Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Nutr ; 153(5): 1555-1566, 2023 05.
Article in English | MEDLINE | ID: mdl-36963499

ABSTRACT

BACKGROUND: Evidence is accumulating that intake of animal-based and plant-based proteins has different effects on cardiometabolic health, but less is known about the health effect of isocaloric substitution of animal-based and plant-based proteins. Data from Asian populations are limited. OBJECTIVES: This study aimed to evaluate the effects of isocaloric substitution of total plant-based proteins for total and various animal-based protein food groups and to evaluate the effects of substituting protein from legumes and pulses for various animal-based protein food groups on cardiovascular disease (CVD) risk factors and predicted 10-y CVD risk. METHODS: We conducted a cross-sectional analysis using data collected from 9211 Singapore residents (aged 21-75 y) from the Singapore Multi-Ethnic Cohort. Data on sociodemographic and lifestyle factors were collected using questionnaires. Dietary intakes were assessed using a validated FFQ. BMI, waist circumference, and blood pressure were measured during a physical examination, and blood samples were collected to measure lipid profiles. Associations were assessed by substitution models using a multiple linear regression analysis. RESULTS: Isocaloric substitution of total plant-based proteins for total and all specific animal-based protein food groups were associated with lower BMI (ß: -0.30; 95% CI: -0.38, -0.22), waist circumference (ß: -0.85; 95% CI: -1.04, -0.66), and LDL cholesterol concentrations (ß: -0.06; 95% CI: -0.08, -0.05) (P < 0.0056). Replacement of processed meat and processed seafood proteins with total plant-based proteins was associated with improvement in most CVD risk factors and predicted 10-y CVD risk. Replacement of oily fish with legume proteins was associated with lower HDL cholesterol and higher TG concentrations. CONCLUSIONS: The substitution of plant-based proteins for animal-based proteins, especially from processed meat and processed seafood, was inversely associated with the established CVD risk factors such as BMI, waist circumference, and lipid concentrations and predicted 10-y CVD risk. These findings warrant further investigation in independent studies in other Asian populations.


Subject(s)
Cardiovascular Diseases , Plant Proteins , Animals , Risk Factors , Cardiometabolic Risk Factors , Cross-Sectional Studies , Vegetables , Lipids , Diet
2.
J Nutr ; 153(12): 3529-3542, 2023 12.
Article in English | MEDLINE | ID: mdl-37863266

ABSTRACT

BACKGROUND: Vitamin B inadequacies and elevated homocysteine status have been associated with impaired cognitive and cardiometabolic health with aging. There is, however, a scarcity of research investigating integrated profiles of one-carbon (1C) metabolites in this context, including metabolites of interconnected folate, methionine, choline oxidation, and transsulfuration pathways. OBJECTIVES: The study aimed to examine associations between vitamins B and 1C metabolites with cardiometabolic health and cognitive function in healthy older adults, including the interactive effects of Apolipoprotein E-ε4 status. METHODS: Three hundred and thirteen healthy participants (65-74 y, 65% female) were analyzed. Vitamins B were estimated according to dietary intake (4-d food records) and biochemical status (serum folate and vitamin B12). Fasting plasma 1C metabolites were quantified by liquid chromatography with tandem mass spectrometry. Measures of cardiometabolic health included biochemical (lipid panel, blood glucose) and anthropometric markers. Cognitive function was assessed by the Computerized Mental Performance Assessment System (COMPASS) and Montreal Cognitive Assessment (MoCA). Associations were analyzed using multivariate linear (COMPASS, cardiometabolic health) and Poisson (MoCA) regression modeling. RESULTS: Over 90% of participants met dietary recommendations for riboflavin and vitamins B6 and B12, but only 78% of males and 67% of females achieved adequate folate intakes. Higher serum folate and plasma betaine and glycine concentrations were associated with favorable cardiometabolic markers, whereas higher plasma choline and homocysteine concentrations were associated with greater cardiometabolic risk based on body mass index and serum lipids concentration values (P< 0.05). Vitamins B and homocysteine were not associated with cognitive performance in this cohort, though higher glycine concentrations were associated with better global cognitive performance (P = 0.017), episodic memory (P = 0.016), and spatial memory (P = 0.027) scores. Apolipoprotein E-ε4 status did not modify the relationship between vitamins B or 1C metabolites with cognitive function in linear regression analyses. CONCLUSIONS: Vitamin B and 1C metabolite profiles showed divergent associations with cardiometabolic risk markers and limited associations with cognitive performance in this cohort of healthy older adults.


Subject(s)
Cardiovascular Diseases , Vitamin B Complex , Male , Humans , Female , Aged , New Zealand , Folic Acid , Vitamin B 12 , Cognition , Choline/pharmacology , Glycine/pharmacology , Homocysteine , Apolipoproteins
3.
Eur J Nutr ; 62(3): 1309-1322, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36539620

ABSTRACT

PURPOSE: B vitamins are required for the complex regulation of homocysteine and one-carbon (1C) metabolism. Nutritional supplements are frequently used by older adults to counter nutritional inadequacies. However, the postprandial use of B vitamins from supplements in 1C metabolism may be altered with age owing to impaired nutrient absorption and metabolic regulation. Despite implications for health and nutritional status, postprandial 1C metabolite responses have not been characterised in older adults. METHODS: Healthy older (n = 20, 65-76 years) and younger (n = 20, 19-30 years) participants were recruited through online and printed advertisements in Auckland, New Zealand. Participants consumed a multivitamin and mineral supplement with a standard breakfast meal. Blood samples were collected at baseline and hourly for 4 h following ingestion. Plasma 1C metabolites (betaine, choline, cysteine, dimethylglycine, glycine, methionine, serine) were quantified using liquid chromatography coupled with mass spectrometry. Serum homocysteine, folate and vitamin B12 were quantified on a Cobas e411 autoanalyzer. RESULTS: Older adults had higher fasting homocysteine concentrations (older: 14.0 ± 2.9 µmol/L; younger: 12.2 ± 2.5 µmol/L; p = 0.036) despite higher folate (older: 36.7 ± 17.4 nmol/L; younger: 21.6 ± 7.6 nmol/L; p < 0.001) and similar vitamin B12 concentrations (p = 0.143) to younger adults. However, a similar postprandial decline in homocysteine was found in older and younger subjects in response to the combined meal and supplement. Except for a faster decline of cystathionine in older adults (p = 0.003), the postprandial response of other 1C metabolites was similar between young and older adults. CONCLUSION: Healthy older adults appear to maintain postprandial responsiveness of 1C metabolism to younger adults, supported by a similar postprandial decline in homocysteine concentrations.


Subject(s)
Vitamin B Complex , Humans , Aged , Dietary Supplements , Folic Acid , Vitamin B 12 , Minerals , Homocysteine
4.
Eur J Nutr ; 62(5): 2257-2267, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37085625

ABSTRACT

BACKGROUND: Metabolomic dysregulation following a meal in overweight individuals with the Metabolic Syndrome (MetS) involves multiple pathways of nutrient storage and oxidation. OBJECTIVE: The aim of the current study was to perform an acute cross-over intervention to examine the interactive actions of meal glycaemic load (GL) on the dynamic responses of the plasma metabolome in overweight females. METHODS: Postmenopausal women [63 ± 1.23y; Healthy (n = 20) and MetS (n = 20)] ingested two differing high-carbohydrate test meals (73 g carbohydrate; 51% energy) composed of either low glycemic index (LGI) or high (HGI) foods in a randomised sequence. Plasma metabolome was analysed using liquid chromatography-mass spectrometry (LC-MS). RESULTS: In the overweight women with MetS, there were suppressed postprandial responses for several amino acids (AAs), including phenylalanine, leucine, valine, and tryptophan, p < 0.05), irrespective of the meal type. Meal GL exerted a limited impact on the overall metabolomic response, although the postprandial levels of alanine were higher with the low GL meal and uric acid was greater following the high GL meal (p < 0.05). CONCLUSIONS: MetS participants exhibited reduced differences in the concentrations of a small set of AAs and a limited group of metabolites implicated in energy metabolism following the meals. However, the manipulation of meal GL had minimal impact on the postprandial metabolome. This study suggests that the GL of a meal is not a major determinant of postprandial response, with a greater impact exerted by the metabolic health of the individual. Trial registration Australia New Zealand Clinical Trials Registry: ACTRN12615001108505 (21/10/2015).


Subject(s)
Glycemic Load , Overweight , Female , Humans , Amino Acids , Blood Glucose/metabolism , Cross-Over Studies , Dietary Carbohydrates/metabolism , Glycemic Index/physiology , Insulin , Meals , Postprandial Period/physiology
5.
Eur J Appl Physiol ; 123(2): 249-260, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36449098

ABSTRACT

PURPOSE: Mitochondrial dynamics are regulated by the differing molecular pathways variously governing biogenesis, fission, fusion, and mitophagy. Adaptations in mitochondrial morphology are central in driving the improvements in mitochondrial bioenergetics following exercise training. However, there is a limited understanding of mitochondrial dynamics in response to inactivity. METHODS: Skeletal muscle biopsies were obtained from middle-aged males (n = 24, 49.4 ± 3.2 years) who underwent sequential 14-day interventions of unilateral leg immobilisation, ambulatory recovery, and resistance training. We quantified vastus lateralis gene and protein expression of key proteins involved in mitochondrial biogenesis, fusion, fission, and turnover in at baseline and following each intervention. RESULTS: PGC1α mRNA decreased 40% following the immobilisation period, and was accompanied by a 56% reduction in MTFP1 mRNA, a factor involved in mitochondrial fission. Subtle mRNA decreases were also observed in TFAM (17%), DRP1 (15%), with contrasting increases in BNIP3L and PRKN following immobilisation. These changes in gene expression were not accompanied by changes in respective protein expression. Instead, we observed subtle decreases in NRF1 and MFN1 protein expression. Ambulatory recovery restored mRNA and protein expression to pre-intervention levels of all altered components, except for BNIP3L. Resistance training restored BNIP3L mRNA to pre-intervention levels, and further increased mRNA expression of OPA-1, MFN2, MTFP1, and PINK1 past baseline levels. CONCLUSION: In healthy middle-aged males, 2 weeks of immobilisation did not induce dramatic differences in markers of mitochondria fission and autophagy. Restoration of ambulatory physical activity following the immobilisation period restored altered gene expression patterns to pre-intervention levels, with little evidence of further adaptation to resistance exercise training.


Subject(s)
Mitochondrial Dynamics , Mitochondrial Proteins , Male , Middle Aged , Humans , Mitochondrial Dynamics/physiology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Exercise/physiology , Muscle, Skeletal/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37762694

ABSTRACT

Ectopic lipid accumulation, including intra-pancreatic fat deposition (IPFD), exacerbates type 2 diabetes risk in susceptible individuals. Dysregulated circulating microRNAs (miRNAs) have been identified as correlating with clinical measures of pancreatitis, pancreatic cancer and type 1 diabetes. The aim of the current study was therefore to examine the association between circulating abundances of candidate miRNAs, IPFD and liver fat deposition as quantified using magnetic resonance imaging (MRI) and spectroscopy (MRS). Asian Chinese (n = 34; BMI = 26.7 ± 4.2 kg/m2) and European Caucasian (n = 34; BMI = 28.0 ± 4.5 kg/m2) females from the TOFI_Asia cohort underwent MRI and MRS analysis of pancreas (MR-%IPFD) and liver fat (MR-%liver fat), respectively, to quantify ectopic lipid deposition. Plasma miRNA abundances of a subset of circulatory miRNAs associated with IPFD and liver fat deposition were quantified by qRT-PCR. miR-21-3p and miR-320a-5p correlated with MR-%IPFD, plasma insulin and HOMA2-IR, but not MR-%liver fat. MR-%IPFD remained associated with decreasing miR-21-3p abundance following multivariate regression analysis. miR-21-3p and miR-320a were demonstrated to be negatively correlated with MR-%IPFD, independent of ethnicity. For miR-21-3p, this relationship persists with the inclusion of MR-%liver fat in the model, suggesting the potential for a wider application as a specific circulatory correlate of IPFD.

7.
J Physiol ; 600(16): 3749-3774, 2022 08.
Article in English | MEDLINE | ID: mdl-35837833

ABSTRACT

We investigated whether digoxin lowered muscle Na+ ,K+ -ATPase (NKA), impaired muscle performance and exacerbated exercise K+ disturbances. Ten healthy adults ingested digoxin (0.25 mg; DIG) or placebo (CON) for 14 days and performed quadriceps strength and fatiguability, finger flexion (FF, 105%peak-workrate , 3 × 1 min, fourth bout to fatigue) and leg cycling (LC, 10 min at 33% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ and 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ , 90% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ to fatigue) trials using a double-blind, crossover, randomised, counter-balanced design. Arterial (a) and antecubital venous (v) blood was sampled (FF, LC) and muscle biopsied (LC, rest, 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ , fatigue, 3 h after exercise). In DIG, in resting muscle, [3 H]-ouabain binding site content (OB-Fab ) was unchanged; however, bound-digoxin removal with Digibind revealed total ouabain binding (OB+Fab ) increased (8.2%, P = 0.047), indicating 7.6% NKA-digoxin occupancy. Quadriceps muscle strength declined in DIG (-4.3%, P = 0.010) but fatiguability was unchanged. During LC, in DIG (main effects), time to fatigue and [K+ ]a were unchanged, whilst [K+ ]v was lower (P = 0.042) and [K+ ]a-v greater (P = 0.004) than in CON; with exercise (main effects), muscle OB-Fab was increased at 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ (per wet-weight, P = 0.005; per protein P = 0.001) and at fatigue (per protein, P = 0.003), whilst [K+ ]a , [K+ ]v and [K+ ]a-v were each increased at fatigue (P = 0.001). During FF, in DIG (main effects), time to fatigue, [K+ ]a , [K+ ]v and [K+ ]a-v were unchanged; with exercise (main effects), plasma [K+ ]a , [K+ ]v , [K+ ]a-v and muscle K+ efflux were all increased at fatigue (P = 0.001). Thus, muscle strength declined, but functional muscle NKA content was preserved during DIG, despite elevated plasma digoxin and muscle NKA-digoxin occupancy, with K+ disturbances and fatiguability unchanged. KEY POINTS: The Na+ ,K+ -ATPase (NKA) is vital in regulating skeletal muscle extracellular potassium concentration ([K+ ]), excitability and plasma [K+ ] and thereby also in modulating fatigue during intense contractions. NKA is inhibited by digoxin, which in cardiac patients lowers muscle functional NKA content ([3 H]-ouabain binding) and exacerbates K+ disturbances during exercise. In healthy adults, we found that digoxin at clinical levels surprisingly did not reduce functional muscle NKA content, whilst digoxin removal by Digibind antibody revealed an ∼8% increased muscle total NKA content. Accordingly, digoxin did not exacerbate arterial plasma [K+ ] disturbances or worsen fatigue during intense exercise, although quadriceps muscle strength was reduced. Thus, digoxin treatment in healthy participants elevated serum digoxin, but muscle functional NKA content was preserved, whilst K+ disturbances and fatigue with intense exercise were unchanged. This resilience to digoxin NKA inhibition is consistent with the importance of NKA in preserving K+ regulation and muscle function.


Subject(s)
Digoxin , Ouabain , Adult , Digoxin/metabolism , Fatigue , Humans , Muscle, Skeletal/physiology , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
8.
Int J Obes (Lond) ; 46(6): 1128-1137, 2022 06.
Article in English | MEDLINE | ID: mdl-35173282

ABSTRACT

BACKGROUND: The tryptophan-kynurenine (KYN) pathway is linked to obesity-related systemic inflammation and metabolic health. The pathway generates multiple metabolites, with little available data on their relationships to early markers of increased metabolic disease risk in children. The aim of this study was to examine the association of multiple KYN pathway metabolites with metabolic risk markers in prepubertal Asian children. METHODS: Fasting plasma concentrations of KYN pathway metabolites were measured using liquid chromatography-tandem mass spectrometry in 8-year-old children (n = 552) from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) prospective mother-offspring cohort study. The child's weight and height were used to ascertain overweight and obesity using local body mass index (BMI)-for-age percentile charts. Body fat percentage was measured by quantitative magnetic resonance. Abdominal circumference, systolic and diastolic blood pressure, homeostatic model assessment for insulin resistance (HOMA-IR), triglyceride, and HDL-cholesterol were used for the calculation of Metabolic syndrome scores (MetS). Serum triglyceride, BMI, gamma-glutamyl transferase (GGT), and abdominal circumference were used in the calculation of the Fatty liver index (FLI). Associations were examined using multivariable regression analyses. RESULTS: In overweight or obese children (n = 93; 16.9% of the cohort), all KYN pathway metabolites were significantly increased, relative to normal weight children. KYN, kynurenic acid (KA), xanthurenic acid (XA), hydroxyanthranilic acid (HAA) and quinolinic acid (QA) all showed significant positive associations with body fat percentage (B(95% CI) = 0.32 (0.22,0.42) for QA), HOMA-IR (B(95% CI) = 0.25 (0.16,0.34) for QA), and systolic blood pressure (B(95% CI) = 0.14(0.06,0.22) for QA). All KYN metabolites except 3-hydroxykynurenine (HK) significantly correlated with MetS (B (95% CI) = 0.29 (0.21,0.37) for QA), and FLI (B (95% CI) = 0.30 (0.21,0.39) for QA). CONCLUSIONS: Higher plasma concentrations of KYN pathway metabolites are associated with obesity and with increased risk for metabolic syndrome and fatty liver in prepubertal Asian children.


Subject(s)
Fatty Liver , Metabolic Syndrome , Pediatric Obesity , Child , Cohort Studies , Humans , Kynurenine/metabolism , Overweight , Prospective Studies , Quinolinic Acid/metabolism , Triglycerides
9.
Eur J Nutr ; 61(1): 169-182, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34240265

ABSTRACT

PURPOSE: Cardiovascular diseases and cognitive decline, predominant in ageing populations, share common features of dysregulated one-carbon (1C) and cardiometabolic homeostasis. However, few studies have addressed the impact of multifaceted lifestyle interventions in older adults that combine both nutritional supplementation and resistance training on the co-regulation of 1C metabolites and cardiometabolic markers. METHODS: 95 institutionalised older adults (83 ± 6 years, 88.4% female) were randomised to receive resistance training with or without nutritional supplementation (Fortifit), or cognitive training (control for socialisation) for 6 months. Fasting plasma 1C metabolite concentrations, analysed by liquid chromatography coupled with mass spectrometry, and cardiometabolic parameters were measured at baseline and the 3- and 6-month follow-ups. RESULTS: Regardless of the intervention group, choline was elevated after 3 months, while cysteine and methionine remained elevated after 6 months (mixed model time effects, p < 0.05). Elevated dimethylglycine and lower betaine concentrations were correlated with an unfavourable cardiometabolic profile at baseline (spearman correlations, p < 0.05). However, increasing choline and dimethylglycine concentrations were associated with improvements in lipid metabolism in those receiving supplementation (regression model interaction, p < 0.05). CONCLUSION: Choline metabolites, including choline, betaine and dimethylglycine, were central to the co-regulation of 1C metabolism and cardiometabolic health in older adults. Metabolites that indicate upregulated betaine-dependent homocysteine remethylation were elevated in those with the greatest cardiometabolic risk at baseline, but associated with improvements in lipid parameters following resistance training with nutritional supplementation. The relevance of how 1C metabolite status might be optimised to protect against cardiometabolic dysregulation requires further attention.


Subject(s)
Carbon , Cardiovascular Diseases , Aged , Aging , Betaine , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Choline , Dietary Supplements , Female , Homocysteine , Humans , Male
10.
Appetite ; 169: 105871, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34915106

ABSTRACT

This study aimed to identify biomarkers of appetite response, modelled using a dose-rising whey protein preload intervention. Female participants (n = 24) with body mass index (BMI) between 23 and 40 kg/m2 consumed preload beverages (0 g protein water control, WC; 12.5 g low-dose protein, LP; or 50.0 g high-dose protein, HP) after an overnight fast, in a randomised cross over design. Repeated venous blood samples were collected to measure plasma biomarkers of appetite response, including glucose, glucoregulatory peptides, gut peptides, and amino acids (AAs). Appetite was assessed using Visual Analogue Scales (VAS) and ad libitum energy intake (EI). Dose-rising protein beverage significantly changed the postprandial trajectory of almost all biomarkers (treatment*time, p < 0.05), but did not suppress postprandial appetite (treatment*time, p > 0.05) or EI (ANOVA, p = 0.799). Circulating glycine had the strongest association with appetite response. Higher area under the curve (AUC0-240) glycine was associated with lower EI (p = 0.026, trend). Furthermore, circulating glycine was associated with decreased Hunger in all treatment groups, whereas the associations of glucose, alanine and amylin with appetite were dependent on treatment groups. Multivariate models, incorporating multiple biomarkers, improved the estimation of appetite response (marginal R2, range: 0.13-0.43). In conclusion, whilst glycine, both alone and within a multivariate model, can estimate appetite response to both water and whey protein beverage consumption, a large proportion of variance in appetite response remains unexplained. Most biomarkers, when assessed in isolation, are poor predictors of appetite response, and likely of utility only in combination with VAS and EI.


Subject(s)
Glycine , Overweight , Appetite , Biomarkers , Blood Glucose/metabolism , Cross-Over Studies , Energy Intake/physiology , Female , Humans , Insulin , Postprandial Period , Whey Proteins
11.
Am J Physiol Cell Physiol ; 320(4): C591-C601, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33471625

ABSTRACT

Disuse-induced muscle atrophy is accompanied by a blunted postprandial response of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Conflicting observations exist as to whether postabsorptive mTORC1 pathway activation is also blunted by disuse and plays a role in atrophy. It is unknown whether changes in habitual protein intake alter mTORC1 regulatory proteins and how they may contribute to the development of anabolic resistance. The primary objective of this study was to characterize the downstream responsiveness of skeletal muscle mTORC1 activation and its upstream regulatory factors, following 14 days of lower limb disuse in middle-aged men (45-60 yr). The participants were further randomized to receive daily supplementation of 20 g/d of protein (n = 12; milk protein concentrate) or isocaloric carbohydrate placebo (n = 13). Immobilization reduced postabsorptive skeletal muscle phosphorylation of the mTORC1 downstream targets, 4E-BP1, P70S6K, and ribosomal protein S6 (RPS6), with phosphorylation of the latter two decreasing to a greater extent in the placebo, compared with the protein supplementation groups (37% ± 13% vs. 14% ± 11% and 38% ± 20% vs. 25% ± 8%, respectively). Sestrin2 protein was also downregulated following immobilization irrespective of supplement group, despite a corresponding increase in its mRNA content. This decrease in Sestrin2 protein was negatively correlated with the immobilization-induced change in the in silico-predicted regulator miR-23b-3p. No other measured upstream proteins were altered by immobilization or supplementation. Immobilization downregulated postabsorptive mTORC1 pathway activation, and 20 g/day of protein supplementation attenuated the decrease in phosphorylation of targets regulating muscle protein synthesis.


Subject(s)
Dietary Supplements , Mechanistic Target of Rapamycin Complex 1/metabolism , Milk Proteins/administration & dosage , Muscular Atrophy/diet therapy , Quadriceps Muscle/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Humans , Immobilization , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Milk Proteins/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Postprandial Period , Quadriceps Muscle/pathology , Quadriceps Muscle/physiopathology , Ribosomal Protein S6/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction , Time Factors , Treatment Outcome
12.
Curr Opin Clin Nutr Metab Care ; 24(2): 134-138, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33315722

ABSTRACT

PURPOSE OF REVIEW: Docosapentaenoic acid (DPA) is a minor omega-3 fatty acid (FA) which has been frequently overlooked in lipid research. This review examines the biochemical and physiological outcomes of human trials which have used pure preparations of DPA (n - 3 DPA) and also recent developments in specialized proresolving lipid mediators (SPMs) derived from n - 3 DPA. RECENT FINDINGS: There have been only been two human studies and eleven animal studies with pure n - 3 DPA. The doses of n - 3 DPA used in the human trials have been 1-2 g/day. n - 3 DPA abundance is increased in blood lipid fractions within 3-4 days of supplementation. n - 3 DPA has the potential for unique properties, with a greater similarity in biological functioning with docosahexaenoic acid (DHA), than eicosapentaenoic acid (EPA). Despite the typically low levels of n - 3 DPA in most tissue lipids relative to EPA and DHA, unique SPMs, such as resolvins, maresins and protectins of the n - 3 DPA type, are involved in resolution of inflammation and regulating immune function. SUMMARY: We suggest that measurement of blood levels of n - 3 DPA gives no indication of its broad biological roles, but that the true functionality of this enigmatic n - 3 polyunsaturated fatty acid (PUFA) remains obscure until more is known about the properties of the unique DPA-derived SPMs.


Subject(s)
Fatty Acids, Omega-3 , Fatty Acids , Animals , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fatty Acids, Unsaturated , Humans
13.
J Nutr ; 151(4): 921-929, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33561274

ABSTRACT

BACKGROUND: The potential of a ketone monoester (ß-hydroxybutyrate; KEßHB) supplement to rapidly mimic a state of nutritional ketosis offers a new therapeutic possibility for diabetes prevention and management. While KEßHB supplementation has a glucose-lowering effect in adults with obesity, its impact on glucose control in other insulin-resistant states is unknown. OBJECTIVES: The primary objective was to investigate the effect of KEßHB-supplemented drink on plasma glucose in adults with prediabetes. The secondary objective was to determine its impact on plasma glucoregulatory peptides. METHODS: This randomized controlled trial [called CETUS (Cross-over randomizEd Trial of ß-hydroxybUtyrate in prediabeteS)] included 18 adults [67% men, mean age = 55 y, mean BMI (kg/m2) = 28.4] with prediabetes (glycated hemoglobin between 5.7% and 6.4% and/or fasting plasma glucose between 100 and 125 mg/dL). Participants were randomly assigned to receive KEßHB-supplemented and placebo drinks in a crossover sequence (washout period of 7-10 d between the drinks). Blood samples were collected from 0 to 150 min, at intervals of 30 min. Paired-samples t tests were used to investigate the change in the outcome variables [ß-hydroxybutyrate (ßHB), glucose, and glucoregulatory peptides] after both drinks. Repeated measures analyses were conducted to determine the change in concentrations of the prespecified outcomes over time. RESULTS: Blood ßHB concentrations increased to 3.5 mmol/L within 30 minutes after KEßHB supplementation. Plasma glucose AUC was significantly lower after KEßHB supplementation than after the placebo [mean difference (95% CI): -59 (-85.3, -32.3) mmol/L × min]. Compared with the placebo, KEßHB supplementation led to significantly greater AUCs for plasma insulin [0.237 (0.044, 0.429) nmol/L × min], C-peptide [0.259 (0.114, 0.403) nmol/L × min], and glucose-dependent insulinotropic peptide [0.243 (0.085, 0.401) nmol/L × min], with no significant differences in the AUCs for amylin, glucagon, and glucagon-like peptide 1. CONCLUSIONS: Ingestion of the KEßHB-supplemented drink acutely increased the blood ßHB concentrations and lowered the plasma glucose concentrations in adults with prediabetes. Further research is needed to investigate the dynamics of repeated ingestions of a KEßHB supplement by individuals with prediabetes, with a view to preventing new-onset diabetes. This trial was registered at www.clinicaltrials.gov as NCT03889210.


Subject(s)
3-Hydroxybutyric Acid/administration & dosage , Blood Glucose/metabolism , Ketosis/etiology , Prediabetic State/blood , Prediabetic State/diet therapy , 3-Hydroxybutyric Acid/blood , Adult , Aged , C-Peptide/blood , Cross-Over Studies , Dietary Supplements , Female , Gastric Inhibitory Polypeptide/blood , Glucagon/blood , Glucagon-Like Peptide 1/blood , Humans , Insulin/blood , Islet Amyloid Polypeptide/blood , Ketosis/blood , Male , Middle Aged , Single-Blind Method
14.
Pediatr Res ; 89(6): 1461-1469, 2021 05.
Article in English | MEDLINE | ID: mdl-32726796

ABSTRACT

BACKGROUND: Infants born moderate to late preterm constitute the majority of preterm births, yet guidelines for their nutritional care are unclear. Maternal milk is the most appropriate nutrition for these infants; however, its composition can be influenced by environmental factors. The present study therefore investigated perinatal predictors of human milk composition in a preterm cohort. METHODS: Milk was collected during the DIAMOND trial (DIfferent Approaches to Moderate and late preterm Nutrition: Determinants of feed tolerance, body composition and development) from 169 mothers of 191 infants at three time-points (5 and 10 days post partum and 4 months' corrected age). Leptin, adiponectin and insulin-like growth factor-1 (IGF-1) were analysed by enzyme-linked immunosorbent assay. Generalised mixed models were used to evaluate associations between milk composition and maternal/infant/perinatal factors. RESULTS: Most findings were independent of collection time-point. Gestational diabetes was associated with lower adiponectin. Higher adiponectin and lower leptin were associated with higher socioeconomic status, higher maternal education and ability to fully breastfeed at discharge from hospital. Higher leptin was associated with high perceived stress during hospital admission. Milk IGF-1 displayed sex-specific patterns in association with maternal social deprivation. CONCLUSION: Maternal, infant and environmental factors during the perinatal period were associated with milk compositional profiles throughout lactation. Further clinical trials should investigate the impact of such changes in terms of long-term infant outcomes. IMPACT: Human milk is the best nutrition for the infant. However, its composition may be susceptible to alterations determined by pathological conditions mother and infant may face throughout pregnancy and in the perinatal period. This study found that perinatal factors are associated with human milk composition from early to late lactation. If human milk composition throughout lactation is "programmed" during pregnancy or early lactation, infants who were exposed in utero to environmental insults may still be exposed to them during lactation. The impact of human milk compositional alteration on infant growth following perinatal pathological events requires further investigation.


Subject(s)
Hormones/analysis , Milk, Human/chemistry , Breast Feeding , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant, Newborn , Infant, Premature
15.
Exp Physiol ; 105(3): 438-448, 2020 03.
Article in English | MEDLINE | ID: mdl-31837091

ABSTRACT

NEW FINDINGS: What is the central question of this study? Although acute responses of the principal gonadosteroid and corticosteroid hormones to resistance exercise are well documented, there is no information regarding how the key lower-concentration intermediary hormones respond and potentially influence these hormonal pathways. What is the main finding and its importance? This study provides evidence for cascading conversions of some gonadosteroids, and the data suggest that the testosterone concentration increases independently of these hormones. These findings challenge future studies to determine the exact physiological roles of the lower-concentration gonadosteroids and corticosteroids during and immediately after resistance exercise. ABSTRACT: Resistance training is a potent stimulus for muscle growth, and steroid hormones are known to play a role in this adaptation. However, very little is known about the acute exercise-induced gonadosteroid and corticosteroid hormone responses, including those of key lower-concentration intermediate hormones. The present study determined the acute responses of these steroid hormone families using quantitative ultra-high performance liquid chromatography tandem mass spectrometry after resistance exercise in strength-trained men. Venous and fingertip blood samples were obtained pre-, mid-, 5 min post- and 15 min post-resistance exercise, both before and after 10 weeks of supervised resistance training. The experimental resistance exercise sessions consisted of three sets of 10 repetitions of bilateral leg-press exercise and three sets of 10 repetitions of unilateral knee-extension exercise, with 2 and 1 min recovery between sets, respectively. Statistically significant (P < 0.05) increases in the concentration of hormones in the gonadosteroid [including dehydroepiandrosterone (DHEA), androstenedione, testosterone and estrone] and the corticosteroid (including cortisol, corticosterone and cortisone) families were demonstrated after both experimental resistance exercise sessions, irrespective of training status. Correlation analyses revealed relationships between the following hormones: (i) DHEA and androstenedione; (ii) DHEA and cortisol; (iii) androstenedione and estrone; and (iv) 11-deoxycortisol and cortisol. Testosterone appears to increase acutely and independently of other intermediary hormones after resistance exercise. In conclusion, lower-concentration intermediary gonadosteroids (e.g. estrone) and corticosteroids (e.g. corticosterone) respond robustly to resistance exercise in strength-trained men, although it seems that testosterone concentrations are regulated by factors other than the availability of precursor hormones and changes in plasma volume.


Subject(s)
Adrenal Cortex Hormones/blood , Exercise/physiology , Adaptation, Physiological/physiology , Adult , Humans , Hydrocortisone/blood , Knee/physiology , Male , Muscle, Skeletal/physiology , Resistance Training/methods , Testosterone/blood , Young Adult
16.
Exp Physiol ; 105(8): 1268-1279, 2020 08.
Article in English | MEDLINE | ID: mdl-32478429

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does short-term high-intensity interval training alter the composition of the microbiome and is this associated with exercise-induced improvements in cardiorespiratory fitness and insulin sensitivity? What is the main finding and its importance? Although high-intensity interval training increased insulin sensitivity and cardiovascular fitness, it did not alter the composition of the microbiome. This suggests that changes in the composition of the microbiome that occur with prolonged exercise training might be in response to changes in metabolic health rather than driving exercise training-induced adaptations. ABSTRACT: Regular exercise reduces the risk of metabolic diseases, and the composition of the gut microbiome has been associated with metabolic function. We investigated whether short-term high-intensity interval training (HIIT) altered the diversity and composition of the bacterial community and whether there were associations with markers of insulin sensitivity or aerobic fitness. Cardiorespiratory fitness ( V̇O2peak ) and body composition (dual energy X-ray absorptiometry scan) were assessed and faecal and fasted blood samples collected from 14 lean (fat mass 21 ± 2%, aged 29 ± 2 years) and 15 overweight (fat mass 33 ± 2%, aged 31 ± 2 years) men before and after 3 weeks of HIIT training (8-12 × 60 s cycle ergometer bouts at V̇O2peak power output interspersed by 75 s rest, three times per week). Gut microbiome composition was analysed by 16S rRNA gene amplicon sequencing. The HIIT significantly increased the aerobic fitness of both groups (P < 0.001) and improved markers of insulin sensitivity (lowered fasted insulin and HOMA-IR; P < 0.001) in the overweight group. Despite differences in the abundance of several bacterial taxa being evident between the lean and overweight group, HIIT did not affect the overall bacterial diversity or community structure (α-diversity or ß-diversity). No associations were found between the top 50 most abundant bacterial genera and cardiorespiratory fitness markers; however, significant associations (P < 0.05) were observed between the abundance of the bacterial species Coprococcus_3, Blautia, Lachnospiraceae_ge and Dorea and insulin sensitivity markers in the overweight group. Our results suggest that short-term HIIT does not greatly impact the overall composition of the gut microbiome, but that certain microbiome genera are associated with insulin sensitivity markers that were improved by HIIT in overweight participants.


Subject(s)
Cardiorespiratory Fitness , Gastrointestinal Microbiome , High-Intensity Interval Training , Insulin Resistance , Overweight/physiopathology , Adult , Body Composition , Humans , Insulin/blood , Male
17.
BMC Gastroenterol ; 20(1): 204, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32600320

ABSTRACT

BACKGROUND: Adult lactase non-persistence (LNP) is due to low lactase expression, resulting in lactose malabsorption (LM). LNP is a genetic trait, but is typically determined by LM markers including breath H2, blood glucose, and urinary galactose after a lactose tolerance test. Known validity of these markers using milk is limited, despite being common practice. Compositional variation, such as ß-casein variants, in milk may impact diagnostic efficacy. This study aimed to evaluate the diagnostic accuracy to detect LNP using these commonly measured LM markers after both lactose and milk challenges. METHODS: Fourty healthy young women were challenged with 50 g lactose then randomized for separate cross-over visits to ingest 750 mL milk (37.5 g lactose) as conventional (both A1 and A2 ß-casein) and A1 ß-casein-free (a2 Milk™) milk. Blood, breath and urine were collected prior to and up to 3 h following each challenge. The presence of C/T13910 and G/A22018 polymorphisms, determined by restriction fragment length polymorphism, was used as the diagnostic reference for LNP. RESULTS: Genetic testing identified 14 out of 40 subjects as having LNP (C/C13910 and G/G22018). All three LM markers (breath H2, plasma glucose and urinary galactose/creatinine) discriminated between lactase persistence (LP) and LNP following lactose challenge with an area under the receiver operating characteristic (ROC) curve (AUC) of 1.00, 0.75 and 0.73, respectively. Plasma glucose and urinary galactose/creatinine were unreliable (AUC < 0.70) after milk ingestion. The specificity of breath H2 remained high (100%) when milk was used, but sensitivity was reduced with conventional (92.9%) and a2 Milk™ (78.6%) compared to lactose (sensitivities adjusted for lactose content). The breath H2 optimal cut-off value was lower with a2 Milk™ (13 ppm) than conventional milk (21 ppm). Using existing literature cut-off values the sensitivity and specificity of breath H2 was greater than plasma glucose to detect LNP following lactose challenge whereas values obtained for urinary galactose/creatinine were lower than the existing literature cut-offs. CONCLUSION: This study showed accurate diagnosis of LNP by breath H2 irrespective of the substrate used, although the diagnostic threshold may vary depending on the lactose substrate or the composition of the milk. TRIAL REGISTRATION: ACTRN12616001694404 . Registered prospectively on December 9, 2016.


Subject(s)
Lactose Intolerance , Lactose , Adult , Animals , Breath Tests , Eating , Female , Humans , Hydrogen/analysis , Lactase/genetics , Lactose Intolerance/diagnosis , Lactose Intolerance/genetics , Milk/chemistry
18.
Am J Physiol Cell Physiol ; 316(2): C293-C298, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30601673

ABSTRACT

Loss of muscle size and strength with aging is a major cause of morbidity. Although muscle size and strength are measured by imaging or fiber cross-sectional staining and exercise testing, respectively, the development of circulatory biomarkers for these phenotypes would greatly simplify identification of muscle function deficits. MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene translation and, thereby, contribute to muscle phenotype. To assess circulatory miRNAs (c-miRNAs) applicability as potential biomarkers of muscular phenotypes, fasting plasma and muscle samples were obtained from 50 middle-aged healthy men [mean (SD); age: 48.8 yr (SD 4.5); BMI: 26.6 kg/m2 (SD 3.3)]. RT-PCR of 38 miRNAs with known regulatory function within skeletal muscle identified four c-miRNAs (miR-221, miR-451a, miR-361, and miR-146a) related to either total body lean mass, leg lean mass, and 50% thigh cross-sectional area (CSA), but not strength. There was no relationship with the expression of these miRNAs in muscle. Six miRNAs within muscle were correlated with whole body lean mass, leg lean mass, and isometric knee extension torque (miR-133a and miR-146a), and 50% thigh CSA (miR-486, miR-208b, miR-133b, and miR-208a). Only miR-23b demonstrated a relationship between tissue and circulatory expression; however, only 10% of the variance was explained. miR-146a in both plasma and muscle was related to phenotype; however, no relationship between plasma and muscle expression was evident. A different subset of miRNAs correlated to muscle phenotype in muscle compared with plasma samples, suggesting that c-miRNA biomarkers of muscle phenotype are likely unrelated to muscle expression in healthy individuals.


Subject(s)
Circulating MicroRNA/blood , Exercise/physiology , Muscle Strength/physiology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/metabolism , Absorptiometry, Photon/methods , Adult , Biomarkers/blood , Humans , Male , Middle Aged
19.
J Nutr ; 149(9): 1511-1522, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31152658

ABSTRACT

BACKGROUND: Resistance exercise and dietary protein stimulate muscle protein synthesis (MPS). The rate at which proteins are digested and absorbed into circulation alters peak plasma amino acid concentrations and may modulate postexercise MPS. A novel mineral modified milk protein concentrate (mMPC), with identical amino acid composition to standard milk protein concentrate (MPC), was formulated to induce rapid aminoacidemia. OBJECTIVES: The aim of this study was to determine whether rapid aminoacidemia and greater peak essential amino acid (EAA) concentrations induced by mMPC would stimulate greater postresistance exercise MPS, anabolic signaling, and ribosome biogenesis compared to standard dairy proteins, which induce a small but sustained plasma essential aminoacidemia. METHODS: Thirty healthy young men (22.5 ± 3.0 y; BMI 23.8 ± 2.7 kg/m2) received primed constant infusions of l-[ring-13C6]-phenylalanine and completed 3 sets of leg presses and leg extensions at 80% of 1 repetition. Afterwards, participants were randomly assigned in a double-blind fashion to consume 25 g mMPC, MPC, or calcium caseinate (CAS). Vastus lateralis biopsies were collected at rest, and 2 and 4 h post exercise. RESULTS: Plasma EAA concentrations, including leucine, were 19.2-26.6% greater in the mMPC group 45-90 min post ingestion than in MPC and CAS groups (P < 0.001). Myofibrillar fractional synthetic rate from baseline to 4 h was increased by 82.6 ± 64.8%, 137.8 ± 72.1%, and 140.6 ± 52.4% in the MPC, mMPC, and CAS groups, respectively, with no difference between groups (P = 0.548). Phosphorylation of anabolic signaling targets (P70S6KThr389, P70S6KThr421/Ser424, RPS6Ser235/236, RPS6Ser240/244, P90RSKSer380, 4EBP1) were elevated by <3-fold at both 2 and 4 h post exercise in all groups (P < 0.05). CONCLUSIONS: The amplitude of plasma leucine and EAA concentrations does not modulate the anabolic response to resistance exercise after ingestion of 25 g dairy protein in young men. This trial was registered at http://www.anzctr.org.au/ as ACTRN12617000393358.


Subject(s)
Amino Acids, Essential/blood , Exercise , Milk Proteins/administration & dosage , Adolescent , Adult , Double-Blind Method , Humans , Insulin/blood , Male , Muscle Proteins/biosynthesis , Resistance Training , Ribosomal Proteins/analysis , Young Adult
20.
Eur J Nutr ; 58(3): 1047-1054, 2019 Apr.
Article in English | MEDLINE | ID: mdl-29445912

ABSTRACT

PURPOSE: Elemental deficiencies are highly prevalent and have a significant impact on health. However, clinical monitoring of plasma elemental responses to foods remains largely unexplored. Data from in vitro studies show that red meat (beef) is a highly bioavailable source of several key elements, but cooking method may influence this bioavailability. We therefore studied the postprandial responses to beef steak, and the effects of two different cooking methods, in healthy young males. METHODS: In a randomized cross-over controlled trial, healthy males (n = 12, 18-25 years) were fed a breakfast of beef steak (270 ± 20 g) in which the meat was either pan-fried (PF) or sous-vide (SV) cooked. Baseline and postprandial blood samples were collected and the plasma concentrations of 15 elements measured by inductively coupled plasma-mass spectrometry (ICP-MS). RESULTS: Concentrations of Fe and Zn changed after meal ingestion, with plasma Fe increasing (p < 0.001) and plasma Zn decreasing (p < 0.05) in response to both cooking methods. The only potential treatment effect was seen for Zn, where the postprandial area under the curve was lower in response to the SV meal (2965 ± 357) compared to the PF meal (3190 ± 310; p < 0.05). CONCLUSIONS: This multi-element approach demonstrated postprandial responsiveness to a steak meal, and an effect of the cooking method used. This suggests the method would provide insight in future elemental metabolic studies to evaluate responses to meat-based meals, including longer-term interventions in more specifically defined cohorts to clearly establish the role of red meat as an important source of elements.


Subject(s)
Cooking/methods , Hot Temperature , Iron, Dietary/blood , Red Meat , Zinc/blood , Adolescent , Adult , Biological Availability , Cross-Over Studies , Humans , Male , Postprandial Period , Reference Values , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL