Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell Tissue Res ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953987

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19, may lead to multiple organ dysfunctions and long-term complications. The induction of microvascular dysfunction is regarded as a main player in these pathological processes. To investigate the possible impact of SARS-CoV-2-induced endothelial-to-mesenchymal transition (EndMT) on fibrosis in "long-COVID" syndrome, we used primary cultures of human microvascular cells derived from the lungs, as the main infection target, compared to cells derived from different organs (dermis, heart, kidney, liver, brain) and to the HUVEC cell line. To mimic the virus action, we used mixed SARS-CoV-2 peptide fragments (PepTivator®) of spike (S), nucleocapsid (N), and membrane (M) proteins. TGFß2 and cytokine mix (IL-1ß, IL-6, TNFα) were used as positive controls. The percentage of cells positive to mesenchymal and endothelial markers was quantified by high content screening. We demonstrated that S+N+M mix induces irreversible EndMT in all analyzed endothelial cells via the TGFß pathway, as demonstrated by ApoA1 treatment. We then tested the contribution of single peptides in lung and brain cells, demonstrating that EndMT is triggered by M peptide. This was confirmed by transfection experiment, inducing the endogenous expression of the glycoprotein M in lung-derived cells. In conclusion, we demonstrated that SARS-CoV-2 peptides induce EndMT in microvascular endothelial cells from multiple body districts. The different peptides play different roles in the induction and maintenance of the virus-mediated effects, which are organ-specific. These results corroborate the hypothesis of the SARS-CoV-2-mediated microvascular damage underlying the multiple organ dysfunctions and the long-COVID syndrome.

2.
Vet Comp Oncol ; 22(1): 70-77, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38112225

ABSTRACT

Haemangiosarcoma is a highly metastatic and lethal cancer of blood vessel-forming cells that commonly spreads to the brain in both humans and dogs. Dysregulations in phosphatase and tensin (PTEN) homologue have been identified in various types of cancers, including haemangiosarcoma. MicroRNAs (miRNAs) are short noncoding single-stranded RNA molecules that play a crucial role in regulating the gene expression. Some miRNAs can function as oncogenes or tumour suppressors, influencing important processes in cancer, such as angiogenesis. This study aimed to investigate whether miRNAs targeting PTEN were disrupted in canine haemangiosarcoma and its corresponding brain metastases (BM). The expression levels of miRNA-10b, miRNA-19b, miRNA-21, miRNA-141 and miRNA-494 were assessed in samples of primary canine cardiac haemangiosarcomas and their matched BM. Furthermore, the miRNA profile of the tumours was compared to samples of adjacent non-cancerous tissue and healthy control tissues. In primary cardiac haemangiosarcoma, miRNA-10b showed a significant increase in expression, while miRNA-494 and miRNA-141 exhibited downregulation. Moreover, the overexpression of miRNA-10b was retained in metastatic brain lesions. Healthy tissues demonstrated significantly different expression patterns compared to cancerous tissues. In particular, the expression of miRNA-10b was nearly undetectable in both control brain tissue and perimetastatic cerebral tissue. These findings can provide a rationale for the development of miRNA-based therapeutic strategies, aimed at selectively treating haemangiosarcoma.


Subject(s)
Brain Neoplasms , Dog Diseases , Hemangiosarcoma , MicroRNAs , Humans , Dogs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Hemangiosarcoma/genetics , Hemangiosarcoma/veterinary , Dog Diseases/genetics , Brain , Brain Neoplasms/genetics , Brain Neoplasms/veterinary , Gene Expression Regulation, Neoplastic
3.
Mil Med Res ; 11(1): 56, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160574

ABSTRACT

BACKGROUND: Undifferentiated shock is recognized as a criticality state that is transitional in immune-mediated topology for casual risk of lethal microcirculatory dysfunction. This was a sensitivity analysis of a drug (tetracosactide; TCS10) targeting melanocortin receptors (MCRs) in a phase 3 randomized controlled trial to improve cardiovascular surgical rescue outcome by reversing mortality and hemostatic disorders. METHODS: Sensitivity analysis was based on a randomized, two-arm, multicenter, double-blind, controlled trial. The Naïve Bayes classifier was performed by density-based sensitivity index for principal strata as proportional hazard model of 30-day surgical risk mortality according to European System for Cardiac Operative Risk Evaluation inputs-outputs in 100 consecutive cases (from August to September 2013 from Emilia Romagna region, Italy). Patients included an agent-based TCS10 group (10 mg, single intravenous bolus before surgery; n = 56) and control group (n = 44) and the association with cytokines, lactate, and bleeding-blood transfusion episodes with the prior-risk log-odds for mortality rate in time-to-event was analyzed. RESULTS: Thirty-day mortality was significantly improved in the TCS10 group vs. control group (0 vs. 8 deaths, P < 0.0001). Baseline levels of interleukin (IL)-6, IL-10, and lactate were associated with bleeding episodes, independent of TCS10 treatment [odds ratio (OR) = 1.90, 95% confidence interval (CI) 1.39-2.79; OR = 1.53, 95%CI 1.17-2.12; and OR = 2.92, 95%CI 1.40-6.66, respectively], while baseline level of Fms-like tyrosine kinase 3 ligand (Flt3L) was associated with lower bleeding rates in TCS10-treated patients (OR = 0.31, 95%CI 0.11-0.90, P = 0.03). For every 8 TCS10-treated patients, 1 bleeding case was avoided. Blood transfusion episodes were significantly reduced in the TCS10 group compared to the control group (OR = 0.32, 95%CI 0.14-0.73, P = 0.01). For every 4 TCS10-treated patients, 1 transfusion case was avoided. CONCLUSIONS: Sensitivity index underlines the quality target product profile of TCS10 in the runway of emergency casualty care. To introduce the technology readiness level in real-life critically ill patients, further large-scale studies are required. TRIAL REGISTRATION: European Union Drug Regulating Authorities Clinical Trials Database (EudraCT Number: 2007-006445-41 ).


Subject(s)
Critical Illness , Humans , Critical Illness/mortality , Male , Female , Middle Aged , Aged , Double-Blind Method , Italy
4.
Alzheimers Res Ther ; 16(1): 116, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773640

ABSTRACT

Systemic inflammation and neuroinflammation affect the natural course of the sporadic form of Alzheimer's disease (AD), as supported by epidemiological and preclinical data, and several epidemiological studies indicate a higher prevalence of AD in patients with inflammatory bowel disease. In this study, we explored whether colitis induced by dextran sulfate sodium (DSS) in young, presymptomatic/preplaque mice worsens and/or anticipates age-dependent cognitive impairment in Tg2576, a widely used mouse model of AD. We demonstrated that DSS colitis induced in young Tg2576 mice anticipates the onset age of learning and memory deficit in the Morris water maze test. To explore potential mechanisms behind the acceleration of cognitive decline in Tg2576 mice by DSS colitis, we focused on gut microbiota, systemic inflammation and neuroinflammation markers. We observed a Firmicutes/Bacteroidetes ratio change in Tg2576 DSS animals comparable to that of elderly Tg2576 mice, suggesting accelerated microbiota aging in Tg2576 DSS mice, a change not observed in C57BL6 DSS mice. We also observed substantial differences between Tg2576 and WT mice in several inflammation and neuroinflammation-related parameters as early as 3 months of age, well before plaque deposition, a picture which evolved rapidly (between 3 and 5.5 months of age) in contrast to Tg2576 and WT littermates not treated with DSS. In detail, following induction of DSS colitis, WT and Tg2576 mice exhibited contrasting features in the expression level of inflammation-evoked astrocyte-associated genes in the hippocampus. No changes in microglial features occurred in the hippocampus between the experimental groups, whereas a reduced glial fibrillary acidic protein immunoreactivity was observed in Tg2576 vs. WT mice. This finding may reflect an atrophic, "loss-of-function" profile, further exacerbated by DSS where a decreased of GFAP mRNA expression level was detected. In conclusion, we suggest that as-yet unidentified peripheral mediators evoked by DSS colitis and involving the gut-brain axis emphasize an astrocyte "loss-of-function" profile present in young Tg2576 mice, leading to impaired synaptic morphological and functional integrity as a very early sign of AD.


Subject(s)
Alzheimer Disease , Colitis , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL , Mice, Transgenic , Animals , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Mice , Colitis/chemically induced , Colitis/pathology , Dextran Sulfate/toxicity , Gastrointestinal Microbiome , Phenotype , Male , Hippocampus/pathology , Hippocampus/metabolism , Female , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cognitive Dysfunction/etiology
5.
Regen Ther ; 26: 520-532, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39156755

ABSTRACT

This preclinical proof-of-concept study aimed to evaluate the effectiveness of secretome therapy in diabetic mice with pressure ulcers. We utilized a custom-made hyaluronic acid (HA)-based porous sponge, which was rehydrated either with normal culture medium or secretome derived from human mesenchymal stromal cells (MSCs) to achieve a hydrogel consistency. Following application onto skin ulcers, both the hydrogel-only and the hydrogel + secretome combination accelerated wound closure compared to the vehicle group. Notably, the presence of secretome significantly enhanced the healing effect of the hydrogel, as evidenced by a thicker epidermis and increased revascularization of the healed area compared to the vehicle group. Notably, molecular analysis of healed skin revealed significant downregulation of genes involved in delayed wound healing and abnormal inflammatory response in ulcers treated with the hydrogel + secretome combination, compared to those treated with the hydrogel only. Additionally, we found no significant differences in therapeutic outcomes when comparing the use of secretome from fetal dermal MSCs to that from umbilical cord MSCs. This observation is supported by the proteomic profile of the two secretomes, which suggests a shared molecular signature responsible of the observed therapeutic effects.

SELECTION OF CITATIONS
SEARCH DETAIL