Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Cell ; 187(9): 2250-2268.e31, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38554706

ABSTRACT

Ubiquitin-dependent unfolding of the CMG helicase by VCP/p97 is required to terminate DNA replication. Other replisome components are not processed in the same fashion, suggesting that additional mechanisms underlie replication protein turnover. Here, we identify replisome factor interactions with a protein complex composed of AAA+ ATPases SPATA5-SPATA5L1 together with heterodimeric partners C1orf109-CINP (55LCC). An integrative structural biology approach revealed a molecular architecture of SPATA5-SPATA5L1 N-terminal domains interacting with C1orf109-CINP to form a funnel-like structure above a cylindrically shaped ATPase motor. Deficiency in the 55LCC complex elicited ubiquitin-independent proteotoxicity, replication stress, and severe chromosome instability. 55LCC showed ATPase activity that was specifically enhanced by replication fork DNA and was coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. These findings define 55LCC-mediated proteostasis as critical for replication fork progression and genome stability and provide a rationale for pathogenic variants seen in associated human neurodevelopmental disorders.


Subject(s)
Adenosine Triphosphatases , DNA Replication , Genomic Instability , Proteostasis , Humans , Adenosine Triphosphatases/metabolism , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , HEK293 Cells , Cell Cycle Proteins/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/genetics
2.
Nature ; 627(8003): 437-444, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383789

ABSTRACT

Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.


Subject(s)
Endoplasmic Reticulum , Protein Processing, Post-Translational , Ribosome Subunits, Large, Eukaryotic , Ubiquitin-Protein Ligases , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/ultrastructure , Cryoelectron Microscopy , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Homeostasis , Intracellular Membranes/metabolism , Peptidyl Transferases/chemistry , Peptidyl Transferases/metabolism , Peptidyl Transferases/ultrastructure , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosomal Proteins/ultrastructure , RNA, Transfer/metabolism , SEC Translocation Channels/chemistry , SEC Translocation Channels/metabolism , SEC Translocation Channels/ultrastructure , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/ultrastructure , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure , Ribosome Subunits, Large, Eukaryotic/chemistry , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Large, Eukaryotic/ultrastructure
3.
Mol Cell ; 74(4): 729-741.e7, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30982745

ABSTRACT

The nascent polypeptide-associated complex (NAC) is a conserved ribosome-associated protein biogenesis factor. Whether NAC exerts chaperone activity and whether this function is restricted to de novo protein synthesis is unknown. Here, we demonstrate that NAC directly exerts chaperone activity toward structurally diverse model substrates including polyglutamine (PolyQ) proteins, firefly luciferase, and Aß40. Strikingly, we identified the positively charged ribosome-binding domain in the N terminus of the ßNAC subunit (N-ßNAC) as a major chaperone entity of NAC. N-ßNAC by itself suppressed aggregation of PolyQ-expanded proteins in vitro, and the positive charge of this domain was critical for this activity. Moreover, we found that NAC also exerts a ribosome-independent chaperone function in vivo. Consistently, we found that a substantial fraction of NAC is non-ribosomal bound in higher eukaryotes. In sum, NAC is a potent suppressor of aggregation and proteotoxicity of mutant PolyQ-expanded proteins associated with human diseases like Huntington's disease and spinocerebellar ataxias.


Subject(s)
Amyloid beta-Peptides/genetics , Molecular Chaperones/genetics , Protein Aggregation, Pathological/genetics , Amyloid beta-Peptides/chemistry , Binding Sites/genetics , Humans , Huntington Disease/genetics , Huntington Disease/pathology , Luciferases/chemistry , Luciferases/genetics , Molecular Chaperones/chemistry , Peptides/chemistry , Peptides/genetics , Protein Binding/genetics , Protein Biosynthesis/genetics , Protein Domains/genetics , Protein Folding , Ribosomes/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology
4.
Nat Chem Biol ; 19(11): 1406-1414, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37770699

ABSTRACT

The flavoenzyme nicotine oxidoreductase (NicA2) is a promising injectable treatment to aid in the cessation of smoking, a behavior responsible for one in ten deaths worldwide. NicA2 acts by degrading nicotine in the bloodstream before it reaches the brain. Clinical use of NicA2 is limited by its poor catalytic activity in the absence of its natural electron acceptor CycN. Without CycN, NicA2 is instead oxidized slowly by dioxygen (O2), necessitating unfeasibly large doses in a therapeutic setting. Here, we report a genetic selection strategy that directly links CycN-independent activity of NicA2 to growth of Pseudomonas putida S16. This selection enabled us to evolve NicA2 variants with substantial improvement in their rate of oxidation by O2. The encoded mutations cluster around a putative O2 tunnel, increasing flexibility and accessibility to O2 in this region. These mutations further confer desirable clinical properties. A variant form of NicA2 is tenfold more effective than the wild type at degrading nicotine in the bloodstream of rats.


Subject(s)
Nicotine , Pseudomonas putida , Rats , Animals , Oxygen , Oxidoreductases/metabolism , Oxidation-Reduction
5.
J Am Chem Soc ; 146(18): 12702-12711, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683963

ABSTRACT

Oligomeric species populated during α-synuclein aggregation are considered key drivers of neurodegeneration in Parkinson's disease. However, the development of oligomer-targeting therapeutics is constrained by our limited knowledge of their structure and the molecular determinants driving their conversion to fibrils. Phenol-soluble modulin α3 (PSMα3) is a nanomolar peptide binder of α-synuclein oligomers that inhibits aggregation by blocking oligomer-to-fibril conversion. Here, we investigate the binding of PSMα3 to α-synuclein oligomers to discover the mechanistic basis of this protective activity. We find that PSMα3 selectively targets an α-synuclein N-terminal motif (residues 36-61) that populates a distinct conformation in the mono- and oligomeric states. This α-synuclein region plays a pivotal role in oligomer-to-fibril conversion as its absence renders the central NAC domain insufficient to prompt this structural transition. The hereditary mutation G51D, associated with early onset Parkinson's disease, causes a conformational fluctuation in this region, leading to delayed oligomer-to-fibril conversion and an accumulation of oligomers that are resistant to remodeling by molecular chaperones. Overall, our findings unveil a new targetable region in α-synuclein oligomers, advance our comprehension of oligomer-to-amyloid fibril conversion, and reveal a new facet of α-synuclein pathogenic mutations.


Subject(s)
alpha-Synuclein , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Humans , Parkinson Disease/metabolism , Amino Acid Motifs
6.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34615715

ABSTRACT

Rotavirus genomes are distributed between 11 distinct RNA molecules, all of which must be selectively copackaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 autoregulates its chaperone activity through its C-terminal region (CTR) that promotes RNA-RNA interactions by limiting its helix-unwinding activity. Unexpectedly, structural proteomics data revealed that the CTR does not directly interact with RNA, while accelerating RNA release from NSP2. Cryo-electron microscopy reconstructions of an NSP2-RNA complex reveal a highly conserved acidic patch on the CTR, which is poised toward the bound RNA. Virus replication was abrogated by charge-disrupting mutations within the acidic patch but completely restored by charge-preserving mutations. Mechanistic similarities between NSP2 and the unrelated bacterial RNA chaperone Hfq suggest that accelerating RNA dissociation while promoting intermolecular RNA interactions may be a widespread strategy of RNA chaperone recycling.


Subject(s)
Genome, Viral/genetics , RNA Folding/genetics , RNA, Viral/genetics , Rotavirus/growth & development , Viral Genome Packaging/genetics , Viral Nonstructural Proteins/metabolism , Cryoelectron Microscopy , Models, Molecular , Molecular Chaperones/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Rotavirus/genetics , Rotavirus/metabolism
7.
J Biol Chem ; 298(12): 102624, 2022 12.
Article in English | MEDLINE | ID: mdl-36272646

ABSTRACT

Broadly neutralizing antibodies have huge potential as novel antiviral therapeutics due to their ability to recognize highly conserved epitopes that are seldom mutated in viral variants. A subset of bovine antibodies possess an ultralong complementarity-determining region (CDR)H3 that is highly adept at recognizing such conserved epitopes, but their reactivity against Sarbecovirus Spike proteins has not been explored previously. Here, we use a SARS-naïve library to isolate a broadly reactive bovine CDRH3 that binds the receptor-binding domain of SARS-CoV, SARS-CoV-2, and all SARS-CoV-2 variants. We show further that it neutralizes viruses pseudo-typed with SARS-CoV Spike, but this is not by competition with angiotensin-converting enzyme 2 (ACE2) binding. Instead, using differential hydrogen-deuterium exchange mass spectrometry, we demonstrate that it recognizes the major site of vulnerability of Sarbecoviruses. This glycan-shielded cryptic epitope becomes available only transiently via interdomain movements of the Spike protein such that antibody binding triggers destruction of the prefusion complex. This proof of principle study demonstrates the power of in vitro expressed bovine antibodies with ultralong CDRH3s for the isolation of novel, broadly reactive tools to combat emerging pathogens and to identify key epitopes for vaccine development.


Subject(s)
Antibodies, Viral , Complementarity Determining Regions , Spike Glycoprotein, Coronavirus , Animals , Cattle , Antibodies, Neutralizing , Antibodies, Viral/genetics , Complementarity Determining Regions/genetics , Epitopes/genetics , SARS-CoV-2/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics
8.
Proc Natl Acad Sci U S A ; 117(41): 25523-25531, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32999060

ABSTRACT

Antibiotic resistance in clinically important bacteria can be mediated by target protection mechanisms, whereby a protein binds to the drug target and protects it from the inhibitory effects of the antibiotic. The most prevalent source of clinical resistance to the antibiotic fusidic acid (FA) is expression of the FusB family of proteins that bind to the drug target (Elongation factor G [EF-G]) and promote dissociation of EF-G from FA-stalled ribosome complexes. FusB binding causes changes in both the structure and conformational flexibility of EF-G, but which of these changes drives FA resistance was not understood. We present here detailed characterization of changes in the conformational flexibility of EF-G in response to FusB binding and show that these changes are responsible for conferring FA resistance. Binding of FusB to EF-G causes a significant change in the dynamics of domain III of EF-GC3 that leads to an increase in a minor, more disordered state of EF-G domain III. This is sufficient to overcome the steric block of transmission of conformational changes within EF-G by which FA prevents release of EF-G from the ribosome. This study has identified an antibiotic resistance mechanism mediated by allosteric effects on the dynamics of the drug target.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Drug Resistance, Bacterial/physiology , Fusidic Acid/pharmacology , Peptide Elongation Factor G , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Models, Molecular , Peptide Elongation Factor G/chemistry , Peptide Elongation Factor G/metabolism , Protein Conformation , Protein Domains
9.
Nat Chem Biol ; 16(9): 1019-1025, 2020 09.
Article in English | MEDLINE | ID: mdl-32572278

ABSTRACT

The ß-barrel assembly machinery (BAM) inserts outer membrane ß-barrel proteins (OMPs) in the outer membrane of Gram-negative bacteria. In Enterobacteriacea, BAM also mediates export of the stress sensor lipoprotein RcsF to the cell surface by assembling RcsF-OMP complexes. Here, we report the crystal structure of the key BAM component BamA in complex with RcsF. BamA adopts an inward-open conformation, with the lateral gate to the membrane closed. RcsF is lodged deep within the lumen of the BamA barrel, binding regions proposed to undergo outward and lateral opening during OMP insertion. On the basis of our structural and biochemical data, we propose a push-and-pull model for RcsF export following conformational cycling of BamA, and provide a mechanistic explanation for how RcsF uses its interaction with BamA to detect envelope stress. Our data also suggest that the flux of incoming OMP substrates is involved in the control of BAM activity.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/metabolism , Bacterial Outer Membrane Proteins/genetics , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Models, Molecular , Protein Conformation
10.
Nucleic Acids Res ; 46(15): 7924-7937, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29796667

ABSTRACT

To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA-RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA-RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.


Subject(s)
Molecular Chaperones/metabolism , Orthoreovirus, Avian/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Viral Nonstructural Proteins/metabolism , Base Sequence , Genome, Viral/genetics , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Nucleic Acid Conformation , Orthoreovirus, Avian/genetics , Protein Binding , Protein Structure, Secondary , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
11.
Methods ; 147: 187-205, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29510247

ABSTRACT

The last ∼25 years has seen mass spectrometry (MS) emerge as an integral method in the structural biology toolkit. In particular, MS has enabled the structural characterization of proteins and protein assemblies that have been intractable by other methods, especially those that are large, heterogeneous or transient, providing experimental evidence for their structural organization in support of, and in advance of, high resolution methods. The most recent frontier conquered in the field of MS-based structural biology has been the application of established methods for studying water soluble proteins to the more challenging targets of integral membrane proteins. The power of MS in obtaining structural information has been enabled by advances in instrumentation and the development of hyphenated mass spectrometry-based methods, such as ion mobility spectrometry-MS, chemical crosslinking-MS and other chemical labelling/footprinting-MS methods. In this review we detail the insights garnered into the structural biology of membrane proteins by applying such techniques. Application and refinement of these methods has yielded unprecedented insights in many areas, including membrane protein conformation, dynamics, lipid/ligand binding, and conformational perturbations due to ligand binding, which can be challenging to study using other methods.


Subject(s)
Mass Spectrometry/methods , Membrane Proteins/chemistry , Detergents/chemistry , Protein Conformation , Protein Folding
12.
Angew Chem Int Ed Engl ; 57(51): 16688-16692, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30393918

ABSTRACT

Analysing protein complexes by chemical crosslinking-mass spectrometry (XL-MS) is limited by the side-chain reactivities and sizes of available crosslinkers, their slow reaction rates, and difficulties in crosslink enrichment, especially for rare, transient or dynamic complexes. Here we describe two new XL reagents that incorporate a methanethiosulfonate (MTS) group to label a reactive cysteine introduced into the bait protein, and a residue-unbiased diazirine-based photoactivatable XL group to trap its interacting partner(s). Reductive removal of the bait transfers a thiol-containing fragment of the crosslinking reagent onto the target that can be alkylated and located by MS sequencing and exploited for enrichment, enabling the detection of low abundance crosslinks. Using these reagents and a bespoke UV LED irradiation platform, we show that maximum crosslinking yield is achieved within 10 seconds. The utility of this "tag and transfer" approach is demonstrated using a well-defined peptide/protein regulatory interaction (BID80-102 /MCL-1), and the dynamic interaction interface of a chaperone/substrate complex (Skp/OmpA).


Subject(s)
Cross-Linking Reagents/chemistry , Cysteine/chemistry , Mesylates/chemistry , Protein Interaction Maps , Proteins/chemistry , Mass Spectrometry , Molecular Structure , Photochemical Processes
13.
Anal Chem ; 89(17): 8844-8852, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28726379

ABSTRACT

Cys accessibility and quantitative intact mass spectrometry (MS) analyses have been devised to study the topological transitions of Mhp1, the membrane protein for sodium-linked transport of hydantoins from Microbacterium liquefaciens. Mhp1 has been crystallized in three forms (outward-facing open, outward-facing occluded with substrate bound, and inward-facing open). We show that one natural cysteine residue, Cys327, out of three, has an enhanced solvent accessibility in the inward-facing (relative to the outward-facing) form. Reaction of the purified protein, in detergent, with the thiol-reactive N-ethylmalemide (NEM), results in modification of Cys327, suggesting that Mhp1 adopts predominantly inward-facing conformations. Addition of either sodium ions or the substrate 5-benzyl-l-hydantoin (L-BH) does not shift this conformational equilibrium, but systematic co-addition of the two results in an attenuation of labeling, indicating a shift toward outward-facing conformations that can be interpreted using conventional enzyme kinetic analyses. Such measurements can afford the Km for each ligand as well as the stoichiometry of ion-substrate-coupled conformational changes. Mutations that perturb the substrate binding site either result in the protein being unable to adopt outward-facing conformations or in a global destabilization of structure. The methodology combines covalent labeling, mass spectrometry, and kinetic analyses in a straightforward workflow applicable to a range of systems, enabling the interrogation of changes in a protein's conformation required for function at varied concentrations of substrates, and the consequences of mutations on these conformational transitions.


Subject(s)
Bacterial Proteins/metabolism , Cysteine/metabolism , Mass Spectrometry , Membrane Transport Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Cysteine/chemistry , Ethylmaleimide/chemistry , Hydantoins/chemistry , Hydantoins/metabolism , Kinetics , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Micrococcaceae/metabolism , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Binding , Sodium/chemistry , Sodium/metabolism , Substrate Specificity
14.
Chembiochem ; 17(3): 239-46, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26676975

ABSTRACT

The amphibian skin is a vast resource for bioactive peptides, which form the basis of the animals' innate immune system. Key components of the secretions of the cutaneous glands are antimicrobial peptides (AMPs), which exert their cytotoxic effects often as a result of membrane disruption. It is becoming increasingly evident that there is a link between the mechanism of action of AMPs and amyloidogenic peptides and proteins. In this work, we demonstrate that the broad-spectrum amphibian AMP uperin 3.5, which has a random-coil structure in solution but adopts an α-helical structure in membrane-like environments, forms amyloid fibrils rapidly in solution at neutral pH. These fibrils are cytotoxic to model neuronal cells in a similar fashion to those formed by the proteins implicated in neurodegenerative diseases. The addition of small quantities of 2,2,2-trifluoroethanol accelerates fibril formation by uperin 3.5, and is correlated with a structural stabilisation induced by this co-solvent. Uperin 3.5 fibril formation and the associated cellular toxicity are inhibited by the polyphenol (-)-epigallocatechin-3-gallate (EGCG). Furthermore, EGCG rapidly dissociates fully formed uperin 3.5 fibrils. Ion mobility-mass spectrometry reveals that uperin 3.5 adopts various oligomeric states in solution. Combined, these observations imply that the mechanism of membrane permeability by uperin 3.5 is related to its fibril-forming properties.


Subject(s)
Amphibians/metabolism , Amyloid/metabolism , Antimicrobial Cationic Peptides/metabolism , Amino Acid Sequence , Amyloid/chemistry , Animals , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Catechin/analogs & derivatives , Catechin/chemistry , Cell Survival/drug effects , Circular Dichroism , PC12 Cells , Protein Structure, Secondary , Rats , Spectrometry, Mass, Electrospray Ionization
15.
Methods ; 89: 38-44, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25746386

ABSTRACT

Characterisation of the conformational states adopted during protein folding, including globally unfolded/disordered structures and partially folded intermediate species, is vital to gain fundamental insights into how a protein folds. In this work we employ fast photochemical oxidation of proteins (FPOP) to map the structural changes that occur in the folding of the four-helical bacterial immunity protein, Im7. Oxidative footprinting coupled with mass spectrometry (MS) is used to probe changes in the solvent accessibility of amino acid side-chains concurrent with the folding process, by quantifying the degree of oxidation experienced by the wild-type protein relative to a kinetically trapped, three-helical folding intermediate and an unfolded variant that lacks secondary structure. Analysis of the unfolded variant by FPOP-MS shows oxidative modifications consistent with the species adopting a solution conformation with a high degree of solvent accessibility. The folding intermediate, by contrast, experiences increased levels of oxidation relative to the wild-type, native protein only in regions destabilised by the amino acid substitutions introduced. The results demonstrate the utility of FPOP-MS to characterise protein variants in different conformational states and to provide insights into protein folding mechanisms that are complementary to measurements such as hydrogen/deuterium exchange labelling and Φ-value analysis.


Subject(s)
Bacterial Proteins/analysis , Hydroxyl Radical/analysis , Protein Folding , Protein Footprinting/methods , Spectrometry, Mass, Electrospray Ionization/methods , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Hydroxyl Radical/chemistry , Molecular Sequence Data , Protein Structure, Secondary
16.
Biochemistry ; 54(2): 567-76, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25436860

ABSTRACT

Calmodulin (CaM) is a ubiquitous protein in nature and plays a regulatory role in numerous biological processes, including the upregulation of nitric oxide (NO) synthesis in vivo. Several peptides that prevent NO production by interacting with CaM have been isolated in the cutaneous secretions of Australian amphibians, and are thought to serve as a defense mechanism against predators. In this work, we probe the mechanism by which three of these peptides, namely, caerin 1.8, dahlein 5.6, and a synthetic modification of citropin 1.1, interact with CaM to inhibit NO signaling. Isothermal titration calorimetry was used to determine thermodynamic parameters of the binding interactions and revealed that all the peptides bind to CaM in a similar fashion, with the peptide encapsulated between the two lobes of CaM. Ion mobility-mass spectrometry was used to investigate the changes in collision cross section that occur as a result of complexation, providing additional evidence for this binding mode. Finally, nuclear magnetic resonance spectroscopy was used to track chemical shift changes upon binding. The results obtained confirm that these complexes adopt canonical collapsed structures and demonstrate the strength of the interaction between the peptides and CaM. An understanding of these molecular recognition events provides insights into the underlying mechanism of the amphibian host-defense system.


Subject(s)
Amphibian Proteins/metabolism , Amphibians/metabolism , Antimicrobial Cationic Peptides/metabolism , Calmodulin/metabolism , Nitric Oxide Synthase Type I/metabolism , Oligopeptides/metabolism , Amino Acid Sequence , Amphibian Proteins/chemistry , Animals , Antimicrobial Cationic Peptides/chemistry , Models, Molecular , Molecular Sequence Data , Nitric Oxide/metabolism , Nuclear Magnetic Resonance, Biomolecular , Oligopeptides/chemistry , Protein Binding , Signal Transduction
17.
Biochim Biophys Acta ; 1844(9): 1481-5, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24769497

ABSTRACT

The accumulation of protein aggregates containing amyloid fibrils, with α-synuclein being the main component, is a pathological hallmark of Parkinson's disease (PD). Molecules which prevent the formation of amyloid fibrils or disassociate the toxic aggregates are touted as promising strategies to prevent or treat PD. In the present study, in vitro Thioflavin T fluorescence assays and transmission electron microscopy imaging results showed that gallic acid (GA) potently inhibits the formation of amyloid fibrils by α-synuclein. Ion mobility-mass spectrometry demonstrated that GA stabilises the extended, native structure of α-synuclein, whilst NMR spectroscopy revealed that GA interacts with α-synuclein transiently.


Subject(s)
Amyloid/chemistry , Gallic Acid/chemistry , alpha-Synuclein/chemistry , Amyloid/antagonists & inhibitors , Benzothiazoles , Flocculation , Fluorescent Dyes , Humans , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Protein Binding , Recombinant Proteins/chemistry , Spectrometry, Fluorescence , Thiazoles
18.
Anal Chem ; 87(2): 1118-26, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25495802

ABSTRACT

Noncovalent mass spectrometry (MS) is emerging as an invaluable technique to probe the structure, interactions, and dynamics of membrane proteins (MPs). However, maintaining native-like MP conformations in the gas phase using detergent solubilized proteins is often challenging and may limit structural analysis. Amphipols, such as the well characterized A8-35, are alternative reagents able to maintain the solubility of MPs in detergent-free solution. In this work, the ability of A8-35 to retain the structural integrity of MPs for interrogation by electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is compared systematically with the commonly used detergent dodecylmaltoside. MPs from the two major structural classes were selected for analysis, including two ß-barrel outer MPs, PagP and OmpT (20.2 and 33.5 kDa, respectively), and two α-helical proteins, Mhp1 and GalP (54.6 and 51.7 kDa, respectively). Evaluation of the rotationally averaged collision cross sections of the observed ions revealed that the native structures of detergent solubilized MPs were not always retained in the gas phase, with both collapsed and unfolded species being detected. In contrast, ESI-IMS-MS analysis of the amphipol solubilized MPs studied resulted in charge state distributions consistent with less gas phase induced unfolding, and the presence of lowly charged ions which exhibit collision cross sections comparable with those calculated from high resolution structural data. The data demonstrate that A8-35 can be more effective than dodecylmaltoside at maintaining native MP structure and interactions in the gas phase, permitting noncovalent ESI-IMS-MS analysis of MPs from the two major structural classes, while gas phase dissociation from dodecylmaltoside micelles leads to significant gas phase unfolding, especially for the α-helical MPs studied.


Subject(s)
Gases/chemistry , Glucosides/chemistry , Membrane Proteins/chemistry , Micelles , Polymers/chemistry , Propylamines/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Ions , Protein Conformation
19.
Int J Mass Spectrom ; 391: 54-61, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26869850

ABSTRACT

Membrane proteins (MPs) are essential for numerous important biological processes. Recently, mass spectrometry (MS), coupled with an array of related techniques, has been used to probe the structural properties of MPs and their complexes. Typically, detergent micelles have been employed for delivering MPs into the gas-phase, but these complexes have intrinsic properties that can limit the utility of structural studies of MPs using MS methods. Amphipols (APols) have advantages over detergent micelles and have been shown to be capable of delivering native MPs into the gas-phase. Comparing six different APols which vary in mass and charge, and the detergent n-dodecyl-ß-d-maltopyranoside, we aimed to determine which APols are most efficient for delivery of native outer membrane proteins (OMPs) into the gas-phase. We show that maintaining the solution-phase folding and global structures of three different OMPs (PagP, OmpT and tOmpA) are independent of the APol used, but differences in OMP activity can result from the different APol:OMP complexes. ESI-IMS-MS analysis of OMP:APol complexes shows that the A8-35 APol is most proficient at liberating all three OMPs into the gas-phase, without altering their gas-phase conformations.

20.
J Membr Biol ; 247(9-10): 909-24, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24652511

ABSTRACT

Amphipols are short amphipathic polymers that can substitute for detergents at the hydrophobic surface of membrane proteins (MPs), keeping them soluble in the absence of detergents while stabilizing them. The most widely used amphipol, known as A8-35, is comprised of a polyacrylic acid (PAA) main chain grafted with octylamine and isopropylamine. Among its many applications, A8-35 has proven particularly useful for solution-state NMR studies of MPs, for which it can be desirable to eliminate signals originating from the protons of the surfactant. In the present work, we describe the synthesis and properties of perdeuterated A8-35 (perDAPol). Perdeuterated PAA was obtained by radical polymerization of deuterated acrylic acid. It was subsequently grafted with deuterated amines, yielding perDAPol. The number-average molar mass of hydrogenated and perDAPol, ~4 and ~5 kDa, respectively, was deduced from that of their PAA precursors, determined by size exclusion chromatography in tetrahydrofuran following permethylation. Electrospray ionization-ion mobility spectrometry-mass spectrometry measurements show the molar mass and distribution of the two APols to be very similar. Upon neutron scattering, the contrast match point of perDAPol is found to be ~120% D2O. In (1)H-(1)H nuclear overhauser effect NMR spectra, its contribution is reduced to ~6% of that of hydrogenated A8-35, making it suitable for extended uses in NMR spectroscopy. PerDAPol ought to also be of use for inelastic neutron scattering studies of the dynamics of APol-trapped MPs, as well as small-angle neutron scattering and analytical ultracentrifugation.


Subject(s)
Deuterium Exchange Measurement/methods , Deuterium/chemistry , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Polymers/chemistry , Polymers/chemical synthesis , Propylamines/chemistry , Propylamines/chemical synthesis , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy/methods , Solubility , Solutions , Staining and Labeling/methods , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL