a possible explanation for the defective mitophagy in NAFLD. Thus, targeting SELENOM may be potential new therapeutic modalities for NAFLD treatment.


Subject(s)
Mitophagy , Non-alcoholic Fatty Liver Disease , Animals , GTP Phosphohydrolases/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Selenoproteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
Ecotoxicol Environ Saf ; 265: 115521, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37757623

ABSTRACT

Nickel (Ni) exposure is a significant risk factor for kidney dysfunction and oxidative stress injury in humans. Thioredoxin reductase 3 (Txnrd3), an important enzyme in animals, plays a role in maintaining cellular homeostasis and regulating oxidative stress. However, its protective effect against kidney injury has been determined. Melatonin (Mel) has antioxidant and anti-apoptotic effects and therefore may be a preventive and therapeutic agent for kidney injury. Our study aimed to investigate the roles of Mel and Txnrd3 in the treatment of nickel-induced renal injury. We divided 80 wild-type mice and 80 Txnrd3 -/- mice (C57BL/6 N) into a control group treated with saline, Ni group treated with 10 mg/kg NiCl2, Mel group treated with 2 mg/kg Mel, and Ni + Mel group given NiCl2 and Mel for 21 days. Histopathological and ultrastructural observation of the kidney showed that nuclei were wrinkled and mitochondrial cristae were broken in the Ni group, and these changes were significantly attenuated by Mel treatment. Mitochondrial and nuclear damage improved significantly in the Ni + Mel and Txnrd3-/- Ni + Mel groups. Furthermore, NiCl2 exposure decreased T-AOC, SOD, and GSH activities in the kidney. The decreases in antioxidant enzyme activity were attenuated by Mel, and these improvements were abolished by Txnrd3 knockout. NiCl2-induced increases in the mRNA and protein levels of apoptosis factors (Bax, Cyt-c, caspase-3, and caspase-9) were attenuated by Mel treatment, and Txnrd3 knockout abolished the repressive effect of Mel on apoptosis genes. Overall, we concluded that Mel improves oxidative stress and apoptosis induced by NiCl2 by regulating Txnrd3 expression in the kidney. Our results provide evidence for the role of Mel in NiCl2-induced kidney injury and identify Txnrd3 as a potential therapeutic target for renal injury.

8.
Pestic Biochem Physiol ; 196: 105625, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945258

ABSTRACT

Cypermethrin (CYP, IUPAC name: [cyano-(3-phenoxyphenyl)methyl] 3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate) is a pyrethroid insecticide that poses a threat to the health of humans and aquatic animals due to its widespread use and environmental contamination. However, the mechanism of CYP on apoptosis, autophagy and inflammation in hepatocytes of carp (Cyprinus carpio) is unknown. We hypothesized that CYP caused damage to hepatocytes through the endoplasmic reticulum stress (ERS) pathway, CCK-8 was used to detect the toxic effects of different doses of CYP on hepatocytes, and finally low (L, 10 µM), medium (M, 40 µM), and high (H, 80 µM) doses of CYP was selected to construct the model. ROS staining, oxidative stress-related indices (MDA, CAT, T-AOC, SOD), AO/EB staining, MDC staining, and the expression levels of related genes were detected using qRT-PCR and western blot. Our results showed that CYP exposure resulted in an increase in ROS production, an increase in MDA content, and a decrease in the activity of CAT, SOD, and T-AOC in hepatocytes; the proportion of apoptotic, necrotic, and autophagic cells increased significantly in a dose-dependent manner. We also found that CYP exposure increased the expression levels of endoplasmic reticulum-related genes (GRP78, PERK, IRE-1, ATF-6 and CHOP), apoptosis (Bcl-2, Bax, Caspase-3, Caspase-9 and Cyt-c) and autophagy-related genes (LC3b, Beclin1 and P62) also showed dose-dependent changes, and the expression levels of inflammation-related genes (NF-κB, TNF-α, IL-1ß, IL-6) were also significantly elevated. Thus, we demonstrated that CYP exposure caused apoptosis, autophagy and inflammation in hepatocytes via ERS-ROS-NF-κB axis. This research contributes to our understanding of the molecular mechanisms underlying CYP-induced damage in hepatocytes of carp (Cyprinus carpio).


Subject(s)
Carps , Pyrethrins , Humans , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Carps/metabolism , Apoptosis , Pyrethrins/toxicity , Hepatocytes , Inflammation/chemically induced , Oxidative Stress , Superoxide Dismutase/metabolism , Autophagy , Endoplasmic Reticulum Stress
9.
Fish Shellfish Immunol ; 128: 228-237, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35940536

ABSTRACT

2,2,4,4-tetra-brominated diphenyl ether (PBDE-47)-the dominant homologue of polybrominated diphenyl ethers-is a toxic environmental pollutant in the aquatic environment that continuously exists and bioaccumulates in the aquatic food chain. In experimental disease models, melatonin (MEL) has been reported to attenuate necroptosis and inflammatory responses. To further explore the mechanism underlying PBDE-47 toxicity and the mitigative impact of MEL detoxification, in this study, fish kidney cell models of PBDE-47 poisoning and/or MEL treatment were developed. The Ctenopharyngodon idellus kidney (CIK) cell line was treated with PBDE-47 (100 µM) and/or MEL (60 µM) for 24 h. Experimental data suggest that PBDE-47 exposure resulted in the enhancement of cytoplasmic Ca2+ concentration, induction of calcium dysmetabolism, decrease in the miR-140-5p miRNA level, upregulation of Toll-like Receptor 4 (TLR4) and nuclear factor-kappaB (NF-κB), triggering of receptor interacting serine/threonine kinase-induced necroptosis, and NF-κB pathway mediated secretion of inflammatory factors in CIK cells. PBDE-47-induced CIK cell damage could be mitigated by MEL through the regulation of calcium channels and the restoration of disorders of the miR-140-5p/TLR4/NF-κB axis. Overall, MEL relieved PBDE-47-induced necroptosis and the secretion of inflammatory factors through the miR-140-5p/TLR4/NF-κB axis. These findings enrich the current understanding of the toxicological molecular mechanisms of the PBDE-47 as well as the detoxification mechanisms of the MEL.


Subject(s)
Environmental Pollutants , Melatonin , MicroRNAs , Polybrominated Biphenyls , Animals , Calcium/metabolism , Calcium Channels , Ether , Halogenated Diphenyl Ethers/toxicity , Kidney/metabolism , Melatonin/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , Necroptosis , Polybrominated Biphenyls/toxicity , Protein Serine-Threonine Kinases , Serine , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
10.
Fish Shellfish Immunol ; 125: 230-237, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35577320

ABSTRACT

As a kind of environmental pollutant, heavy metal Cadmium (Cd) exists widely in the environment. It is well known that Cd can accumulate and cause damage in liver, kidney and other organs. However, there are few studies on the immune cytotoxicity of Cd to fish. In particular, there are few studies on the toxicity of Cd to the head kidney lymphocytes of common carp. In order to further explore these mechanisms, we established an Cd exposure model in vitro. At the same time, we used the natural antioxidant astilbin (AST) to treat the cells to study its antagonistic effect on the toxicity of Cd. After exposure to Cd, the level of oxidative stress in head kidney lymphocytes increased, and the mRNA and protein expression of apoptosis-related markers Fas, FADD, Caspase8 and Caspase3 increased significantly (P < 0.05), which led to lymphocytes apoptosis. Hoechst staining and AO/EB staining also showed that the level of apoptosis increased after exposure to Cd. This is consistent with our previous research results. AST treatment reduced oxidative stress and apoptosis induced by Cd. In addition, oxidative stress inhibitor NAC could also reduce head kidney lymphocytes apoptosis induced by Cd, indicating that oxidative stress was involved in this process. Our results suggested that AST can alleviate the apoptosis of carp head kidney lymphocytes induced by Cd through oxidative stress. This study enriches the theoretical mechanism of Cd toxicity to fish head kidney lymphocytes, and puts forward a method to solve the toxicity of Cd, which provides a theoretical and research basis for the in vivo study of animal models in the future.


Subject(s)
Carps , Animals , Apoptosis , Cadmium/metabolism , Cadmium/toxicity , Flavonols , Head Kidney/metabolism , Lymphocytes , Oxidative Stress
11.
Ecotoxicol Environ Saf ; 232: 113276, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35123185

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) exist in aquatic environments with nephrotoxicity to non-target aquatic species. Melatonin (MT) exhibits an inhibitory effect of oxidative stress and apoptosis in various diseases. 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) is the main homolog of PBDE samples. Therefore, we investigated the toxic mechanism of BDE-47 and the alleviation effect of MT, the ctenopharyngodon idellus kidney (CIK) cells were treated with BDE-47 (100 µM) and/or MT (60 µM) for 24 h. Firstly, BDE-47 exposure could inhibit oxidative stress-related antioxidant enzymes (T-AOC, SOD, CAT and GPx) and increase the content of malondialdehyde (MDA) to cause oxidative stress. Secondly, BDE-47 enhanced mitochondrial division and inhibited fusion to induce mitochondrial membrane potential in CIK cells. BDE-47 enhanced the mRNA and protein levels of mitochondrial-pathway apoptosis related genes (Cas 3, Cyt-c, and BAX). Thirdly, BDE-47 treatment decreased the expression levels of mitochondrial-related regulatory factors AMPK-Sirt1-PGC-1α signal pathway. Intriguingly, BDE-47-induced oxidative stress, mitochondrial pathway apoptosis and mitochondrial dynamics disorder could be alleviated by MT treatment. Overall, we concluded that MT could relieve BDE-47-induced oxidative stress, mitochondrial dysfunction and apoptosis through the AMPK-Sirt1-PGC-1α axis. These results enrich the mechanisms of BDE-47 poisoning and reveal that MT treatment may be a potential strategy for solving BDE-47 poisoning.


Subject(s)
Carps , Melatonin , AMP-Activated Protein Kinases/metabolism , Animals , Apoptosis , Carps/metabolism , Ether/metabolism , Ether/pharmacology , Halogenated Diphenyl Ethers/metabolism , Halogenated Diphenyl Ethers/toxicity , Kidney/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Mitochondria/metabolism , Oxidative Stress , Sirtuin 1/genetics , Sirtuin 1/metabolism
12.
Ecotoxicol Environ Saf ; 245: 114124, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36179451

ABSTRACT

The insecticide chlorpyrifos plays an important role in agricultural production and is widely used because of its excellent insecticidal ability. However, the mechanism by which chlorpyrifos causes lymphocyte death remains unclear. In this study, transcriptomic techniques were used to analyze the head kidney tissues of carp (Cyprinus carpio) treated with chlorpyrifos. Subsequently, we screened out differentially expressed genes (DEGs) and performed the corresponding processing in the head kidney lymphocyte. Then, the intracellular calcium content and necrosis were detected by fluorescence staining, real-time fluorescence quantitative PCR, and flow cytometry. Our results showed that the expression of T cell receptor gamma (TCR γ) was significantly decreased, and TCR γ was inhibited after chlorpyrifos treatment. Also, TCR γ significantly increased the abundance of calcium channel messenger RNA (mRNA). To verify this result, we established the TCR γ overexpression group and found that the reverse results were observed in TCR γ of in the overexpression group. The results of cytoplasmic calcium concentration detection, calcium staining, and flow cytometry confirmed the conclusion of increased calcium in the cytoplasm. The function of TCR γ significantly enhanced the mRNA expression levels of necrosis-related genes, and this conclusion was evidenced by the result of necrotic flow detection. Our results showed that chlorpyrifos could inhibit TCR γ in carp lymphocytes and induce calcium-dependent necrosis.


Subject(s)
Carps , Chlorpyrifos , Insecticides , Water Pollutants, Chemical , Animals , Calcium/metabolism , Calcium Channels , Carps/genetics , Carps/metabolism , Chlorpyrifos/toxicity , Insecticides/toxicity , Lymphocytes/metabolism , Necrosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
13.
J Cell Physiol ; 236(1): 157-177, 2021 01.
Article in English | MEDLINE | ID: mdl-32542694

ABSTRACT

Long noncoding RNAs (LncRNAs) have been demonstrated to be associated with a variety of myocardial diseases, but how LncRNAs regulate autophagy in selenium (Se)-deficient myocardial injury is infrequently reported. Here, we screened out a novel long noncoding RNA, microRNA, and ATG7 through transcriptomic results. We employed a Se-deficient chicken model in vivo, and primary cultured cardiomyocytes treated by correlation in vitro. The results showed that Se deficiency upregulated the expression of ATG7, and miR-17-5p inhibited cardiomyocyte autophagy by targeting ATG7. Furthermore, we found that LncRNA 0003250 regulated miR-17-5p, and thus affected the expression of ATG7 and autophagic cell death. Our present study proposed a novel model for the regulation of cardiomyocytes autophagy, which includes LncRNA 0003250, miR-17-5p and ATG7 in the chicken heart. Our conclusions may provide a feasible diagnostic tool for Se-deficient cardiomyocyte injury.


Subject(s)
Autophagy/genetics , Chickens/genetics , Heart/physiopathology , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Selenium/deficiency , Animals , Myocytes, Cardiac/pathology , Transcriptome/genetics , Up-Regulation/genetics
14.
Ecotoxicol Environ Saf ; 209: 111801, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33383342

ABSTRACT

Hydrogen sulfide (H2S), a common air pollutant and toxic gas, is detrimental to organisms and the environment. Exposure to highly concentrated H2S can induce oxidative stress and autophagy. However, the mechanism underlying the liver damage caused by H2S has not been identified. Lipopolysaccharide (LPS), the key component of endotoxin, can induce oxidative stress and autophagy. For this experiment, we used one-day-old chickens as model organisms to evaluate the effects of H2S combined with LPS on oxidative stress and autophagy. The four groups (control group, LPS group, H2S group and H2S-LPS group) were observed by electron microscopy, detected by oxidative stress kit, analyzed by quantitative real-time quantitative PCR, and analyzed by Western blot. We found that the activities of antioxidant enzymes (superoxide dismutase, antioxidant glutathione, catalase, and glutathione peroxidase) decreased in the H2S group compared to those in the control group; however, malondialdehyde levels in the H2S group increased. Molecular-level studies showed that the expression of genes associated with the PI3K/ AKT/ TOR pathways in the H2S group decreased, whereas the expression of other autophagy-related genes (Beclin1, ATG5 and the ratio of LC3-II/ LC3-I) increased compared to that in the control group. These findings suggest that H2S caused oxidative stress and induced autophagy through the PI3K/ AKT/ TOR pathway in chicken liver cells. Additionally, exposure to H2S aggravated LPS-induced oxidative stress and autophagy injury. Capsule: Aerial exposure to H2S can cause oxidative stress in chicken livers and induce autophagy through the PI3K/AKT/TOR pathway, and can aggravate LPS-induced oxidative stress and autophagy.


Subject(s)
Hydrogen Sulfide/toxicity , Lipopolysaccharides/metabolism , Oxidative Stress/physiology , Animals , Antioxidants/metabolism , Autophagy/drug effects , Catalase/metabolism , Chickens/metabolism , Glutathione Peroxidase/metabolism , Hepatocytes/metabolism , Hydrogen Sulfide/metabolism , Liver Diseases , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Superoxide Dismutase/metabolism
15.
Fish Shellfish Immunol ; 99: 587-593, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32112891

ABSTRACT

Chlorpyrifos is an insecticide that is widely used in agricultural production. However, little is known about how chlorpyrifos disrupts lymphocyte homeostasis in common carp. Herein, we identified TCRγ through the results of transcriptome analysis. Subsequently, we established TCR γ knockdown and overexpression models in carp head kidney lymphocyte respectively using RNA interference and the pcDNA3.1 plasmid, respectively. Real-time PCR, fluorescent staining, ultrastructure observation and flow cytometry were used to detect the levels of the PI3K/AKT pathway, autophagy and apoptosis. Our results demonstrated that chlorpyrifos significantly decreased the expression of TCR γ, TCR γ suppression thereby induced increased mRNA expression of TNF-α, Bax, caspase-3, caspase-8, caspase-9 and significantly inhibited the expression of Bcl-2, which indicated that apoptosis was triggered. This conclusion was supported by our flow cytometry and ultrastructure observation results. In addition, the control and TCR γ overexpression groups had normal cell morphology. Moreover, TCR γ suppression activated the expression of Becline-1, ATG5, ATG10, ATG12, ATG16 and reduced the expression of mTOR, with the opposite results observed in the TCR γ overexpression group. Together, these results suggested that TCR γ imbalance triggers apoptosis and autophagy in lymphocyte. Moreover, we found that TCR γ knockdown significantly increased the mRNA expression of JNK and decreased the expression of PI3K and AKT, which indicated that the PI3K/AKT/JNK pathway was activated. Our results reported here indicated that chlorpyrifos induces apoptosis and autophagy in head kidney lymphocyte through the inhibition of TCR γ.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Carps/immunology , Chlorpyrifos/toxicity , Lymphocytes/drug effects , Signal Transduction/drug effects , Animals , Carps/genetics , Cells, Cultured , Gene Expression Profiling , Insecticides/toxicity , Lymphocytes/immunology , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/immunology
16.
Fish Shellfish Immunol ; 96: 26-31, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31794841

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP), a common pollutant in the water environment, has been reported to be associated with immune functions, especially aquatic organisms. However, whether DEHP exposure causes neutrophils toxicity in common carp is still unclear. To investigate the toxic effect of DEHP on immune functions, common carp neutrophils were exposed to DEHP (40 µmol/L and 200 µmol/L) for 2 h. The common carp neutrophils exposed to DEHP showed a decrease in neutrophil phagocytosis rate compared with control group. DEHP exposure induced a significant decrease in mRNA expression levels of inflammatory cytokines-related genes (Interleukin-6, Interleukin-8, transforming growth factor, tumor necrosis factor (TNF)-α, TNF-R1, TNF-T1, Interferon (IFN)-2a, IFN-g2b, IFN-g1) in common carp neutrophils, while the expression levels of IL-1ß and IL-10 were increased compared with control group (P < 0.05). Furthermore, the detection of cytochrome P450 enzyme related genes showed that the mRNA expression levels of CYP (cytochrome P450 proteins)-1A, CYP-1B1, CYP-C1, CYP-2K were significantly decreased, and the mRNA expression level of CYP-3A was significantly reduced (P < 0.05). The results indicated that DEHP could affect the phagocytic ability of neutrophils by regulating the expression of inflammatory cytokines and disrupting cytochrome P450 homeostasis, which caused the immunosuppression in common carp.


Subject(s)
Carps/immunology , Cytochrome P-450 Enzyme System/immunology , Diethylhexyl Phthalate/adverse effects , Fish Proteins/metabolism , Immune Tolerance/drug effects , Neutrophils/immunology , Water Pollutants, Chemical/adverse effects , Animals , Carps/metabolism , Homeostasis/immunology , Neutrophils/drug effects , Plasticizers/adverse effects
17.
J Fish Dis ; 43(4): 423-430, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32048311

ABSTRACT

Chlorpyrifos is a poisonous pesticide that is highly toxic to fish and aquatic organisms. However, there are fewer reports about how chlorpyrifos influences the redox balance of immune cells. Herein, the head kidney tissue treated with chlorpyrifos to do transcriptome analysis and TCR γ was screened out. Subsequently, we established TCR γ knockdown and overexpression carp head kidney lymphocyte models, respectively, by using RNA interference and pcDNA3.1. Real-time PCR, fluorescent staining, oxidation and antioxidant kit were used to detect the related factors. We found that TCR γ knockdown significantly increased the mRNA expression of HSP70 and HSP90 and decreased the mRNA expression of SOD and CAT. Meanwhile, TCR γ knockdown reduced the activities of GSH, GSG-PX, T-AOC, CAT and SOD and increased the content of MDA and H2 O2 and activities of iNOS. Adverse results were obtained in TCR γ overexpression group. Additionally, TCR γ knockdown significantly increased the mRNA expression of IFN-γ, IL-1ß, IL-8, IL-10, Nrf2 and NF-κB, but relieved TCR γ overexpression, in which the process of inflammation was activated. Our results reported here indicated that chlorpyrifos induces redox imbalance-dependent inflammation in common carp lymphocyte through dysfunction of T-cell receptor γ, and HSPs play potential protective role in entire process.


Subject(s)
Carps , Chlorpyrifos/adverse effects , Fish Diseases/physiopathology , Inflammation/veterinary , Insecticides/adverse effects , Receptors, Antigen, T-Cell, gamma-delta/drug effects , Water Pollutants, Chemical/adverse effects , Animals , Fish Diseases/chemically induced , Inflammation/chemically induced , Inflammation/physiopathology , Lymphocytes/drug effects , Oxidation-Reduction , Receptors, Antigen, T-Cell, gamma-delta/metabolism
18.
J Cell Physiol ; 234(6): 7828-7838, 2019 06.
Article in English | MEDLINE | ID: mdl-30515791

ABSTRACT

Glutathione peroxidase 3 (Gpx3), as an important selenoprotein, is the most crucial antioxidant defense in cardiomyocytes. However, the role of Gpx3 in Se-deficient cardiomyocyte damage still less reported. Here, we developed Gpx3 silence cardiomyocytes culture model (small interfering RNA; siRNA) for research the crosstalk between autophagy and apoptosis. Quantitative real-time PCR and western blot analysis are performed to detect the expression of apoptosis and autophagy-related genes. MDC stain, flow cytometry, AO/EB stain, and electron microscope were performed to observe the changes of cell morphology. Our results reveal that Gpx3 suppression can significant increases in ROS (p < 0.05) levels, which further induced apoptosis through upregulated the expression of Caspase-3 in cardiomyocytes. Meanwhile, we also found that the whole process is accompanied by the occurrence of autophagy, which are promoted by inhibiting the mTOR, and increasing the expression of ATG-7, ATG-10, and ATG-12. Altogether, we conclude that the apoptotic and autophagic response machineries share antagonistic function in Gpx3 knockdown cardiomyocytes.


Subject(s)
Apoptosis/genetics , Autophagy/genetics , Glutathione Peroxidase/genetics , Myocytes, Cardiac/metabolism , Animals , Autophagy-Related Proteins/genetics , Caspase 3/genetics , Chickens , Gene Expression Regulation/genetics , Gene Silencing , Glutathione Peroxidase/antagonists & inhibitors , Humans , RNA, Small Interfering/genetics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics
19.
Ecotoxicol Environ Saf ; 183: 109582, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31442803

ABSTRACT

Di-2-ethylhexyl phthalate (DEHP), widely used as a plasticizer, is a ubiquitous artificial pollutant. DEHP can induce biological toxicity in various organs, with an especially high potential for toxicity to the cardiovascular system. Taxifolin (TAX) is used in the treatment of cardiovascular diseases due to its antioxidative capacities. However, it is not clear whether TAX can alleviate apoptosis induced by DEHP exposure through the cytochrome P450 (CYP) pathway in cardiomyocytes. To understand the role of TAX in attenuating cardiomyocyte toxicity induced by DEHP, primary cardiomyocytes were divided into 4 groups (control group, DEHP group, TAX group and DEHP + TAX group). The results showed that in the cardiomyocytes, DEHP initiated apoptosis by increasing the expression of caspase-3, caspase-9, cyt c, and Bax at both the mRNA and protein levels and by decreasing the Bcl-2 levels compared with that of the control group. In addition, the activities of catalase (CAT), superoxide dismutase (SOD), and total antioxidative capacity (T-AOC) were clearly decreased (P < 0.05), while in the DEHP group, the malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels were observably increased (P < 0.05), compared with those in control group. Furthermore, compared with the control group, the DEHP group demonstrated a clear partial decrease in the expression of the mRNA levels of CYP1B1 and CYP2C18 (P < 0.05), and DEHP/TAX cotreatment partially prevented apoptosis and oxidative stress damage (P < 0.05). These results showed that exposure to DEHP induced apoptosis in chicken cardiomyocytes, while TAX could antagonize the toxicity of DEHP on cardiomyocytes by attenuating oxidative stress responses and modulating CYPs.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Diethylhexyl Phthalate/toxicity , Myocytes, Cardiac/drug effects , Plasticizers/toxicity , Quercetin/analogs & derivatives , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Cells, Cultured , Chickens , Homeostasis , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Quercetin/pharmacology
20.
Cell Physiol Biochem ; 51(2): 778-792, 2018.
Article in English | MEDLINE | ID: mdl-30463056

ABSTRACT

BACKGROUND/AIMS: Selenium (Se) deficiency can lead to several cardiac diseases, including Keshan disease in humans, mulberry heart disease in pigs and cardiac injury in chickens. MicroRNAs have been a research focus in recent years and have been shown to participate in a new avenue of cell death-autophagy, which can play a significant role in several types of heart disease. METHODS: MicroRNAome analysis showed that the expression of miR-2954 was increased in the myocardium of selenium-deficient chickens, and PI3K was predicted to be the target gene. The target relationship between miR-2954 and PI3K was verified with a double fluorescence enzyme assay and RNA Protein Interaction Prediction and molecular docking software. qRT-PCR and western blotting were used to detect the expression of PI3K and related pathway components in selenium-deficient chickens and miR-2954 knockout/overexpression cardiomyocytes. RESULTS: In this study, we observed that miR-2954 overexpression led to inhibition of PI3K pathway in vivo and in vitroled to inhibition of the PI3K pathway in vivo and in vitro. CONCLUSION: The expression of miR-2954 was increased in selenium-deficient myocardium, whereas overexpression of miR-2954 led to autophagy and apoptosis of myocardial cells during cardiac injury through regulation of the PI3K pathway; whether this phenomenon is a self-protection mechanism of the organism or damage caused by miR-2954 requires further study. Our findings provides new insight apoptosis in cardiomyocytes; additionally, we aim to provide a new direction for the diagnosis and targeted treatment of myocardial diseases.


Subject(s)
Apoptosis , Autophagy , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Selenium/deficiency , 3' Untranslated Regions , Animals , Antagomirs/metabolism , Autophagosomes/metabolism , Autophagosomes/pathology , Binding Sites , Caspase 3/genetics , Caspase 3/metabolism , Chickens , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Molecular Docking Simulation , Myocardium/metabolism , Myocardium/ultrastructure , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Nucleic Acid Conformation , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/genetics , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL