Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters

Publication year range
1.
Nature ; 614(7946): 118-124, 2023 02.
Article in English | MEDLINE | ID: mdl-36697822

ABSTRACT

Diabetes represents a spectrum of disease in which metabolic dysfunction damages multiple organ systems including liver, kidneys and peripheral nerves1,2. Although the onset and progression of these co-morbidities are linked with insulin resistance, hyperglycaemia and dyslipidaemia3-7, aberrant non-essential amino acid (NEAA) metabolism also contributes to the pathogenesis of diabetes8-10. Serine and glycine are closely related NEAAs whose levels are consistently reduced in patients with metabolic syndrome10-14, but the mechanistic drivers and downstream consequences of this metabotype remain unclear. Low systemic serine and glycine are also emerging as a hallmark of macular and peripheral nerve disorders, correlating with impaired visual acuity and peripheral neuropathy15,16. Here we demonstrate that aberrant serine homeostasis drives serine and glycine deficiencies in diabetic mice, which can be diagnosed with a serine tolerance test that quantifies serine uptake and disposal. Mimicking these metabolic alterations in young mice by dietary serine or glycine restriction together with high fat intake markedly accelerates the onset of small fibre neuropathy while reducing adiposity. Normalization of serine by dietary supplementation and mitigation of dyslipidaemia with myriocin both alleviate neuropathy in diabetic mice, linking serine-associated peripheral neuropathy to sphingolipid metabolism. These findings identify systemic serine deficiency and dyslipidaemia as novel risk factors for peripheral neuropathy that may be exploited therapeutically.


Subject(s)
Diabetes Mellitus, Experimental , Insulin , Lipid Metabolism , Peripheral Nervous System Diseases , Serine , Animals , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Glycine/metabolism , Insulin/metabolism , Peripheral Nervous System Diseases/metabolism , Serine/metabolism , Diet, High-Fat , Adiposity , Sphingolipids/metabolism , Small Fiber Neuropathy , Dyslipidemias
2.
Acta Neuropathol ; 147(1): 60, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38526612

ABSTRACT

Preclinical studies indicate that diverse muscarinic receptor antagonists, acting via the M1 sub-type, promote neuritogenesis from sensory neurons in vitro and prevent and/or reverse both structural and functional indices of neuropathy in rodent models of diabetes. We sought to translate this as a potential therapeutic approach against structural and functional indices of diabetic neuropathy using oxybutynin, a muscarinic antagonist approved for clinical use against overactive bladder. Studies were performed using sensory neurons maintained in vitro, rodent models of type 1 or type 2 diabetes and human subjects with type 2 diabetes and confirmed neuropathy. Oxybutynin promoted significant neurite outgrowth in sensory neuron cultures derived from adult normal rats and STZ-diabetic mice, with maximal efficacy in the 1-100 nmol/l range. This was accompanied by a significantly enhanced mitochondrial energetic profile as reflected by increased basal and maximal respiration and spare respiratory capacity. Systemic (3-10 mg/kg/day s.c.) and topical (3% gel daily) oxybutynin reversed paw heat hypoalgesia in the STZ and db/db mouse models of diabetes and reversed paw tactile allodynia in STZ-diabetic rats. Loss of nerve profiles in the skin and cornea of db/db mice was also prevented by daily topical delivery of 3% oxybutynin for 8 weeks. A randomized, double-blind, placebo-controlled interventional trial was performed in subjects with type 2 diabetes and established peripheral neuropathy. Subjects received daily topical treatment with 3% oxybutynin gel or placebo for 6 months. The a priori designated primary endpoint, significant change in intra-epidermal nerve fibre density (IENFD) in skin biopsies taken before and after 20 weeks of treatments, was met by oxybutynin but not placebo. Secondary endpoints showing significant improvement with oxybutynin treatment included scores on clinical neuropathy, pain and quality of life scales. This proof-of-concept study indicates that muscarinic antagonists suitable for long-term use may offer a novel therapeutic opportunity for treatment of diabetic neuropathy. Trial registry number: NCT03050827.


Subject(s)
Diabetic Neuropathies , Muscarinic Antagonists , Animals , Humans , Mice , Rats , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/complications , Diabetic Neuropathies/pathology , Mandelic Acids , Muscarinic Antagonists/pharmacology , Muscarinic Antagonists/therapeutic use , Quality of Life , Receptors, Muscarinic , Diabetes Mellitus, Type 1
3.
Cell Mol Life Sci ; 79(4): 193, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35298717

ABSTRACT

Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBPß, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBPß overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBPß can be a promising therapeutic approach.


Subject(s)
Aging/metabolism , Axons/pathology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Energy Metabolism , Insulin-Like Growth Factor I/metabolism , Sensory Receptor Cells/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Axons/drug effects , Axons/metabolism , Base Sequence , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Respiration/drug effects , Cells, Cultured , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Energy Metabolism/drug effects , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Gene Expression Regulation/drug effects , Glycolysis/drug effects , HEK293 Cells , Humans , Insulin-Like Growth Factor I/genetics , Liver/metabolism , Male , Mitochondria/drug effects , Mitochondria/metabolism , NFATC Transcription Factors/metabolism , Neuronal Outgrowth/drug effects , Polymers/metabolism , Promoter Regions, Genetic/genetics , Protein Transport/drug effects , Rats, Sprague-Dawley , Sensory Receptor Cells/pathology , Signal Transduction/drug effects
4.
Proc Natl Acad Sci U S A ; 117(42): 26482-26493, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33020290

ABSTRACT

Obesity affects over 2 billion people worldwide and is accompanied by peripheral neuropathy (PN) and an associated poorer quality of life. Despite high prevalence, the molecular mechanisms underlying the painful manifestations of PN are poorly understood, and therapies are restricted to use of painkillers or other drugs that do not address the underlying disease. Studies have demonstrated that the gut microbiome is linked to metabolic health and its alteration is associated with many diseases, including obesity. Pathologic changes to the gut microbiome have recently been linked to somatosensory pain, but any relationships between gut microbiome and PN in obesity have yet to be explored. Our data show that mice fed a Western diet developed indices of PN that were attenuated by concurrent fecal microbiome transplantation (FMT). In addition, we observed changes in expression of genes involved in lipid metabolism and calcium handling in cells of the peripheral nerve system (PNS). FMT also induced changes in the immune cell populations of the PNS. There was a correlation between an increase in the circulating short-chain fatty acid butyrate and pain improvement following FMT. Additionally, butyrate modulated gene expression and immune cells in the PNS. Circulating butyrate was also negatively correlated with distal pain in 29 participants with varied body mass index. Our data suggest that the metabolite butyrate, secreted by the gut microbiome, underlies some of the effects of FMT. Targeting the gut microbiome, butyrate, and its consequences may represent novel viable approaches to prevent or relieve obesity-associated neuropathies.


Subject(s)
Fecal Microbiota Transplantation/methods , Obesity/microbiology , Peripheral Nervous System Diseases/therapy , Animals , Butyrates/metabolism , Diet, High-Fat , Diet, Western , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/drug effects , Gene Expression , Insulin Resistance , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Microbiota , Neuralgia/metabolism , Obesity/physiopathology , Peripheral Nervous System/metabolism , Peripheral Nervous System/physiology
5.
J Neuroinflammation ; 19(1): 57, 2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35219337

ABSTRACT

BACKGROUND: Peripheral neuropathy is a common and progressive disorder in the elderly that interferes with daily activities. It is of importance to find efficient treatments to treat or delay this age-related neurodegeneration. Silencing macrophages by reducing foamy macrophages showed significant improvement of age-related degenerative changes in peripheral nerves of aged mice. We previously demonstrated that activation of the cholesterol sensor Liver X receptor (LXR) with the potent agonist, GW3965, alleviates pain in a diet-induced obesity model. We sought to test whether LXR activation may improve neuropathy in aged mice. METHODS: 21-month-old mice were treated with GW3965 (25 mg/Kg body weight) for 3 months while testing for mechanical allodynia and thermal hyperalgesia. At termination, flow cytometry was used to profile dorsal root ganglia and sciatic nerve cells. Immune cells were sorted and analyzed for cholesterol and gene expression. Nerve fibers of the skin from the paws were analyzed. Some human sural nerves were also evaluated. Comparisons were made using either t test or one-way ANOVA. RESULTS: Treatment with GW3965 prevented the development of mechanical hypersensitivity and thermal hyperalgesia over time in aged mice. We also observed change in polarization and cholesterol content of sciatic nerve macrophages accompanied by a significant increase in nerve fibers of the skin. CONCLUSIONS: These results suggest that activation of the LXR may delay the PNS aging by modifying nerve-immune cell lipid content. Our study provides new potential targets to treat or delay neuropathy during aging.


Subject(s)
Peripheral Nervous System Diseases , Animals , Ganglia, Spinal/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Hyperalgesia/metabolism , Liver X Receptors/agonists , Mice , Peripheral Nervous System Diseases/metabolism , Sciatic Nerve/metabolism
6.
Neurol Sci ; 43(3): 1831-1838, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34518934

ABSTRACT

OBJECTIVE: We investigated rate-dependent depression (RDD) of the Hoffman reflex (H-reflex) in patients with amyotrophic lateral sclerosis (ALS), a degenerative disease with ventral horn involvement. PATIENTS AND METHODS: In this case-control study, we enrolled 27 patients with ALS and 30 matched healthy control subjects. Clinical and electrophysiological assessments, as well as RDD in response to various stimulation frequencies (0.5 Hz, 1 Hz, 3 Hz and 5 Hz), were compared between groups. Multiple clinical and electrophysiological factors were also explored to determine any underlying associations with RDD. RESULTS: The ALS group showed a significant loss of RDD across all frequencies compared to the control group, most notably following 1 Hz stimulation (19.1 ± 20.3 vs. 34.0 ± 13.7%, p = 0.003). Among factors that might influence RDD, the enlargement of the motor unit potential (MUP) showed a significant relationship with RDD following multifactor analysis of variance (p = 0.007) and Pearson correlation analysis (ρ = - 0.70, p < 0.001), while various upper motor neuron manifestations were not correlated with RDD values (p > 0.05). CONCLUSION: We report a loss of RDD in patients with ALS. The strong correlation detected between the RDD deficit and increased MUP suggests that RDD is a sensitive indicator of underlying spinal disinhibition in ALS. TRIAL REGISTRATION: ChiCTR2000038848, 10/7/2020 (retrospectively registered), http://www.chictr.org.cn/ .


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/complications , Case-Control Studies , Depression , Electrophysiological Phenomena , Humans , Motor Neurons/physiology
7.
J Pharmacol Exp Ther ; 374(1): 44-51, 2020 07.
Article in English | MEDLINE | ID: mdl-32327528

ABSTRACT

Muscarinic antagonists promote sensory neurite outgrowth in vitro and prevent and/or reverse multiple indices of peripheral neuropathy in rodent models of diabetes, chemotherapy-induced peripheral neuropathy, and HIV protein-induced neuropathy when delivered systemically. We measured plasma concentrations of the M1 receptor-selective muscarinic antagonist pirenzepine when delivered by subcutaneous injection, oral gavage, or topical application to the skin and investigated efficacy of topically delivered pirenzepine against indices of peripheral neuropathy in diabetic mice. Topical application of 2% pirenzepine to the paw resulted in plasma concentrations 6 hours postdelivery that approximated those previously shown to promote neurite outgrowth in vitro. Topical delivery of pirenzepine to the paw of mice with streptozotocin-induced diabetes dose-dependently (0.1%-10.0%) prevented tactile allodynia, thermal hypoalgesia, and loss of epidermal nerve fibers in the treated paw and attenuated large fiber motor nerve conduction slowing in the ipsilateral limb. Efficacy against some indices of neuropathy was also noted in the contralateral limb, indicating systemic effects following local treatment. Topical pirenzepine also reversed established paw heat hypoalgesia, whereas withdrawal of treatment resulted in a gradual decline in efficacy over 2-4 weeks. Efficacy of topical pirenzepine was muted when treatment was reduced from 5 to 3 or 1 day/wk. Similar local effects were noted with the nonselective muscarinic receptor antagonist atropine when applied either to the paw or to the eye. Topical delivery of muscarinic antagonists may serve as a practical therapeutic approach to treating diabetic and other peripheral neuropathies. SIGNIFICANCE STATEMENT: Muscarinic antagonist pirenzepine alleviates diabetic peripheral neuropathy when applied topically in mice.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/complications , Muscarinic Antagonists/administration & dosage , Muscarinic Antagonists/pharmacology , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Administration, Topical , Animals , Female , Mice , Mice, Inbred C57BL , Muscarinic Antagonists/therapeutic use , Peripheral Nervous System Diseases/complications
8.
Curr Diab Rep ; 18(1): 1, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29362940

ABSTRACT

PURPOSE OF REVIEW: Neuropathic pain may arise from multiple mechanisms and locations. Efficacy of current treatments for painful diabetic neuropathy is limited to an unpredictable subset of patients, possibly reflecting diversity of pain generator mechanisms, and there is a lack of targeted treatments for individual patients. This review summarizes preclinical evidence supporting a role for spinal disinhibition in painful diabetic neuropathy, the physiology and pharmacology of rate-dependent depression (RDD) of the spinal H-reflex and the translational potential of using RDD as a biomarker of spinally mediated pain. RECENT FINDINGS: Impaired RDD occurs in animal models of diabetes and was also detected in diabetic patients with painful vs painless neuropathy. RDD status can be determined using standard neurophysiological equipment. Loss of RDD may provide a clinical biomarker of spinal disinhibition, thereby enabling a personalized medicine approach to selection of current treatment options and enrichment of future clinical trial populations.


Subject(s)
Diabetic Neuropathies/physiopathology , H-Reflex/physiology , Neural Inhibition/physiology , Neuralgia/physiopathology , Animals , Biomarkers , Depression , Humans , Spinal Nerves/physiology , Spinal Nerves/physiopathology , gamma-Aminobutyric Acid/physiology
9.
Muscle Nerve ; 56(6): E100-E107, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28073155

ABSTRACT

INTRODUCTION: Deletion of myostatin in mice (MSTN-/- ) alters structural properties of peripheral axons. However, properties like axon diameter and myelin thickness were analyzed in mixed nerves, so it is unclear whether loss of myostatin affects motor, sensory, or both types of axons. METHODS: Using the MSTN-/- mouse model, we analyzed the effects of increasing the number of muscle fibers on axon diameter, myelin thickness, and internode length in motor and sensory axons. RESULTS: Axon diameter and myelin thickness were increased in motor axons of MSTN-/- mice without affecting internode length or axon number. The number of sensory axons was increased without affecting their structural properties. DISCUSSION: These results suggest that motor and sensory axons establish structural properties by independent mechanisms. Moreover, in motor axons, instructive cues from the neuromuscular junction may play a role in co-regulating axon diameter and myelin thickness, whereas internode length is established independently. Muscle Nerve 56: E100-E107, 2017.


Subject(s)
Axons/metabolism , Motor Neurons/metabolism , Myostatin/deficiency , Neural Conduction/physiology , Sensory Receptor Cells/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Neurons/cytology , Sensory Receptor Cells/cytology
10.
Proc Natl Acad Sci U S A ; 111(6): 2325-30, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24449858

ABSTRACT

Small-fiber neuropathy (SFN) is a disorder of peripheral nerves commonly found in patients with diabetes mellitus, HIV infection, and those receiving chemotherapy. The complexity of disease etiology has led to a scarcity of effective treatments. Using two models of progressive SFN, we show that overexpression of glial cell line-derived neurotrophic factor (GDNF) in skin keratinocytes or topical application of XIB4035, a reported nonpeptidyl agonist of GDNF receptor α1 (GFRα1), are effective treatments for SFN. We also demonstrate that XIB4035 is not a GFRα1 agonist, but rather it enhances GFRα family receptor signaling in conjunction with ligand stimulation. Taken together, our results indicate that topical application of GFRα/RET receptor signaling modulators may be a unique therapy for SFN, and we have identified XIB4035 as a candidate therapeutic agent.


Subject(s)
Erythromelalgia/drug therapy , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Proto-Oncogene Proteins c-ret/metabolism , Quinolines/therapeutic use , Signal Transduction , Administration, Topical , Animals , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Ligands , Mice , Mice, Transgenic , Quinolines/administration & dosage , Small Molecule Libraries
12.
Cell Mol Neurobiol ; 34(5): 643-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24682898

ABSTRACT

Mitochondrial dysfunction occurs in sensory neurons and contributes to diabetic neuropathy. Ciliary neurotrophic factor (CNTF) stimulates axon regeneration in type 1 diabetic rodents and prevents deficits in axonal caliber, nerve conduction, and thermal sensation. We tested the hypothesis that CNTF enhances sensory neuron function in diabetes through JAK/STAT (Janus kinase/signal transducers and activators of transcription) signaling to normalize impaired mitochondrial bioenergetics. The effect of CNTF on gene expression and neurite outgrowth of cultured adult dorsal root ganglia (DRG) sensory neurons derived from control and streptozotocin (STZ)-induced diabetic rodents was quantified. Polarization status and bioenergetics profile of mitochondria from cultured sensory neurons were determined. CNTF treatment prevented reduced STAT3 phosphorylation (Tyr 705) in DRG of STZ-diabetic mice and also enhanced STAT3 phosphorylation in rat DRG cultures. CNTF normalized polarization status of the mitochondrial inner membrane and corrected the aberrant oligomycin-induced mitochondrial hyperpolarization in axons of diabetic neurons. The mitochondrial bioenergetics profile demonstrated that spare respiratory capacity and respiratory control ratio were significantly depressed in sensory neurons cultured from STZ-diabetic rats and were corrected by acute CNTF treatment. The positive effects of CNTF on neuronal mitochondrial function were significantly inhibited by the specific JAK inhibitor, AG490. Neurite outgrowth of sensory neurons from age-matched control and STZ-induced diabetic rats was elevated by CNTF and blocked by AG490. We propose that CNTF's ability to enhance axon regeneration and protect from fiber degeneration in diabetes is associated with its targeting of mitochondrial function and improvement of cellular bioenergetics, in part, through JAK/STAT signaling.


Subject(s)
Ciliary Neurotrophic Factor/pharmacology , Diabetes Mellitus, Experimental/metabolism , Energy Metabolism/physiology , Janus Kinases/metabolism , STAT3 Transcription Factor/metabolism , Sensory Receptor Cells/metabolism , Animals , Cells, Cultured , Ciliary Neurotrophic Factor/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Energy Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology
13.
J Neurosci ; 32(18): 6209-19, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22553027

ABSTRACT

Maturation of the peripheral nervous system requires specification of axonal diameter, which, in turn, has a significant influence on nerve conduction velocity. Radial axonal growth initiates with myelination, and is dependent upon the C terminus of neurofilament medium (NF-M). Molecular phylogenetic analysis in mammals suggested that expanded NF-M C termini correlated with larger-diameter axons. We used gene targeting and computational modeling to test this new hypothesis. Increasing the length of NF-M C terminus in mice increased diameter of motor axons without altering neurofilament subunit stoichiometry. Computational modeling predicted that an expanded NF-M C terminus extended farther from the neurofilament core independent of lysine-serine-proline (KSP) phosphorylation. However, expansion of NF-M C terminus did not affect the distance between adjacent neurofilaments. Increased axonal diameter did not increase conduction velocity, possibly due to a failure to increase myelin thickness by the same proportion. Failure of myelin to compensate for larger axonal diameters suggested a lack of plasticity during the processes of myelination and radial axonal growth.


Subject(s)
Axons/physiology , Axons/ultrastructure , Myelin Sheath/metabolism , Myelin Sheath/ultrastructure , Neural Conduction/physiology , Neurofilament Proteins/metabolism , Neurofilament Proteins/ultrastructure , Animals , Cells, Cultured , Mice , Mice, Transgenic , Protein Conformation
14.
Hum Mol Genet ; 20(13): 2535-48, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21493625

ABSTRACT

Mutations in neurofilament light (NF-L) have been linked to Charcot-Marie-Tooth disease type 2E (CMT2E) in humans. To provide insight into disease pathogenesis, we developed a novel line of CMT2E mice that constitutively express human NF-L (hNF-L) with a glutamic acid to lysine mutation at position 397 (hNF-L(E397K)). This new line of mice developed signs consistent with CMT2E patients. Disease signs were first observed at 4 months in hNF-L(E397K) mice, and consisted of aberrant hind limb posture, digit deformities, reduced voluntary locomotor activity, reduced motor nerve conduction velocities (MNCVs) and muscle atrophy. Reduced voluntary locomotor activity and muscle pathology occurred without significant denervation, and hNF-L(E397K) mice showed relatively mild signs of nerve pathology. Nerve pathology in hNF-L(E397K) mice was characterized by ectopic accumulations of phosphorylated NFs in motor neuron cell bodies as early as 1 month. Moreover, NF organization was altered in motor and sensory roots, with small motor axons being most affected. Peak axonal diameter was reduced for small motor axons prior to and after the onset of overt phenotypes, whereas large motor axons were affected only after onset, which correlated with reduced MNCVs. Additionally, there was a small reduction in the number of sensory axons in symptomatic hNF-L(E397K) mice. hNF-L(E397K) mice are a novel line of CMT2E mice that recapitulate many of the overt phenotypes observed in CMT2E patients and hNF-L(P22S) mice. The cellular pathology observed in hNF-L(E397K) mice differed from that recently reported in hNF-L(P22S) mice, suggesting that overt CMT2E phenotypes may arise through different cellular mechanisms.


Subject(s)
Charcot-Marie-Tooth Disease/pathology , Disease Models, Animal , Muscles/pathology , Nerve Tissue/pathology , Animals , Axons/pathology , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Humans , Mice , Mice, Transgenic , Motor Neurons/metabolism , Motor Neurons/pathology , Muscle Denervation , Muscles/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Mutation/genetics , Nerve Tissue/metabolism , Neural Conduction/genetics , Neurofilament Proteins/genetics , Phenotype , Phosphorylation/genetics
15.
J Peripher Nerv Syst ; 18(4): 306-15, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24147903

ABSTRACT

We developed a reliable imaging and quantitative analysis method for in vivo corneal confocal microscopy (CCM) in rodents and used it to determine whether models of type 1 diabetes replicate the depletion of corneal nerves reported in diabetic patients. Quantification was reproducible between observers and stable across repeated time points in two rat strains. Longitudinal studies were performed in normal and streptozotocin (STZ)-diabetic rats, with innervation of plantar paw skin quantified using standard histological methods after 40 weeks of diabetes. Diabetic rats showed an initial increase, then a gradual reduction in occupancy of nerves in the sub-basal plexus so that values were significantly lower at week 40 (68 ± 6%) than age-matched controls (80 ± 2%). No significant loss of stromal or intra-epidermal nerves was detected. In a separate study, insulin was applied daily to the eye of control and STZ-diabetic mice and this treatment prevented depletion of nerves of the sub-basal plexus. Longitudinal studies are viable in rodents using CCM and depletion of distal corneal nerves precedes detectable loss of epidermal nerves in the foot, suggesting that diabetic neuropathy is not length dependent. Loss of insulin-derived neurotrophic support may contribute to the pathogenesis of corneal nerve depletion in type 1 diabetes.


Subject(s)
Cornea/innervation , Microscopy, Confocal/methods , Monitoring, Physiologic/methods , Nerve Fibers/pathology , Peripheral Nervous System Diseases/pathology , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/etiology , Disease Models, Animal , Glycated Hemoglobin/metabolism , Insulin/blood , Insulin/pharmacology , Insulin/therapeutic use , Mice , Microscopy, Confocal/instrumentation , Monitoring, Physiologic/instrumentation , Peripheral Nervous System Diseases/blood , Peripheral Nervous System Diseases/etiology , Rats , Skin/innervation , Streptozocin/toxicity
16.
Brain ; 135(Pt 6): 1751-66, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22561641

ABSTRACT

Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3-5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Ganglia, Spinal/pathology , Mitochondrial Diseases/pathology , Peripheral Nervous System Diseases/pathology , Sensory Receptor Cells/enzymology , Signal Transduction/physiology , Adenosine Triphosphate/pharmacology , Analysis of Variance , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Blood Glucose/drug effects , Body Weight/drug effects , Cells, Cultured , Diabetes Mellitus, Experimental/complications , Disease Models, Animal , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hyperalgesia/physiopathology , Male , Membrane Potentials/genetics , Mice , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/etiology , Mitochondrial Membranes/drug effects , Mutation/genetics , Nerve Fibers, Myelinated/pathology , Neurites/pathology , Oxygen Consumption/drug effects , Patch-Clamp Techniques , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/etiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Stimulation/adverse effects , RNA-Binding Proteins/metabolism , Rats , Rats, Sprague-Dawley , Reaction Time/drug effects , Reaction Time/genetics , Resveratrol , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/pathology , Signal Transduction/drug effects , Stilbenes/therapeutic use , Transcription Factors/metabolism , Transduction, Genetic
17.
Brain Commun ; 5(2): fcad051, 2023.
Article in English | MEDLINE | ID: mdl-36938521

ABSTRACT

The dominant sensory phenotype in patients with diabetic polyneuropathy and neuropathic pain is a loss of function. This raises questions as to which mechanisms underlie pain generation in the face of potentially reduced afferent input. One potential mechanism is spinal disinhibition, whereby a loss of spinal inhibition leads to increased ascending nociceptive drive due to amplification of, or a failure to suppress, incoming signals from the periphery. We aimed to explore whether a putative biomarker of spinal disinhibition, impaired rate-dependent depression of the Hoffmann reflex, is associated with a mechanistically appropriate and distinct pain phenotype in patients with painful diabetic neuropathy. In this cross-sectional study, 93 patients with diabetic neuropathy underwent testing of Hoffmann reflex rate-dependent depression and detailed clinical and sensory phenotyping, including quantitative sensory testing. Compared to neuropathic patients without pain, patients with painful diabetic neuropathy had impaired Hoffmann reflex rate-dependent depression at 1, 2 and 3 Hz (P ≤ 0.001). Patients with painful diabetic neuropathy exhibited an overall loss of function profile on quantitative sensory testing. However, within the painful diabetic neuropathy group, cluster analysis showed evidence of greater spinal disinhibition associated with greater mechanical pain sensitivity, relative heat hyperalgesia and higher ratings of spontaneous burning pain. These findings support spinal disinhibition as an important centrally mediated pain amplification mechanism in painful diabetic neuropathy. Furthermore, our analysis indicates an association between spinal disinhibition and a distinct phenotype, arguably akin to hyperpathia, with combined loss and relative gain of function leading to increasing nociceptive drive.

18.
Acta Neuropathol ; 124(4): 561-73, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22791295

ABSTRACT

Diabetic neuropathy includes damage to neurons, Schwann cells and blood vessels. Rodent models of diabetes do not adequately replicate all pathological features of diabetic neuropathy, particularly Schwann cell damage. We, therefore, tested the hypothesis that combining hypertension, a risk factor for neuropathy in diabetic patients, with insulin-deficient diabetes produces a more pertinent model of peripheral neuropathy. Behavioral, physiological and structural indices of neuropathy were measured for up to 6 months in spontaneously hypertensive and age-matched normotensive rats with or without concurrent streptozotocin-induced diabetes. Hypertensive rats developed nerve ischemia, thermal hyperalgesia, nerve conduction slowing and axonal atrophy. Thinly myelinated fibers with supernumerary Schwann cells indicative of cycles of demyelination and remyelination were also identified along with reduced nerve levels of myelin basic protein. Similar disorders were noted in streptozotocin-diabetic rats, except that thinly myelinated fibers were not observed and expression of myelin basic protein was normal. Superimposing diabetes on hypertension compounded disorders of nerve blood flow, conduction slowing and axonal atrophy and increased the incidence of thinly myelinated fibers. Rats with combined insulinopenia, hyperglycemia and hypertension provide a model for diabetic neuropathy that offers an opportunity to study mechanisms of Schwann cell pathology and suggests that hypertension may contribute to the etiology of diabetic neuropathy.


Subject(s)
Diabetes Complications/complications , Diabetes Mellitus, Experimental/complications , Hypertension/complications , Peripheral Nervous System Diseases/complications , Animals , Diabetes Complications/pathology , Diabetes Complications/physiopathology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/physiopathology , Enzyme-Linked Immunosorbent Assay , Hypertension/pathology , Hypertension/physiopathology , Immunohistochemistry , Nerve Fibers, Myelinated/pathology , Peripheral Nervous System Diseases/pathology , Peripheral Nervous System Diseases/physiopathology , Rats , Rats, Inbred SHR , Rats, Wistar
19.
Aging Cell ; 21(9): e13666, 2022 09.
Article in English | MEDLINE | ID: mdl-35986566

ABSTRACT

Rapamycin treatment has positive and negative effects on progression of type 2 diabetes (T2D) in a recombinant inbred polygenic mouse model, male NONcNZO10/LtJ (NcZ10). Here, we show that combination treatment with metformin ameliorates negative effects of rapamycin while maintaining its benefits. From 12 to 30 weeks of age, NcZ10 males were fed a control diet or diets supplemented with rapamycin, metformin, or a combination of both. Rapamycin alone reduced weight gain, adiposity, HOMA-IR, and inflammation, and prevented hyperinsulinemia and pre-steatotic hepatic lipidosis, but exacerbated hyperglycemia, hypertriglyceridemia, and pancreatic islet degranulation. Metformin alone reduced hyperinsulinemia and circulating c-reactive protein, but exacerbated nephropathy. Combination treatment retained the benefits of both while preventing many of the deleterious effects. Importantly, the combination treatment reversed effects of rapamycin on markers of hepatic insulin resistance and normalized systemic insulin sensitivity in this inherently insulin-resistant model. In adipose tissue, rapamycin attenuated the expression of genes associated with adipose tissue expansion (Mest, Gpam), inflammation (Itgam, Itgax, Hmox1, Lbp), and cell senescence (Serpine1). In liver, the addition of metformin counteracted rapamycin-induced alterations of G6pc, Ppara, and Ldlr expressions that promote hyperglycemia and hypertriglyceridemia. Both rapamycin and metformin treatment reduced hepatic Fasn expression, potentially preventing lipidosis. These results delineate a state of "insulin signaling restriction" that withdraws endocrine support for further adipogenesis, progression of the metabolic syndrome, and the development of its comorbidities. Our results are relevant for the treatment of T2D, the optimization of current rapamycin-based treatments for posttransplant rejection and various cancers, and for the development of treatments for healthy aging.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Fatty Liver , Hyperglycemia , Hyperinsulinism , Hypertriglyceridemia , Insulin Resistance , Metabolic Syndrome , Metformin , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Hyperglycemia/complications , Hyperinsulinism/complications , Hypertriglyceridemia/complications , Hypoglycemic Agents/pharmacology , Inflammation/complications , Insulin/metabolism , Male , Metabolic Syndrome/complications , Metabolic Syndrome/drug therapy , Metformin/pharmacology , Metformin/therapeutic use , Mice , Sirolimus/pharmacology , Sirolimus/therapeutic use
20.
Diabetes ; 71(6): 1272-1281, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35234842

ABSTRACT

We investigated the application of rate-dependent depression (RDD) of the Hoffmann (H) wave as a predictor of treatment efficacy in patients with painful diabetic peripheral neuropathy (DPN). General medical information, scales, and nerve conduction data were collected from 73 healthy subjects, 50 subjects with type 2 diabetes and painless DPN, and 71 subjects with type 2 diabetes and painful DPN. The left tibial nerve was stimulated, and RDD was calculated by the decline in amplitude of the third H wave relative to the first one. Gabapentin treatment was initiated after baseline evaluation, and the RDD and visual analog scale (VAS) score were both evaluated regularly during the 2-week study period. At baseline, the painful DPN group exhibited significant RDD impairment across all stimulation frequencies. Gabapentin treatment significantly reduced the VAS score and restored RDD during the 2-week observation period. RDD was found to be an independent factor of minimal VAS score improvement, such that the benefit increased by 1.27 times per 1% decrease in the RDD value. In conclusion, this study demonstrates that diabetes-induced loss of RDD can be modified by gabapentin and suggests that RDD may be valuable for predicting the initial efficacy of gabapentin therapy in patients with painful DPN.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Depression/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetic Neuropathies/drug therapy , Gabapentin/therapeutic use , Pain
SELECTION OF CITATIONS
SEARCH DETAIL