Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Cell ; 183(3): 684-701.e14, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33058756

ABSTRACT

Positive selection in Europeans at the 2q21.3 locus harboring the lactase gene has been attributed to selection for the ability of adults to digest milk to survive famine in ancient times. However, the 2q21.3 locus is also associated with obesity and type 2 diabetes in humans, raising the possibility that additional genetic elements in the locus may have contributed to evolutionary adaptation to famine by promoting energy storage, but which now confer susceptibility to metabolic diseases. We show here that the miR-128-1 microRNA, located at the center of the positively selected locus, represents a crucial metabolic regulator in mammals. Antisense targeting and genetic ablation of miR-128-1 in mouse metabolic disease models result in increased energy expenditure and amelioration of high-fat-diet-induced obesity and markedly improved glucose tolerance. A thrifty phenotype connected to miR-128-1-dependent energy storage may link ancient adaptation to famine and modern metabolic maladaptation associated with nutritional overabundance.


Subject(s)
Metabolic Diseases/genetics , MicroRNAs/genetics , Adipocytes, Brown/pathology , Adiposity , Alleles , Animals , Cell Differentiation , Cell Line , Cells, Cultured , Diet, High-Fat , Energy Metabolism , Epigenesis, Genetic , Genetic Loci , Glucose/metabolism , Homeostasis , Humans , Hypertrophy , Insulin Resistance , Leptin/deficiency , Leptin/metabolism , Male , Mammals/genetics , Mice, Inbred C57BL , Mice, Obese , MicroRNAs/metabolism , Obesity/genetics , Oligonucleotides/metabolism , Species Specificity
2.
Cell ; 169(1): 148-160.e15, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340340

ABSTRACT

Type 2 diabetes (T2D) is a worldwide epidemic with a medical need for additional targeted therapies. Suppression of hepatic glucose production (HGP) effectively ameliorates diabetes and can be exploited for its treatment. We hypothesized that targeting PGC-1α acetylation in the liver, a chemical modification known to inhibit hepatic gluconeogenesis, could be potentially used for treatment of T2D. Thus, we designed a high-throughput chemical screen platform to quantify PGC-1α acetylation in cells and identified small molecules that increase PGC-1α acetylation, suppress gluconeogenic gene expression, and reduce glucose production in hepatocytes. On the basis of potency and bioavailability, we selected a small molecule, SR-18292, that reduces blood glucose, strongly increases hepatic insulin sensitivity, and improves glucose homeostasis in dietary and genetic mouse models of T2D. These studies have important implications for understanding the regulatory mechanisms of glucose metabolism and treatment of T2D.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Gluconeogenesis/drug effects , Hypoglycemic Agents/administration & dosage , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/antagonists & inhibitors , Acetylation , Animals , Blood Glucose/metabolism , Cells, Cultured , Glucose/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/metabolism , High-Throughput Screening Assays , Insulin Resistance , Mice , p300-CBP Transcription Factors/metabolism
3.
Cell ; 160(4): 745-758, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25662011

ABSTRACT

Impaired insulin-mediated suppression of hepatic glucose production (HGP) plays a major role in the pathogenesis of type 2 diabetes (T2D), yet the molecular mechanism by which this occurs remains unknown. Using a novel in vivo metabolomics approach, we show that the major mechanism by which insulin suppresses HGP is through reductions in hepatic acetyl CoA by suppression of lipolysis in white adipose tissue (WAT) leading to reductions in pyruvate carboxylase flux. This mechanism was confirmed in mice and rats with genetic ablation of insulin signaling and mice lacking adipose triglyceride lipase. Insulin's ability to suppress hepatic acetyl CoA, PC activity, and lipolysis was lost in high-fat-fed rats, a phenomenon reversible by IL-6 neutralization and inducible by IL-6 infusion. Taken together, these data identify WAT-derived hepatic acetyl CoA as the main regulator of HGP by insulin and link it to inflammation-induced hepatic insulin resistance associated with obesity and T2D.


Subject(s)
Acetyl Coenzyme A/metabolism , Insulin Resistance , Liver/metabolism , Panniculitis/metabolism , Adipose Tissue, White/chemistry , Adolescent , Animals , Diabetes Mellitus, Type 2 , Diet, High-Fat , Glucose/metabolism , Humans , Hyperglycemia , Interleukin-6/analysis , Lipolysis , Male , Mice , Obesity/metabolism , Rats, Sprague-Dawley
4.
Cell ; 156(1-2): 304-16, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24439384

ABSTRACT

A clear relationship exists between visceral obesity and type 2 diabetes, whereas subcutaneous obesity is comparatively benign. Here, we show that adipocyte-specific deletion of the coregulatory protein PRDM16 caused minimal effects on classical brown fat but markedly inhibited beige adipocyte function in subcutaneous fat following cold exposure or ß3-agonist treatment. These animals developed obesity on a high-fat diet, with severe insulin resistance and hepatic steatosis. They also showed altered fat distribution with markedly increased subcutaneous adiposity. Subcutaneous adipose tissue in mutant mice acquired many key properties of visceral fat, including decreased thermogenic and increased inflammatory gene expression and increased macrophage accumulation. Transplantation of subcutaneous fat into mice with diet-induced obesity showed a loss of metabolic benefit when tissues were derived from PRDM16 mutant animals. These findings indicate that PRDM16 and beige adipocytes are required for the "browning" of white fat and the healthful effects of subcutaneous adipose tissue.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue/metabolism , DNA-Binding Proteins/metabolism , Obesity/metabolism , Transcription Factors/metabolism , Adipocytes/metabolism , Animals , DNA-Binding Proteins/genetics , Diet, High-Fat , Insulin Resistance , Mice , Mice, Knockout , Transcription Factors/genetics
5.
Genes Dev ; 35(1-2): 133-146, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33334822

ABSTRACT

The cJun NH2-terminal kinase (JNK) signaling pathway is activated by metabolic stress and promotes the development of metabolic syndrome, including hyperglycemia, hyperlipidemia, and insulin resistance. This integrated physiological response involves cross-talk between different organs. Here we demonstrate that JNK signaling in adipocytes causes an increased circulating concentration of the hepatokine fibroblast growth factor 21 (FGF21) that regulates systemic metabolism. The mechanism of organ crosstalk is mediated by a feed-forward regulatory loop caused by JNK-regulated FGF21 autocrine signaling in adipocytes that promotes increased expression of the adipokine adiponectin and subsequent hepatic expression of the hormone FGF21. The mechanism of organ cross-talk places circulating adiponectin downstream of autocrine FGF21 expressed by adipocytes and upstream of endocrine FGF21 expressed by hepatocytes. This regulatory loop represents a novel signaling paradigm that connects autocrine and endocrine signaling modes of the same hormone in different tissues.


Subject(s)
Adipose Tissue/physiology , Autocrine Communication/genetics , Fibroblast Growth Factors/genetics , Gene Expression Regulation/genetics , Signal Transduction/genetics , Adipocytes/metabolism , Adiponectin/metabolism , Adipose Tissue/physiopathology , Animals , Endocrine System/metabolism , Energy Metabolism/genetics , Feedback, Physiological/physiology , Fibroblast Growth Factors/blood , Hepatocytes/metabolism , Insulin Resistance/genetics , Liver/metabolism , MAP Kinase Kinase 4/deficiency , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , MAP Kinase Signaling System/physiology , Mice
6.
Immunity ; 45(3): 583-596, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27566941

ABSTRACT

Mononuclear phagocytes (MNPs) are a highly heterogeneous group of cells that play important roles in maintaining the body's homeostasis. Here, we found CD301b (also known as MGL2), a lectin commonly used as a marker for alternatively activated macrophages, was selectively expressed by a subset of CD11b(+)CD11c(+)MHCII(+) MNPs in multiple organs including adipose tissues. Depleting CD301b(+) MNPs in vivo led to a significant weight loss with increased insulin sensitivity and a marked reduction in serum Resistin-like molecule (RELM) α, a multifunctional cytokine produced by MNPs. Reconstituting RELMα in CD301b(+) MNP-depleted animals restored body weight and normoglycemia. Thus, CD301b(+) MNPs play crucial roles in maintaining glucose metabolism and net energy balance.


Subject(s)
Energy Metabolism/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Lectins, C-Type/metabolism , Phagocytes/metabolism , Adipose Tissue/metabolism , Animals , Female , Glucose , Insulin/metabolism , Insulin Resistance/physiology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL
7.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791103

ABSTRACT

Menopause is characterized by a reduction in sex hormones in women and is associated with metabolic changes, including fatty liver and insulin resistance. Lifestyle changes, including a balanced diet and physical exercise, are necessary to prevent these undesirable changes. Strength training (ST) has been widely used because of the muscle and metabolic benefits it provides. Our study aims to evaluate the effects of ST on hepatic steatosis and insulin resistance in ovariectomized mice fed a high-fat diet (HFD) divided into four groups as follows: simulated sedentary surgery (SHAM-SED), trained simulated surgery (SHAM-EXE), sedentary ovariectomy (OVX-SED), and trained ovariectomy (OVX-EXE). They were fed an HFD for 9 weeks. ST was performed thrice a week. ST efficiently reduced body weight and fat percentage and increased lean mass in OVX mice. Furthermore, ST reduced the accumulation of ectopic hepatic lipids, increased AMPK phosphorylation, and inhibited the de novo lipogenesis pathway. OVX-EXE mice also showed a better glycemic profile, associated with greater insulin sensitivity identified by the euglycemic-hyperinsulinemic clamp, and reduced markers of hepatic oxidative stress compared with sedentary animals. Our data support the idea that ST can be indicated as a non-pharmacological treatment approach to mitigate metabolic changes resulting from menopause.


Subject(s)
Diet, High-Fat , Fatty Liver , Insulin Resistance , Ovariectomy , Resistance Training , Animals , Female , Ovariectomy/adverse effects , Diet, High-Fat/adverse effects , Mice , Fatty Liver/metabolism , Fatty Liver/prevention & control , Physical Conditioning, Animal , Oxidative Stress , Liver/metabolism , Mice, Inbred C57BL , Body Weight , Lipogenesis
8.
Curr Issues Mol Biol ; 45(5): 3965-3976, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37232722

ABSTRACT

In recent decades, clinical and experimental studies have revealed that estradiol contributes enormously to glycemic homeostasis. However, the same consensus does not exist in women during menopause who undergo replacement with progesterone or conjugated estradiol and progesterone. Since most hormone replacement treatments in menopausal women are performed with estradiol (E2) and progesterone (P4) combined, this work aimed to investigate the effects of progesterone on energy metabolism and insulin resistance in an experimental model of menopause (ovariectomized female mice-OVX mice) fed a high-fat diet (HFD). OVX mice were treated with E2 or P4 (or both combined). OVX mice treated with E2 alone or combined with P4 displayed reduced body weight after six weeks of HFD feeding compared to OVX mice and OVX mice treated with P4 alone. These data were associated with improved glucose tolerance and insulin sensitivity in OVX mice treated with E2 (alone or combined with P4) compared to OVX and P4-treated mice. Additionally, E2 treatment (alone or combined with P4) reduced both hepatic and muscle triglyceride content compared with OVX control mice and OVX + P4 mice. There were no differences between groups regarding hepatic enzymes in plasma and inflammatory markers. Therefore, our results revealed that progesterone replacement alone does not seem to influence glucose homeostasis and ectopic lipid accumulation in OVX mice. These results will help expand knowledge about hormone replacement in postmenopausal women associated with metabolic syndrome and non-alcoholic fatty liver disease.

9.
Proc Natl Acad Sci U S A ; 117(6): 2751-2760, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31980524

ABSTRACT

Obesity is associated with a chronic state of low-grade inflammation and progressive tissue infiltration by immune cells and increased expression of inflammatory cytokines. It is established that interleukin 6 (IL6) regulates multiple aspects of metabolism, including glucose disposal, lipolysis, oxidative metabolism, and energy expenditure. IL6 is secreted by many tissues, but the role of individual cell types is unclear. We tested the role of specific cells using a mouse model with conditional expression of the Il6 gene. We found that IL6 derived from adipocytes increased, while IL6 derived from myeloid cells and muscle suppressed, macrophage infiltration of adipose tissue. These opposite actions were associated with a switch of IL6 signaling from a canonical mode (myeloid cells) to a noncanonical trans-signaling mode (adipocytes and muscle) with increased expression of the ADAM10/17 metalloprotease that promotes trans-signaling by the soluble IL6 receptor α. Collectively, these data demonstrate that the source of IL6 production plays a major role in the physiological regulation of metabolism.


Subject(s)
Adipose Tissue/immunology , Interleukin-6/immunology , Obesity/immunology , ADAM10 Protein/genetics , ADAM10 Protein/immunology , ADAM17 Protein/genetics , ADAM17 Protein/immunology , Adipocytes/immunology , Animals , Female , Humans , Interleukin-6/genetics , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Muscle Cells/immunology , Myeloid Cells/immunology , Obesity/genetics , Species Specificity
10.
Int J Mol Sci ; 24(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37372993

ABSTRACT

The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is higher in men than in women of reproductive age, and postmenopausal women are especially susceptible to developing the disease. AIM: we evaluated if female apolipoprotein E (ApoE) KO mice were protected against Western-diet (WD)-induced NASH. METHODS: Female ovariectomized (OVX) ApoE KO mice or sham-operated (SHAM) mice were fed either a WD or a regular chow (RC) for 7 weeks. Additionally, OVX mice fed a WD were treated with either estradiol (OVX + E2) or vehicle (OVX). RESULTS: Whole-body fat, plasma glucose, and plasma insulin were increased and associated with increased glucose intolerance in OVX mice fed a WD (OVX + WD). Plasma and hepatic triglycerides, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) hepatic enzymes were also increased in the plasma of OVX + WD group, which was associated with hepatic fibrosis and inflammation. Estradiol replacement in OVX mice reduced body weight, body fat, glycemia, and plasma insulin associated with reduced glucose intolerance. Treatment also reduced hepatic triglycerides, ALT, AST, hepatic fibrosis, and inflammation in OVX mice. CONCLUSIONS: These data support the hypothesis that estradiol protects OVX ApoE KO mice from NASH and glucose intolerance.


Subject(s)
Glucose Intolerance , Insulins , Non-alcoholic Fatty Liver Disease , Animals , Female , Mice , Apolipoproteins E/genetics , Diet , Estradiol/pharmacology , Glucose , Glucose Intolerance/etiology , Glucose Intolerance/pathology , Inflammation/pathology , Liver/pathology , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Triglycerides
11.
Curr Issues Mol Biol ; 44(10): 4692-4703, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36286035

ABSTRACT

One of the consequences of the Western lifestyle and high-fat diet is non-alcoholic fatty liver disease (NAFLD) and its aggressive form, non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and hepatocellular carcinoma (HCC) and is rapidly becoming the leading cause of end-stage liver disease or liver transplantation. Currently, rodent NASH models lack significant aspects of the full NASH spectrum, representing a major problem for NASH research. Therefore, this work aimed to characterize a fast rodent model with all characteristic features of NASH. Eight-week-old male ApoE KO mice were fed with Western diet (WD), high fatty diet (HFD) or normal chow (Chow) for 7 weeks. Whole-body fat was increased by ~2 times in WD mice and HFD mice and was associated with increased glucose intolerance, hepatic triglycerides, and plasma ALT and plasma AST compared with Chow mice. WD mice also showed increased galectin-3 expression compared with Chow or HFD mice and increased plasma cholesterol compared with Chow mice. WD and HFD displayed increased hepatic fibrosis and increased F4/80 expression. WD mice also displayed increased levels of plasma MCP-1. Hepatic inflammatory markers were evaluated, and WD mice showed increased levels of TNF-α, MCP-1, IL-6 and IFN-γ. Taken together, these data demonstrated that the ApoE KO mouse fed with WD is a great model for NASH research, once it presents the fundamental parameters of the disease, including hepatic steatosis, fibrosis, inflammation, and metabolic syndrome.

12.
Nature ; 517(7534): 391-5, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25409143

ABSTRACT

Obesity-linked insulin resistance is a major precursor to the development of type 2 diabetes. Previous work has shown that phosphorylation of PPARγ (peroxisome proliferator-activated receptor γ) at serine 273 by cyclin-dependent kinase 5 (Cdk5) stimulates diabetogenic gene expression in adipose tissues. Inhibition of this modification is a key therapeutic mechanism for anti-diabetic drugs that bind PPARγ, such as the thiazolidinediones and PPARγ partial agonists or non-agonists. For a better understanding of the importance of this obesity-linked PPARγ phosphorylation, we created mice that ablated Cdk5 specifically in adipose tissues. These mice have both a paradoxical increase in PPARγ phosphorylation at serine 273 and worsened insulin resistance. Unbiased proteomic studies show that extracellular signal-regulated kinase (ERK) kinases are activated in these knockout animals. Here we show that ERK directly phosphorylates serine 273 of PPARγ in a robust manner and that Cdk5 suppresses ERKs through direct action on a novel site in MAP kinase/ERK kinase (MEK). Importantly, pharmacological inhibition of MEK and ERK markedly improves insulin resistance in both obese wild-type and ob/ob mice, and also completely reverses the deleterious effects of the Cdk5 ablation. These data show that an ERK/Cdk5 axis controls PPARγ function and suggest that MEK/ERK inhibitors may hold promise for the treatment of type 2 diabetes.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Diabetes Mellitus/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , PPAR gamma/metabolism , Adipocytes/enzymology , Adipocytes/metabolism , Adipose Tissue/cytology , Adipose Tissue/enzymology , Adipose Tissue/metabolism , Animals , Cell Proliferation , Cells, Cultured , Cyclin-Dependent Kinase 5/deficiency , Diet, High-Fat , Humans , Insulin Resistance , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/metabolism , MAP Kinase Signaling System , Male , Mice , Mice, Inbred C57BL , Mice, Obese , PPAR gamma/chemistry , Phosphorylation
13.
J Lipid Res ; 61(12): 1565-1576, 2020 12.
Article in English | MEDLINE | ID: mdl-32907986

ABSTRACT

Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp-/-) mice and age-weight matched wild-type control mice. Young (10-12-week-old) L-Mttp-/- mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp-/- mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp-/- mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp-/- mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp-/- mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp-/- mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp-/- mice.


Subject(s)
Carrier Proteins/genetics , Cell Membrane/metabolism , Diglycerides/metabolism , Gene Knockout Techniques , Insulin Resistance , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology
14.
J Biol Chem ; 294(22): 8819-8833, 2019 05 31.
Article in English | MEDLINE | ID: mdl-30975900

ABSTRACT

Loss of long-chain acyl-CoA synthetase isoform-1 (ACSL1) in mouse skeletal muscle (Acsl1M-/-) severely reduces acyl-CoA synthetase activity and fatty acid oxidation. However, the effects of decreased fatty acid oxidation on skeletal muscle function, histology, use of alternative fuels, and mitochondrial function and morphology are unclear. We observed that Acsl1M-/- mice have impaired voluntary running capacity and muscle grip strength and that their gastrocnemius muscle contains myocytes with central nuclei, indicating muscle regeneration. We also found that plasma creatine kinase and aspartate aminotransferase levels in Acsl1M-/- mice are 3.4- and 1.5-fold greater, respectively, than in control mice (Acsl1flox/flox ), indicating muscle damage, even without exercise, in the Acsl1M-/- mice. Moreover, caspase-3 protein expression exclusively in Acsl1M-/- skeletal muscle and the presence of cleaved caspase-3 suggested myocyte apoptosis. Mitochondria in Acsl1M-/- skeletal muscle were swollen with abnormal cristae, and mitochondrial biogenesis was increased. Glucose uptake did not increase in Acsl1M-/- skeletal muscle, and pyruvate oxidation was similar in gastrocnemius homogenates from Acsl1M-/- and control mice. The rate of protein synthesis in Acsl1M-/- glycolytic muscle was 2.1-fold greater 30 min after exercise than in the controls, suggesting resynthesis of proteins catabolized for fuel during the exercise. At this time, mTOR complex 1 was activated, and autophagy was blocked. These results suggest that fatty acid oxidation is critical for normal skeletal muscle homeostasis during both rest and exercise. We conclude that ACSL1 deficiency produces an overall defect in muscle fuel metabolism that increases protein catabolism, resulting in exercise intolerance, muscle weakness, and myocyte apoptosis.


Subject(s)
Amino Acids/metabolism , Coenzyme A Ligases/genetics , Fatty Acids/metabolism , Muscle, Skeletal/metabolism , Animals , Apoptosis , Aspartate Aminotransferases/metabolism , Caspase 3/metabolism , Coenzyme A Ligases/deficiency , Creatine Kinase/metabolism , Lipid Metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Muscle, Skeletal/pathology , Oxidation-Reduction , Physical Conditioning, Animal , Up-Regulation
15.
FASEB J ; 33(7): 8174-8185, 2019 07.
Article in English | MEDLINE | ID: mdl-30922125

ABSTRACT

The connection between adipose glucocorticoid action and whole-body metabolism is incompletely understood. Thus, we generated adipose tissue-specific glucocorticoid receptor-knockout (Ad-GcR-/-) mice to explore potential mechanisms. Ad-GcR-/- mice had a lower concentration of fasting plasma nonesterified fatty acids and less hepatic steatosis. This was associated with increased protein kinase B phosphorylation and increased hepatic glycogen synthesis after an oral glucose challenge. High-fat diet (HFD)-fed Ad-GcR-/- mice were protected against the development of hepatic steatosis and diacylglycerol-PKCε-induced impairments in hepatic insulin signaling. Under hyperinsulinemic-euglycemic conditions, hepatic insulin response was ∼10-fold higher in HFD-fed Ad-GcR-/- mice. Insulin-mediated suppression of adipose lipolysis was improved by 40% in Ad-GcR-/- mice. Adipose triglyceride lipase expression was decreased and insulin-mediated perilipin dephosphorylation was increased in Ad-GcR-/- mice. In metabolic cages, food intake decreased by 3 kcal/kg per hour in Ad-GcR-/- mice. Therefore, physiologic adipose glucocorticoid action appears to drive hepatic lipid accumulation during stressors such as fasting. The resultant hepatic insulin resistance prevents hepatic glycogen synthesis, preserving glucose for glucose-dependent organs. Absence of adipose glucocorticoid action attenuates HFD-induced hepatic insulin resistance; potential explanations for reduction in hepatic steatosis include reductions in adipose lipolysis and food intake.-Abulizi, A., Camporez, J.-P., Jurczak, M. J., Høyer, K. F., Zhang, D., Cline, G. W., Samuel, V. T., Shulman, G. I., Vatner, D. F. Adipose glucocorticoid action influences whole-body metabolism via modulation of hepatic insulin action.


Subject(s)
Adipose Tissue/metabolism , Glucocorticoids/metabolism , Insulin Resistance , Insulin/metabolism , Lipolysis , Liver/metabolism , Animals , Dietary Fats/adverse effects , Dietary Fats/pharmacology , Glucocorticoids/genetics , Insulin/genetics , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Mice , Mice, Knockout , Receptors, Glucocorticoid/deficiency , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
16.
Nature ; 510(7506): 547-51, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24870244

ABSTRACT

Insulin constitutes a principal evolutionarily conserved hormonal axis for maintaining glucose homeostasis; dysregulation of this axis causes diabetes. PGC-1α (peroxisome-proliferator-activated receptor-γ coactivator-1α) links insulin signalling to the expression of glucose and lipid metabolic genes. The histone acetyltransferase GCN5 (general control non-repressed protein 5) acetylates PGC-1α and suppresses its transcriptional activity, whereas sirtuin 1 deacetylates and activates PGC-1α. Although insulin is a mitogenic signal in proliferative cells, whether components of the cell cycle machinery contribute to its metabolic action is poorly understood. Here we report that in mice insulin activates cyclin D1-cyclin-dependent kinase 4 (Cdk4), which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high-throughput chemical screen, we identify a Cdk4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK-3ß (glycogen synthase kinase 3-beta) signalling induces cyclin D1 protein stability by sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 messenger RNA transcripts. Activated cyclin D1-Cdk4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycaemia. In diabetic models, cyclin D1-Cdk4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycaemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division.


Subject(s)
Cell Cycle , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/metabolism , Glucose/metabolism , Insulin/metabolism , Signal Transduction , Acetylation , Amino Acids/pharmacology , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Cells, Cultured , Cyclin D1/deficiency , Cyclin D1/genetics , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Diabetes Mellitus/metabolism , Enzyme Activation , Fasting , Gene Deletion , Gluconeogenesis/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Histone Acetyltransferases/metabolism , Homeostasis , Humans , Hyperglycemia/metabolism , Hyperinsulinism/metabolism , Male , Mice , Phosphorylation , RNA, Messenger/analysis , RNA, Messenger/genetics , Transcription Factors/metabolism , Transcription, Genetic/drug effects
17.
Nature ; 510(7506): 542-6, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24847880

ABSTRACT

Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production. These findings were replicated in whole-body mitochondrial glycerophosphate dehydrogenase knockout mice. These results have significant implications for understanding the mechanism of metformin's blood glucose lowering effects and provide a new therapeutic target for type 2 diabetes.


Subject(s)
Gluconeogenesis/drug effects , Glycerolphosphate Dehydrogenase/antagonists & inhibitors , Metformin/pharmacology , Mitochondria/enzymology , Animals , Blood Glucose/analysis , Blood Glucose/biosynthesis , Cells, Cultured , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/metabolism , Glycerolphosphate Dehydrogenase/deficiency , Glycerolphosphate Dehydrogenase/genetics , Glycerolphosphate Dehydrogenase/metabolism , Humans , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Insulin Secretion , Lactic Acid/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice, Knockout , Oxidation-Reduction/drug effects , Rats , Rats, Sprague-Dawley
18.
Mol Cell ; 48(6): 900-13, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23142079

ABSTRACT

Hepatic glucose production (HGP) maintains blood glucose levels during fasting but can also exacerbate diabetic hyperglycemia. HGP is dynamically controlled by a signaling/transcriptional network that regulates the expression/activity of gluconeogenic enzymes. A key mediator of gluconeogenic gene transcription is PGC-1α. PGC-1α's activation of gluconeogenic gene expression is dependent upon its acetylation state, which is controlled by the acetyltransferase GCN5 and the deacetylase Sirt1. Nevertheless, whether other chromatin modifiers-particularly other sirtuins-can modulate PGC-1α acetylation is currently unknown. Herein, we report that Sirt6 strongly controls PGC-1α acetylation. Surprisingly, Sirt6 induces PGC-1α acetylation and suppresses HGP. Sirt6 depletion decreases PGC-1α acetylation and promotes HGP. These acetylation effects are GCN5 dependent: Sirt6 interacts with and modifies GCN5, enhancing GCN5's activity. Lepr(db/db) mice, an obese/diabetic animal model, exhibit reduced Sirt6 levels; ectopic re-expression suppresses gluconeogenic genes and normalizes glycemia. Activation of hepatic Sirt6 may therefore be therapeutically useful for treating insulin-resistant diabetes.


Subject(s)
Gluconeogenesis , Hepatocytes/metabolism , Sirtuins/physiology , Trans-Activators/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Animals , Blood Glucose , Cell Line , Enzyme Activation , Gene Expression , Gluconeogenesis/genetics , Hepatocytes/enzymology , Humans , Liver/enzymology , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Obese , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phosphorylation , Protein Processing, Post-Translational , Sirtuin 1/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Transcription Factors
19.
Proc Natl Acad Sci U S A ; 114(52): E11285-E11292, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29237750

ABSTRACT

A single-nucleotide polymorphism in the human arylamine N-acetyltransferase 2 (Nat2) gene has recently been identified as associated with insulin resistance in humans. To understand the cellular and molecular mechanisms by which alterations in Nat2 activity might cause insulin resistance, we examined murine ortholog Nat1 knockout (KO) mice. Nat1 KO mice manifested whole-body insulin resistance, which could be attributed to reduced muscle, liver, and adipose tissue insulin sensitivity. Hepatic and muscle insulin resistance were associated with marked increases in both liver and muscle triglyceride (TAG) and diacylglycerol (DAG) content, which was associated with increased PKCε activation in liver and increased PKCθ activation in skeletal muscle. Nat1 KO mice also displayed reduced whole-body energy expenditure and reduced mitochondrial oxygen consumption in white adipose tissue, brown adipose tissue, and hepatocytes. Taken together, these studies demonstrate that Nat1 deletion promotes reduced mitochondrial activity and is associated with ectopic lipid-induced insulin resistance. These results provide a potential genetic link among mitochondrial dysfunction with increased ectopic lipid deposition, insulin resistance, and type 2 diabetes.


Subject(s)
Arylamine N-Acetyltransferase/deficiency , Diabetes Mellitus, Type 2 , Energy Metabolism , Insulin Resistance , Isoenzymes/deficiency , Mitochondria/enzymology , Mitochondrial Diseases , Adipose Tissue, Brown/enzymology , Adipose Tissue, Brown/pathology , Adipose Tissue, White/enzymology , Adipose Tissue, White/pathology , Animals , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Diglycerides/genetics , Diglycerides/metabolism , Liver/enzymology , Liver/pathology , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Oxygen Consumption/genetics , Protein Kinase C-epsilon/genetics , Protein Kinase C-epsilon/metabolism , Triglycerides/genetics , Triglycerides/metabolism
20.
J Physiol ; 597(15): 3885-3903, 2019 08.
Article in English | MEDLINE | ID: mdl-31206703

ABSTRACT

KEY POINTS: Oestrogen has been shown to play an important role in the regulation of metabolic homeostasis and insulin sensitivity in both human and rodent studies. Insulin sensitivity is greater in premenopausal women compared with age-matched men, and metabolism-related cardiovascular diseases and type 2 diabetes are less frequent in these same women. Both female and male mice treated with oestradiol are protected against obesity-induced insulin resistance. The protection against obesity-induced insulin resistance is associated with reduced ectopic lipid content in liver and skeletal muscle. These results were associated with increased insulin-stimulated suppression of white adipose tissue lipolysis and reduced inflammation. ABSTRACT: Oestrogen has been shown to play an important role in the regulation of metabolic homeostasis and insulin sensitivity in both human and rodent studies. Overall, females are protected against obesity-induced insulin resistance; yet, the mechanisms responsible for this protection are not well understood. Therefore, the aim of the present work was to evaluate the underlying mechanism(s) by which female mice are protected against obesity-induced insulin resistance compared with male mice. We studied male and female mice in age-matched or body weight-matched conditions. They were fed a high-fat diet (HFD) or regular chow for 4 weeks. We also studied HFD male mice treated with oestradiol or vehicle. Both HFD female and HFD male mice treated with oestradiol displayed increased whole-body insulin sensitivity, associated with reduction in ectopic hepatic and muscle lipid content compared to HFD male mice. Reductions in ectopic lipid content in these mice were associated with increased insulin-stimulated suppression of white adipose tissue (WAT) lipolysis. Both HFD female and HFD male mice treated with oestradiol also displayed striking reductions in WAT inflammation, represented by reductions in plasma and adipose tissue tumour necrosis factor α and interleukin 6 concentrations. Taken together these data support the hypothesis that HFD female mice are protected from obesity-induced insulin resistance due to oestradiol-mediated reductions in WAT inflammation, leading to improved insulin-mediated suppression of WAT lipolysis and reduced ectopic lipid content in liver and skeletal muscle.


Subject(s)
Estrogens/pharmacology , Insulin Resistance , Interleukin-6/metabolism , Sex Characteristics , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Body Weight , Cell Line , Cells, Cultured , Diet, High-Fat/adverse effects , Estrogens/metabolism , Female , Lipolysis , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL