Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Mol Phylogenet Evol ; 197: 108111, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801965

ABSTRACT

Swallows (Hirundinidae) are a globally distributed family of passerine birds that exhibit remarkable similarity in body shape but tremendous variation in plumage, sociality, nesting behavior, and migratory strategies. As a result, swallow species have become models for empirical behavioral ecology and evolutionary studies, and variation across the Hirundinidae presents an excellent opportunity for comparative analyses of trait evolution. Exploiting this potential requires a comprehensive and well-resolved phylogenetic tree of the family. To address this need, we estimated swallow phylogeny using genetic data from thousands of ultraconserved element (UCE) loci sampled from nearly all recognized swallow species. Maximum likelihood, coalescent-based, and Bayesian approaches yielded a well-resolved phylogenetic tree to the generic level, with minor disagreement among inferences at the species level, which likely reflect ongoing population genetic processes. The UCE data were particularly useful in helping to resolve deep nodes, which previously confounded phylogenetic reconstruction efforts. Divergence time estimates from the improved swallow tree support a Miocene origin of the family, roughly 13 million years ago, with subsequent diversification of major groups in the late Miocene and Pliocene. Our estimates of historical biogeography support the hypothesis that swallows originated in the Afrotropics and have subsequently expanded across the globe, with major in situ diversification in Africa and a secondary major radiation following colonization of the Neotropics. Initial examination of nesting and sociality indicates that the origin of mud nesting - a relatively rare nest construction phenotype in birds - was a major innovation coincident with the origin of a clade giving rise to over 40% of extant swallow diversity. In contrast, transitions between social and solitary nesting appear less important for explaining patterns of diversification among swallows.


Subject(s)
Bayes Theorem , Phylogeny , Phylogeography , Swallows , Animals , Swallows/genetics , Swallows/classification , Likelihood Functions , Models, Genetic , Sequence Analysis, DNA , Evolution, Molecular
2.
Am Nat ; 201(1): 91-105, 2023 01.
Article in English | MEDLINE | ID: mdl-36524933

ABSTRACT

AbstractClimate change is altering species' habitats, phenology, and behavior. Although sexual behaviors impact population persistence and fitness, climate change's effects on sexual signals are understudied. Climate change can directly alter temperature-dependent sexual signals, cause changes in body size or condition that affect signal production, or alter the selective landscape of sexual signals. We tested whether temperature-dependent mating calls of Mexican spadefoot toads (Spea multiplicata) had changed in concert with climate in the southwestern United States across 22 years. We document increasing air temperatures, decreasing rainfall, and changing seasonal patterns of temperature and rainfall in the spadefoots' habitat. Despite increasing air temperatures, spadefoots' ephemeral breeding ponds have been getting colder at most elevations, and male calls have been slowing as a result. However, temperature-standardized call characters have become faster, and male condition has increased, possibly due to changes in the selective environment. Thus, climate change might generate rapid, complex changes in sexual signals with important evolutionary consequences.


Subject(s)
Anura , Climate Change , Animals , Male , Adaptation, Physiological , Reproduction , Ecosystem
3.
PLoS Genet ; 16(6): e1008805, 2020 06.
Article in English | MEDLINE | ID: mdl-32497039

ABSTRACT

Osteoporosis is a genetic disease characterized by progressive reductions in bone mineral density (BMD) leading to an increased risk of fracture. Over the last decade, genome-wide association studies (GWASs) have identified over 1000 associations for BMD. However, as a phenotype BMD is challenging as bone is a multicellular tissue affected by both local and systemic physiology. Here, we focused on a single component of BMD, osteoblast-mediated bone formation in mice, and identified associations influencing osteoblast activity on mouse Chromosomes (Chrs) 1, 4, and 17. The locus on Chr. 4 was in an intergenic region between Wnt4 and Zbtb40, homologous to a locus for BMD in humans. We tested both Wnt4 and Zbtb40 for a role in osteoblast activity and BMD. Knockdown of Zbtb40, but not Wnt4, in osteoblasts drastically reduced mineralization. Additionally, loss-of-function mouse models for both genes exhibited reduced BMD. Our results highlight that investigating the genetic basis of in vitro osteoblast mineralization can be used to identify genes impacting bone formation and BMD.


Subject(s)
Bone Density/genetics , DNA-Binding Proteins/physiology , Osteoblasts/metabolism , Animals , Cells, Cultured , DNA-Binding Proteins/genetics , Female , Male , Mice , Mice, Inbred C57BL , Osteoblasts/cytology , Osteogenesis/genetics , Wnt4 Protein/genetics
4.
Biol Lett ; 18(11): 20220310, 2022 11.
Article in English | MEDLINE | ID: mdl-36382373

ABSTRACT

Mating with another species is often maladaptive because it generally results in no or low-fitness offspring. When hybridization is sufficiently costly, individuals should avoid mating with heterospecifics even if it reduces their ability to mate with high-quality conspecifics that resemble heterospecifics. Here, we used spadefoot toads, Spea multiplicata, to evaluate whether females alter their preferences for conspecific male sexual signals (call rate) depending on heterospecific presence. When presented with conspecific signals against a background including both conspecific and heterospecific signals, females preferred male traits that were most dissimilar to heterospecifics-even though these signals are potentially associated with lower-quality mates. However, when these same females were presented with a background that included only conspecific signals, some females switched their preferences, choosing conspecific signals that were exaggerated and indicative of high-quality conspecific mates. Because only some females switched their preferences between these two chorus treatments, there was no population-level preference for exaggerated conspecific male signals in the absence of heterospecifics. These results show that hybridization risk can alter patterns of mate choice and, consequently, sexual selection on male signals. Moreover, they emphasize that the strength and expression of reproductive barriers between species (such as mate choice) can be context-dependent.


Subject(s)
Mating Preference, Animal , Humans , Animals , Male , Female , Hybridization, Genetic , Anura/genetics , Reproduction , Sexual Behavior, Animal
5.
PLoS Genet ; 15(5): e1008123, 2019 05.
Article in English | MEDLINE | ID: mdl-31042701

ABSTRACT

Bone mineral density (BMD) is a strong predictor of osteoporotic fracture. It is also one of the most heritable disease-associated quantitative traits. As a result, there has been considerable effort focused on dissecting its genetic basis. Here, we performed a genome-wide association study (GWAS) in a panel of inbred strains to identify associations influencing BMD. This analysis identified a significant (P = 3.1 x 10-12) BMD locus on Chromosome 3@52.5 Mbp that replicated in two separate inbred strain panels and overlapped a BMD quantitative trait locus (QTL) previously identified in a F2 intercross. The association mapped to a 300 Kbp region containing four genes; Gm2447, Gm20750, Cog6, and Lhfp. Further analysis found that Lipoma HMGIC Fusion Partner (Lhfp) was highly expressed in bone and osteoblasts. Furthermore, its expression was regulated by a local expression QTL (eQTL), which overlapped the BMD association. A co-expression network analysis revealed that Lhfp was strongly connected to genes involved in osteoblast differentiation. To directly evaluate its role in bone, Lhfp deficient mice (Lhfp-/-) were created using CRISPR/Cas9. Consistent with genetic and network predictions, bone marrow stromal cells (BMSCs) from Lhfp-/- mice displayed increased osteogenic differentiation. Lhfp-/- mice also had elevated BMD due to increased cortical bone mass. Lastly, we identified SNPs in human LHFP that were associated (P = 1.2 x 10-5) with heel BMD. In conclusion, we used GWAS and systems genetics to identify Lhfp as a regulator of osteoblast activity and bone mass.


Subject(s)
Bone and Bones/metabolism , Genome , Oncogene Proteins, Fusion/genetics , Osteoblasts/metabolism , Osteoporosis/genetics , Quantitative Trait Loci , Tetraspanins/genetics , Animals , Bone Density , Bone and Bones/pathology , Cell Differentiation , Chromosome Mapping , Female , Gene Expression , Genome-Wide Association Study , Humans , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mice , Mice, Knockout , Oncogene Proteins, Fusion/metabolism , Osteoblasts/pathology , Osteogenesis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Polymorphism, Single Nucleotide
6.
J Hered ; 111(1): 138-146, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31850499

ABSTRACT

Adaptive radiations are characterized by the rapid proliferation of species. Explaining how adaptive radiations occur therefore depends, in part, on identifying how populations become reproductively isolated-and ultimately become different species. Such reproductive isolation could arise when populations adapting to novel niches experience selection to avoid interbreeding and, consequently, evolve mating traits that minimize such hybridization via the process of reinforcement. Here, we highlight that a downstream consequence of reinforcement is divergence of conspecific populations, and this further divergence can instigate species proliferation. Moreover, we evaluate when reinforcement will-and will not-promote species proliferation. Finally, we discuss empirical approaches to test what role, if any, reinforcement plays in species proliferation and, consequently, in adaptive radiation. To date, reinforcement's downstream effects on species proliferation remain largely unknown and speculative. Because the ecological and evolutionary contexts in which adaptive radiations occur are conducive to reinforcement and its downstream consequences, adaptive radiations provide an ideal framework in which to evaluate reinforcement's role in diversification.


Subject(s)
Genetic Speciation , Hybridization, Genetic , Selection, Genetic , Adaptation, Biological , Animals , Ecosystem , Reproductive Isolation , Sexual Behavior, Animal
7.
Proc Natl Acad Sci U S A ; 111(37): 13397-402, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25197061

ABSTRACT

Polarization of light, and visual sensitivity to it, is pervasive across aquatic and terrestrial environments. Documentation of invertebrate use of polarized light is widespread from navigation and foraging to species recognition. However, studies demonstrating that polarization body patterning serves as a communication signal (e.g., with evidence of changes in receiver behavior) are rare among invertebrate taxa and conspicuously absent among vertebrates. Here, we investigate polarization-mediated communication by northern swordtails, Xiphophorus nigrensis, using a custom-built videopolarimeter to measure polarization signals and an experimental paradigm that manipulates polarization signals without modifying their brightness or color. We conducted mate choice trials in an experimental tank that illuminates a pair of males with light passed through a polarization filter and a diffusion filter. By alternating the order of these filters between males, we presented females with live males that differed in polarization reflectance by >200% but with intensity and color differences below detection thresholds (∼5%). Combining videopolarimetry and polarization-manipulated mate choice trials, we found sexually dimorphic polarized reflectance and polarization-dependent female mate choice behavior with no polarization-dependent courtship behavior by males. Male swordtails exhibit greater within-body and body-to-background polarization contrast than females, and females preferentially associate with high-polarization-reflecting males. We also found limited support that males increase polarization contrast in social conditions over asocial conditions. Polarization cues in mate choice contexts may provide aquatic vertebrates with enhanced detection of specific display features (e.g., movements, angular information), as well as a signaling mechanism that may enhance detection by intended viewers while minimizing detection by others.


Subject(s)
Animal Communication , Cyprinodontiformes/physiology , Light , Mating Preference, Animal , Animals , Contrast Sensitivity , Female , Male , Sex Characteristics , Social Behavior
8.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826475

ABSTRACT

Genome-wide association studies (GWASs) have identified many sources of genetic variation associated with bone mineral density (BMD), a clinical predictor of fracture risk and osteoporosis. Aside from the identification of causal genes, other difficult challenges to informing GWAS include characterizing the roles of predicted causal genes in disease and providing additional functional context, such as the cell type predictions or biological pathways in which causal genes operate. Leveraging single-cell transcriptomics (scRNA-seq) can assist in informing BMD GWAS by linking disease-associated variants to genes and providing a cell type context for which these causal genes drive disease. Here, we use large-scale scRNA-seq data from bone marrow-derived stromal cells cultured under osteogenic conditions (BMSC-OBs) from Diversity Outbred (DO) mice to generate cell type-specific networks and contextualize BMD GWAS-implicated genes. Using trajectories inferred from the scRNA-seq data, we identify networks enriched with genes that exhibit the most dynamic changes in expression across trajectories. We discover 21 network driver genes, which are likely to be causal for human BMD GWAS associations that colocalize with expression/splicing quantitative trait loci (eQTL/sQTL). These driver genes, including Fgfrl1 and Tpx2, along with their associated networks, are predicted to be novel regulators of BMD via their roles in the differentiation of mesenchymal lineage cells. In this work, we showcase the use of single-cell transcriptomics from mouse bone-relevant cells to inform human BMD GWAS and prioritize genetic targets with potential causal roles in the development of osteoporosis.

9.
J Bone Miner Res ; 38(9): 1350-1363, 2023 09.
Article in English | MEDLINE | ID: mdl-37436066

ABSTRACT

Genome-wide association studies (GWASs) have advanced our understanding of the genetics of osteoporosis; however, the challenge has been converting associations to causal genes. Studies have utilized transcriptomics data to link disease-associated variants to genes, but few population transcriptomics data sets have been generated on bone at the single-cell level. To address this challenge, we profiled the transcriptomes of bone marrow-derived stromal cells (BMSCs) cultured under osteogenic conditions from five diversity outbred (DO) mice using single-cell RNA-seq (scRNA-seq). The goal of the study was to determine if BMSCs could serve as a model to generate cell type-specific transcriptomic profiles of mesenchymal lineage cells from large populations of mice to inform genetic studies. By enriching for mesenchymal lineage cells in vitro, coupled with pooling of multiple samples and downstream genotype deconvolution, we demonstrate the scalability of this model for population-level studies. We demonstrate that dissociation of BMSCs from a heavily mineralized matrix had little effect on viability or their transcriptomic signatures. Furthermore, we show that BMSCs cultured under osteogenic conditions are diverse and consist of cells with characteristics of mesenchymal progenitors, marrow adipogenic lineage precursors (MALPs), osteoblasts, osteocyte-like cells, and immune cells. Importantly, all cells were similar from a transcriptomic perspective to cells isolated in vivo. We employed scRNA-seq analytical tools to confirm the biological identity of profiled cell types. SCENIC was used to reconstruct gene regulatory networks (GRNs), and we observed that cell types show GRNs expected of osteogenic and pre-adipogenic lineage cells. Further, CELLECT analysis showed that osteoblasts, osteocyte-like cells, and MALPs captured a significant component of bone mineral density (BMD) heritability. Together, these data suggest that BMSCs cultured under osteogenic conditions coupled with scRNA-seq can be used as a scalable and biologically informative model to generate cell type-specific transcriptomic profiles of mesenchymal lineage cells in large populations. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Collaborative Cross Mice , Mesenchymal Stem Cells , Mice , Animals , Collaborative Cross Mice/genetics , Cell Differentiation/genetics , Transcriptome/genetics , Genome-Wide Association Study , Single-Cell Gene Expression Analysis , Cells, Cultured , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Stromal Cells/metabolism , Bone Marrow Cells
10.
Infect Immun ; 80(12): 4463-73, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23045479

ABSTRACT

Clostridium difficile toxins A (TcdA) and B (TcdB) induce a pronounced systemic and intestinal inflammatory response. A(2B) adenosine receptors (A(2B)ARs) are the predominant adenosine receptors in the intestinal epithelium. We investigated whether A(2B)ARs are upregulated in human intestinal cells by TcdA or TcdB and whether blockade of A(2B)ARs can ameliorate C. difficile TcdA-induced enteritis and alter the outcome of C. difficile infection (CDI). Adenosine receptor subtype (A(1), A(2A), A(2B), and A(3)) mRNAs were assayed in HCT-8 cells. Ileal loops from wild-type rabbits and mice and A(2B)AR(-/-) mice were treated with TcdA, with or without the selective A(2B)AR antagonist ATL692 or PSB1115. A murine model of CDI was used to determine the effect of A(2B)AR deletion or blockade with the orally available agent ATL801, on clinical outcome, histopathology and intestinal interleukin-6 (IL-6) expression from infection. TcdA and TcdB upregulated A(2B)AR gene expression in HCT-8 cells. ATL692 decreased TcdA-induced secretion and epithelial injury in rabbit ileum. Deletion of A(2B)ARs reduced secretion and histopathology in TcdA-challenged mouse ileum. Deletion or blockade of A(2B)ARs reduced histopathology, IL-6 expression, weight loss, diarrhea, and mortality in C. difficile-infected mice. A(2B)ARs mediate C. difficile toxin-induced enteritis and disease. Inhibition of A(2B)AR activation may be a potential strategy to limit morbidity and mortality from CDI.


Subject(s)
Clostridioides difficile/pathogenicity , Colon , Enterocolitis, Pseudomembranous , Receptor, Adenosine A2B/metabolism , Animals , Bacterial Proteins/pharmacology , Bacterial Toxins/pharmacology , Cell Line, Tumor , Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Colon/microbiology , Colon/pathology , Disease Models, Animal , Enterocolitis, Pseudomembranous/microbiology , Enterocolitis, Pseudomembranous/pathology , Enterotoxins/pharmacology , Gene Expression Regulation , Humans , Ileum/microbiology , Ileum/pathology , Mice , Mice, Inbred C57BL , Rabbits , Receptor, Adenosine A2B/genetics
11.
BMC Infect Dis ; 12: 13, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22264229

ABSTRACT

BACKGROUND: Severe Clostridium difficile toxin-induced enteritis is characterized by exuberant intestinal tissue inflammation, epithelial disruption and diarrhea. Adenosine, through its action on the adenosine A2A receptor, prevents neutrophillic adhesion and oxidative burst and inhibits inflammatory cytokine production. Alanyl-glutamine enhances intestinal mucosal repair and decreases apoptosis of enterocytes. This study investigates the protection from enteritis by combination therapy with ATL 370, an adenosine A2A receptor agonist, and alanyl-glutamine in a rabbit and murine intestinal loop models of C. difficile toxin A-induced epithelial injury. METHODS: Toxin A with or without alanyl-glutamine was administered intraluminally to rabbit ileal or murine cecal loops. Animals were also given either PBS or ATL 370 parenterally. Ileal tissues were examined for secretion, histopathology, apoptosis, Cxcl1/KC and IL-10. RESULTS: ATL 370 decreased ileal secretion and histopathologic changes in loops treated with Toxin A. These effects were reversed by the A2A receptor antagonist, SCH 58261, in a dose-dependent manner. The combination of ATL 370 and alanyl-glutamine significantly further decreased ileal secretion, mucosal injury and apoptosis more than loops treated with either drug alone. ATL 370 and alanyl-glutamine also decreased intestinal tissue KC and IL-10. CONCLUSIONS: Combination therapy with an adenosine A2A receptor agonist and alanyl-glutamine is effective in reversing C. difficile toxin A-induced epithelial injury, inflammation, secretion and apoptosis in animals and has therapeutic potential for the management of C. difficile infection.


Subject(s)
Adenosine A2 Receptor Antagonists/administration & dosage , Bacterial Toxins/toxicity , Clostridioides difficile/pathogenicity , Dipeptides/administration & dosage , Enterotoxins/toxicity , Ileitis/pathology , Typhlitis/pathology , Animals , Apoptosis , Disease Models, Animal , Histocytochemistry , Ileitis/prevention & control , Male , Mice , Mice, Inbred C57BL , Rabbits , Treatment Outcome , Typhlitis/prevention & control
12.
Bone ; 164: 116524, 2022 11.
Article in English | MEDLINE | ID: mdl-36028119

ABSTRACT

There are over one million cases of failed bone repair in the U.S. annually, resulting in substantial patient morbidity and societal costs. Multiple candidate genes affecting bone traits such as bone mineral density have been identified in human subjects and animal models using genome-wide association studies (GWAS). This approach for understanding the genetic factors affecting bone repair is impractical in human subjects but could be performed in a model organism if there is sufficient variability and heritability in the bone regeneration response. Diversity Outbred (DO) mice, which have significant genetic diversity and have been used to examine multiple intact bone traits, would be an excellent possibility. Thus, we sought to evaluate the phenotypic distribution of bone regeneration, sex effects and heritability of intramembranous bone regeneration on day 7 following femoral marrow ablation in 47 12-week old DO mice (23 males, 24 females). Compared to a previous study using 4 inbred mouse strains, we found similar levels of variability in the amount of regenerated bone (coefficient of variation of 86 % v. 88 %) with approximately the same degree of heritability (0.42 v. 0.49). There was a trend toward more bone regeneration in males than females. The amount of regenerated bone was either weakly or not correlated with bone mass at intact sites, suggesting that the genetic factors responsible for bone regeneration and intact bone phenotypes are at least partially independent. In conclusion, we demonstrate that DO mice exhibit variation and heritability of intramembranous bone regeneration that will be suitable for future GWAS.


Subject(s)
Collaborative Cross Mice , Genome-Wide Association Study , Animals , Bone Density/genetics , Bone Regeneration/genetics , Bone and Bones , Collaborative Cross Mice/genetics , Female , Humans , Male , Mice , Phenotype
13.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33792563

ABSTRACT

Bone mineral density (BMD) is a highly heritable predictor of osteoporotic fracture. GWAS have identified hundreds of loci influencing BMD, but few have been functionally analyzed. In this study, we show that SNPs within a BMD locus on chromosome 14q32.32 alter splicing and expression of PAR-1a/microtubule affinity regulating kinase 3 (MARK3), a conserved serine/threonine kinase known to regulate bioenergetics, cell division, and polarity. Mice lacking Mark3 either globally or selectively in osteoblasts have increased bone mass at maturity. RNA profiling from Mark3-deficient osteoblasts suggested changes in the expression of components of the Notch signaling pathway. Mark3-deficient osteoblasts exhibited greater matrix mineralization compared with controls that was accompanied by reduced Jag1/Hes1 expression and diminished downstream JNK signaling. Overexpression of Jag1 in Mark3-deficient osteoblasts both in vitro and in vivo normalized mineralization capacity and bone mass, respectively. Together, these findings reveal a mechanism whereby genetically regulated alterations in Mark3 expression perturb cell signaling in osteoblasts to influence bone mass.


Subject(s)
Bone Density/genetics , Bone and Bones/metabolism , Chromosomes, Mammalian , Genetic Variation , Osteoblasts/metabolism , Protein Serine-Threonine Kinases , Signal Transduction/genetics , Animals , Bone and Bones/cytology , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , Mice , Mice, Knockout , Organ Size/genetics , Osteoblasts/cytology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
14.
Nat Commun ; 12(1): 3408, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099702

ABSTRACT

Genome-wide association studies (GWASs) for osteoporotic traits have identified over 1000 associations; however, their impact has been limited by the difficulties of causal gene identification and a strict focus on bone mineral density (BMD). Here, we use Diversity Outbred (DO) mice to directly address these limitations by performing a systems genetics analysis of 55 complex skeletal phenotypes. We apply a network approach to cortical bone RNA-seq data to discover 66 genes likely to be causal for human BMD GWAS associations, including the genes SERTAD4 and GLT8D2. We also perform GWAS in the DO for a wide-range of bone traits and identify Qsox1 as a gene influencing cortical bone accrual and bone strength. In this work, we advance our understanding of the genetics of osteoporosis and highlight the ability of the mouse to inform human genetics.


Subject(s)
Bone Density/genetics , Osteoporosis/genetics , Oxidoreductases Acting on Sulfur Group Donors/genetics , Animals , Cell Differentiation/genetics , Collaborative Cross Mice , Datasets as Topic , Female , Femur/physiology , Fluoresceins/administration & dosage , Fluorescent Dyes/administration & dosage , Genome-Wide Association Study , Glycosyltransferases/genetics , Humans , Male , Mesenchymal Stem Cells , Mice , Mice, Knockout , Osteoblasts , Osteogenesis/genetics , RNA-Seq , Single-Cell Analysis
15.
Cell Rep ; 32(11): 108145, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32937138

ABSTRACT

The "omnigenic" model of the genetic architecture of complex traits proposed two categories of causal genes: core and peripheral. Core genes are hypothesized to directly regulate disease and may serve as therapeutic targets. Using a cell-type- and time-point-specific gene co-expression network for mineralizing osteoblasts, we identify a co-expression module enriched for genes implicated by bone mineral density (BMD) genome-wide association studies (GWASs), correlated with in vitro osteoblast mineralization and associated with skeletal phenotypes in human monogenic disease and mouse knockouts. Four genes from this module (B4GALNT3, CADM1, DOCK9, and GPR133) are located within the BMD GWAS loci with colocalizing expression quantitative trait loci (eQTL) and exhibit altered BMD in mouse knockouts, suggesting that they are causal genetic drivers of BMD in humans. Our network-based approach identifies a "core" module for BMD and provides a resource for expanding our understanding of the genetics of bone mass.


Subject(s)
Bone Density/genetics , Gene Expression Regulation , Gene Regulatory Networks , Genome-Wide Association Study , Animals , Animals, Newborn , Calcification, Physiologic/genetics , Cell Differentiation/genetics , Humans , Mice, Knockout , Osteoblasts/cytology , Osteoblasts/metabolism , Transcription, Genetic , Transcriptome/genetics
16.
Cell Syst ; 4(1): 46-59.e4, 2017 01 25.
Article in English | MEDLINE | ID: mdl-27866947

ABSTRACT

Bone mineral density (BMD) is a highly heritable predictor of osteoporotic fracture. Genome-wide association studies (GWAS) for BMD have identified dozens of associations; yet, the genes responsible for most associations remain elusive. Here, we used a bone co-expression network to predict causal genes at BMD GWAS loci based on the premise that genes underlying a disease are often functionally related and functionally related genes are often co-expressed. By mapping genes implicated by BMD GWAS onto a bone co-expression network, we predicted and inferred the function of causal genes for 30 of 64 GWAS loci. We experimentally confirmed that two of the genes predicted to be causal, SPTBN1 and MARK3, are potentially responsible for the effects of GWAS loci on chromosomes 2p16.2 and 14q32.32, respectively. This approach provides a roadmap for the dissection of additional BMD GWAS associations. Furthermore, it should be applicable to GWAS data for a wide range of diseases.


Subject(s)
Bone Density/genetics , Osteoporosis/genetics , Animals , Bone and Bones/metabolism , Bone and Bones/physiology , Chromosome Mapping/methods , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/physiology , Osteoporosis/physiopathology , Osteoporotic Fractures , Phenotype , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/genetics , Spectrin/genetics , Transcriptome/genetics
17.
J Immunol ; 174(11): 6627-38, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15905501

ABSTRACT

A subpopulation of T cells, named regulatory T cells (T(reg) cells), has been shown to play a key role in tolerance and the prevention of autoimmunity. It is not known how changes in TCR signal strength during thymic T cell development affect the generation of a T(reg) population. In this study, we took two different strategies to modulate the TCR signal strength: an intrinsic approach, where signaling was enhanced by the loss of a negative regulator, and an extrinsic approach, where signaling strength was altered through variations in the concentrations of the selecting peptide. The tyrosine phosphatase Src homology region 2 domain-containing phosphatase 1 (SHP-1) is a known negative regulator of TCR-mediated signaling. motheaten mice, lacking expression of SHP-1, showed a 2- to 3-fold increase in the percentage of CD4(+)CD25(+) T(reg) cells within the CD4(+) T cells. Similarly, the percentage of T(reg) cells was heightened in fetal thymic organ cultures (FTOCs) derived from motheaten mice compared with wild-type FTOCs, thus establishing the thymic origin of these T(reg) cells. Using FTOCs derived from DO11.10 TCR transgenic mice, we demonstrated that exposure to increasing concentrations of the cognate OVA peptide favored the appearance of T(reg) cells. Our data suggest that the development of CD4(+)CD25(+) T(reg) cells is intrinsically different from non-T(reg) cells and that T(reg) cells are selectively enriched under conditions of enhanced negative selection. Our data also reveal a key role for the SHP-1-mediated regulation of TCR signal strength in influencing the ratio of T(reg) vs non-T(reg) cells.


Subject(s)
Cell Proliferation , Protein Tyrosine Phosphatases/deficiency , Protein Tyrosine Phosphatases/genetics , Receptors, Interleukin-2/biosynthesis , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Coculture Techniques , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred BALB C , Mice, Mutant Strains , Mice, Transgenic , Organ Culture Techniques , Ovalbumin/immunology , Protein Phosphatase 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , Protein Tyrosine Phosphatases/physiology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/physiology , Receptors, Interleukin-2/physiology , Signal Transduction/genetics , Signal Transduction/immunology , Spleen/cytology , Spleen/enzymology , Spleen/immunology , T-Lymphocytes, Regulatory/enzymology , Thymus Gland/cytology , Thymus Gland/enzymology , Thymus Gland/immunology
SELECTION OF CITATIONS
SEARCH DETAIL