Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Hum Genet ; 140(10): 1417-1431, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34410492

ABSTRACT

The Italian Peninsula, a natural pier across the Mediterranean Sea, witnessed intricate population events since the very beginning of the human occupation in Europe. In the last few years, an increasing number of modern and ancient genomes from the area have been published by the international research community. This genomic perspective started unveiling the relevance of Italy to understand the post-Last Glacial Maximum (LGM) re-peopling of Europe, the earlier phase of the Neolithic westward migrations, and its linking role between Eastern and Western Mediterranean areas after the Iron Age. However, many open questions are still waiting for more data to be addressed in full. With this review, we summarize the current knowledge emerging from the available ancient Italian individuals and, by re-analysing them all at once, we try to shed light on the avenues future research in the area should cover. In particular, open questions concern (1) the fate of pre-Villabruna Europeans and to what extent their genomic components were absorbed by the post-LGM hunter-gatherers; (2) the role of Sicily and Sardinia before LGM; (3) to what degree the documented genetic structure within the Early Neolithic settlers can be described as two separate migrations; (4) what are the population events behind the marked presence of an Iranian Neolithic-like component in Bronze Age and Iron Age Italian and Southern European samples.


Subject(s)
DNA, Ancient/analysis , Evolution, Molecular , Genetic Variation , Genome, Human , Genomics/history , White People/genetics , White People/history , History, Ancient , History, Medieval , Humans , Italy
2.
Sci Rep ; 13(1): 13839, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620368

ABSTRACT

Y chromosome markers can shed light on male-specific population dynamics but for many species no such markers have been discovered and are available yet, despite the potential for recovering Y-linked loci from available genome sequences. Here, we investigated how effective available bioinformatic tools are in recovering informative Y chromosome microsatellites from whole genome sequence data. In order to do so, we initially explored a large dataset of whole genome sequences comprising individuals at various coverages belonging to different species of baboons (genus: Papio) using Y chromosome references belonging to the same genus and more distantly related species (Macaca mulatta). We then further tested this approach by recovering Y-STRs from available Theropithecus gelada genomes using Papio and Macaca Y chromosome as reference sequences. Identified loci were validated in silico by a) comparing within-species relationships of Y chromosome lineages and b) genotyping male individuals in available pedigrees. Each STR was selected not to extend in its variable region beyond 100 base pairs, so that loci can be developed for PCR-based genotyping of non-invasive DNA samples. In addition to assembling a first set of Papio and Theropithecus Y-specific microsatellite markers, we released TYpeSTeR, an easy-to-use script to identify and genotype Y chromosome STRs using population genomic data which can be modulated according to available male reference genomes and genomic data, making it widely applicable across taxa.


Subject(s)
Metagenomics , Theropithecus , Humans , Male , Animals , Papio , Macaca mulatta , Microsatellite Repeats/genetics
3.
BMC Ecol Evol ; 22(1): 44, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35410131

ABSTRACT

BACKGROUND: Gorongosa National Park in Mozambique hosts a large population of baboons, numbering over 200 troops. Gorongosa baboons have been tentatively identified as part of Papio ursinus on the basis of previous limited morphological analysis and a handful of mitochondrial DNA sequences. However, a recent morphological and morphometric analysis of Gorongosa baboons pinpointed the occurrence of several traits intermediate between P. ursinus and P. cynocephalus, leaving open the possibility of past and/or ongoing gene flow in the baboon population of Gorongosa National Park. In order to investigate the evolutionary history of baboons in Gorongosa, we generated high and low coverage whole genome sequence data of Gorongosa baboons and compared it to available Papio genomes. RESULTS: We confirmed that P. ursinus is the species closest to Gorongosa baboons. However, the Gorongosa baboon genomes share more derived alleles with P. cynocephalus than P. ursinus does, but no recent gene flow between P. ursinus and P. cynocephalus was detected when available Papio genomes were analyzed. Our results, based on the analysis of autosomal, mitochondrial and Y chromosome data, suggest complex, possibly male-biased, gene flow between Gorongosa baboons and P. cynocephalus, hinting to direct or indirect contributions from baboons belonging to the "northern" Papio clade, and signal the presence of population structure within P. ursinus. CONCLUSIONS: The analysis of genome data generated from baboon samples collected in central Mozambique highlighted a complex set of evolutionary relationships with other baboons. Our results provided new insights in the population dynamics that have shaped baboon diversity.


Subject(s)
Biological Evolution , Papio ursinus , Alleles , Animals , Male , Mozambique , Papio/genetics , Papio ursinus/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL