Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell ; 184(19): 4996-5014.e26, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34534464

ABSTRACT

CD8 T cell responses against different tumor neoantigens occur simultaneously, yet little is known about the interplay between responses and its impact on T cell function and tumor control. In mouse lung adenocarcinoma, we found that immunodominance is established in tumors, wherein CD8 T cell expansion is predominantly driven by the antigen that most stably binds MHC. T cells responding to subdominant antigens were enriched for a TCF1+ progenitor phenotype correlated with response to immune checkpoint blockade (ICB) therapy. However, the subdominant T cell response did not preferentially benefit from ICB due to a dysfunctional subset of TCF1+ cells marked by CCR6 and Tc17 differentiation. Analysis of human samples and sequencing datasets revealed that CCR6+ TCF1+ cells exist across human cancers and are not correlated with ICB response. Vaccination eliminated CCR6+ TCF1+ cells and dramatically improved the subdominant response, highlighting a strategy to optimally engage concurrent neoantigen responses against tumors.


Subject(s)
Adenocarcinoma of Lung/immunology , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Lung Neoplasms/immunology , Stem Cells/immunology , Amino Acid Sequence , Animals , CTLA-4 Antigen/metabolism , Epitopes , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/pathology , Mice , Peptides/chemistry , Phenotype , Programmed Cell Death 1 Receptor/metabolism , RNA-Seq , Receptors, Antigen, T-Cell/metabolism , Receptors, CCR6/metabolism , Single-Cell Analysis , Vaccination
2.
Cell ; 170(6): 1149-1163.e12, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886383

ABSTRACT

The diversity of mesenchymal cell types in the lung that influence epithelial homeostasis and regeneration is poorly defined. We used genetic lineage tracing, single-cell RNA sequencing, and organoid culture approaches to show that Lgr5 and Lgr6, well-known markers of stem cells in epithelial tissues, are markers of mesenchymal cells in the adult lung. Lgr6+ cells comprise a subpopulation of smooth muscle cells surrounding airway epithelia and promote airway differentiation of epithelial progenitors via Wnt-Fgf10 cooperation. Genetic ablation of Lgr6+ cells impairs airway injury repair in vivo. Distinct Lgr5+ cells are located in alveolar compartments and are sufficient to promote alveolar differentiation of epithelial progenitors through Wnt activation. Modulating Wnt activity altered differentiation outcomes specified by mesenchymal cells. This identification of region- and lineage-specific crosstalk between epithelium and their neighboring mesenchymal partners provides new understanding of how different cell types are maintained in the adult lung.


Subject(s)
Lung/cytology , Mesoderm/cytology , Animals , Homeostasis , Lung/physiology , Mice , Organoids/cytology , Pulmonary Alveoli/cytology , Receptors, G-Protein-Coupled/analysis , Sequence Analysis, RNA , Single-Cell Analysis , Transcription, Genetic
3.
Immunity ; 54(10): 2338-2353.e6, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34534439

ABSTRACT

In tumors, a subset of CD8+ T cells expressing the transcription factor TCF-1 drives the response to immune checkpoint blockade. We examined the mechanisms that maintain these cells in an autochthonous model of lung adenocarcinoma. Longitudinal sampling and single-cell sequencing of tumor-antigen specific TCF-1+ CD8+ T cells revealed that while intratumoral TCF-1+ CD8+ T cells acquired dysfunctional features and decreased in number as tumors progressed, TCF-1+ CD8+ T cell frequency in the tumor draining LN (dLN) remained stable. Two discrete intratumoral TCF-1+ CD8+ T cell subsets developed over time-a proliferative SlamF6+ subset and a non-cycling SlamF6- subset. Blocking dLN egress decreased the frequency of intratumoral SlamF6+ TCF-1+ CD8+ T cells. Conventional type I dendritic cell (cDC1) in dLN decreased in number with tumor progression, and Flt3L+anti-CD40 treatment recovered SlamF6+ T cell frequencies and decreased tumor burden. Thus, cDC1s in tumor dLN maintain a reservoir of TCF-1+ CD8+ T cells and their decrease contributes to failed anti-tumor immunity.


Subject(s)
Adenocarcinoma of Lung/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Lung Neoplasms/immunology , Lymph Nodes/immunology , T Cell Transcription Factor 1/immunology , Animals , Mice , T-Lymphocyte Subsets/immunology
4.
Mol Cell ; 48(5): 760-70, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23142080

ABSTRACT

MicroRNAs (miRNAs) are essential components of gene regulation, but identification of miRNA targets remains a major challenge. Most target prediction and discovery relies on perfect complementarity of the miRNA seed to the 3' untranslated region (UTR). However, it is unclear to what extent miRNAs target sites without seed matches. Here, we performed a transcriptome-wide identification of the endogenous targets of a single miRNA-miR-155-in a genetically controlled manner. We found that approximately 40% of miR-155-dependent Argonaute binding occurs at sites without perfect seed matches. The majority of these noncanonical sites feature extensive complementarity to the miRNA seed with one mismatch. These noncanonical sites confer regulation of gene expression, albeit less potently than canonical sites. Thus, noncanonical miRNA binding sites are widespread, often contain seed-like motifs, and can regulate gene expression, generating a continuum of targeting and regulation.


Subject(s)
MicroRNAs/metabolism , Transcriptome , 3' Untranslated Regions , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Binding Sites , CD4-Positive T-Lymphocytes/metabolism , Computational Biology , Down-Regulation , Gene Expression Profiling/methods , Genes, Reporter , HEK293 Cells , Humans , Lymphocyte Activation , Mice , Mice, Knockout , MicroRNAs/genetics , Nucleotide Motifs , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , RNA, Messenger/metabolism , Transfection
5.
Proc Natl Acad Sci U S A ; 110(17): 6967-72, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23572582

ABSTRACT

Natural killer (NK) cells function in the recognition and destruction of host cells infected with pathogens. Many regulatory mechanisms govern the potent responses of NK cells, both at the cellular and molecular level. Ablation of microRNA (miRNA) processing enzymes demonstrated that miRNAs play critical roles in NK cell differentiation and function; however, the role of individual miRNAs requires further investigation. Using mice containing a targeted deletion of microRNA-155 (miR-155), we observed defects in NK cell maintenance and maturation at steady state, as well as in homeostatic proliferation in lymphopenic mice. In addition, we discovered that miR-155 is up-regulated in activated NK cells during mouse cytomegalovirus (MCMV) infection in response to signals from the proinflammatory cytokines IL-12 and IL-18 and through signal transducer and activator of transcription 4 (STAT4) signaling. Although miR-155 was found to be dispensable for cytotoxicity and cytokine production when triggered through activating receptors, NK cells lacking miR-155 exhibited severely impaired effector and memory cell numbers in both lymphoid and nonlymphoid tissues after MCMV infection. We demonstrate that miR-155 differentially targets Noxa and suppressor of cytokine signaling 1 (SOCS1) in NK cells at distinct stages of homeostasis and activation. NK cells constitutively expressing Noxa and SOCS1 exhibit profound defects in expansion during the response to MCMV infection, suggesting that their regulation by miR-155 promotes antiviral immunity.


Subject(s)
Gene Expression Regulation/immunology , Herpesviridae Infections/immunology , Homeostasis/immunology , Killer Cells, Natural/immunology , MicroRNAs/metabolism , Muromegalovirus/immunology , Adoptive Transfer , Animals , Chromatin Immunoprecipitation , Gene Deletion , Interleukin-12/metabolism , Interleukin-18/metabolism , Luciferases , Mice , MicroRNAs/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Real-Time Polymerase Chain Reaction , STAT4 Transcription Factor/metabolism , Signal Transduction/immunology , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/metabolism
6.
Nat Genet ; 55(10): 1686-1695, 2023 10.
Article in English | MEDLINE | ID: mdl-37709863

ABSTRACT

DNA mismatch repair deficiency (MMRd) is associated with a high tumor mutational burden (TMB) and sensitivity to immune checkpoint blockade (ICB) therapy. Nevertheless, most MMRd tumors do not durably respond to ICB and critical questions remain about immunosurveillance and TMB in these tumors. In the present study, we developed autochthonous mouse models of MMRd lung and colon cancer. Surprisingly, these models did not display increased T cell infiltration or ICB response, which we showed to be the result of substantial intratumor heterogeneity of mutations. Furthermore, we found that immunosurveillance shapes the clonal architecture but not the overall burden of neoantigens, and T cell responses against subclonal neoantigens are blunted. Finally, we showed that clonal, but not subclonal, neoantigen burden predicts ICB response in clinical trials of MMRd gastric and colorectal cancer. These results provide important context for understanding immune evasion in cancers with a high TMB and have major implications for therapies aimed at increasing TMB.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Animals , Mice , Colorectal Neoplasms/genetics , Antigens, Neoplasm/genetics , Mutation , DNA Mismatch Repair/genetics , Biomarkers, Tumor/genetics
7.
J Struct Biol ; 175(2): 244-52, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21536137

ABSTRACT

Proteopedia is a collaborative, 3D web-encyclopedia of protein, nucleic acid and other biomolecule structures. Created as a means for communicating biomolecule structures to a diverse scientific audience, Proteopedia (http://www.proteopedia.org) presents structural annotation in an intuitive, interactive format and allows members of the scientific community to easily contribute their own annotations. Here, we provide a status report on Proteopedia by describing advances in the web resource since its inception three and a half years ago, focusing on features of potential direct use to the scientific community. We discuss its progress as a collaborative 3D-encyclopedia of structures as well as its use as a complement to scientific publications and PowerPoint presentations. We also describe Proteopedia's use for 3D visualization in structure-related pedagogy.


Subject(s)
Encyclopedias as Topic , Online Systems , Protein Conformation , Proteins/chemistry , Information Dissemination/methods , Information Management , Information Services , Models, Molecular , Molecular Biology/education , User-Computer Interface
8.
Cancer Cell ; 38(2): 229-246.e13, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32707077

ABSTRACT

Tumor evolution from a single cell into a malignant, heterogeneous tissue remains poorly understood. Here, we profile single-cell transcriptomes of genetically engineered mouse lung tumors at seven stages, from pre-neoplastic hyperplasia to adenocarcinoma. The diversity of transcriptional states increases over time and is reproducible across tumors and mice. Cancer cells progressively adopt alternate lineage identities, computationally predicted to be mediated through a common transitional, high-plasticity cell state (HPCS). Accordingly, HPCS cells prospectively isolated from mouse tumors and human patient-derived xenografts display high capacity for differentiation and proliferation. The HPCS program is associated with poor survival across human cancers and demonstrates chemoresistance in mice. Our study reveals a central principle underpinning intra-tumoral heterogeneity and motivates therapeutic targeting of the HPCS.


Subject(s)
Cell Plasticity/genetics , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Lung Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cells, Cultured , Disease Models, Animal , Epithelial Cells/cytology , Genetic Heterogeneity , Humans , Lung Neoplasms/pathology , Mice , Single-Cell Analysis/methods , Transcriptome/genetics
9.
Cell Rep ; 29(10): 2998-3008.e8, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31801068

ABSTRACT

Regulatory T cells (Tregs) can impair anti-tumor immune responses and are associated with poor prognosis in multiple cancer types. Tregs in human tumors span diverse transcriptional states distinct from those of peripheral Tregs, but their contribution to tumor development remains unknown. Here, we use single-cell RNA sequencing (RNA-seq) to longitudinally profile dynamic shifts in the distribution of Tregs in a genetically engineered mouse model of lung adenocarcinoma. In this model, interferon-responsive Tregs are more prevalent early in tumor development, whereas a specialized effector phenotype characterized by enhanced expression of the interleukin-33 receptor ST2 is predominant in advanced disease. Treg-specific deletion of ST2 alters the evolution of effector Treg diversity, increases infiltration of CD8+ T cells into tumors, and decreases tumor burden. Our study shows that ST2 plays a critical role in Treg-mediated immunosuppression in cancer, highlighting potential paths for therapeutic intervention.


Subject(s)
Interleukin-33/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Female , Immune Tolerance/immunology , Immunosuppression Therapy/methods , Male , Mice , Mice, Inbred C57BL , Neoplasms/immunology , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL