ABSTRACT
Ramipril is an angiotensin-converting enzyme inhibitor used for hypertension and heart failure management. To date, scarce literature is available on pharmacogenetic associations affecting ramipril. The goal of this study was to investigate the effect of 120 genetic variants in 34 pharmacogenes (i.e., genes encoding for enzymes like CYPs or UGTs and transporters like ABC or SLC) on ramipril pharmacokinetic variability and adverse drug reaction (ADR) incidence. Twenty-nine healthy volunteers who had participated in a single-dose bioequivalence clinical trial of two formulations of ramipril were recruited. A univariate and multivariate analysis searching for associations between genetic variants and ramipril pharmacokinetics was performed. SLCO1B1 and ABCG2 genotype-informed phenotypes strongly predicted ramipril exposure. Volunteers with the SLCO1B1 decreased function (DF) phenotype presented around 1.7-fold higher dose/weight-corrected area under the curve (AUC/DW) than volunteers with the normal function (NF) phenotype (univariate p-value [puv] < 0.001, multivariate p-value [pmv] < 0.001, ß = 0.533, R2 = 0.648). Similarly, volunteers with ABCG2 DF + poor function (PF) phenotypes presented around 1.6-fold higher AUC/DW than those with the NF phenotype (puv = 0.011, pmv < 0.001, ß = 0.259, R2 = 0.648). Our results suggest that SLCO1B1 and ABCG2 are important transporters to ramipril pharmacokinetics, and their genetic variation strongly alters its pharmacokinetics. Further studies are required to confirm these associations and their clinical relevance.