Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Neuro Oncol ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943513

ABSTRACT

BACKGROUND: IDH-wildtype (-wt) status is a pre-requisite for the diagnosis of glioblastoma (GBM); however, IDH-wt gliomas with low grade or anaplastic morphology have historically been excluded from GBM trials and may represent a distinct prognostic entity. While alkylating agent chemotherapy improves overall survival (OS) and progression-free survival (PFS) for IDH-wt GBM and also IDH-mutant gliomas, irrespective of grade, the benefit for IDH-wt diffuse histologic lower grade gliomas is unclear. METHODS: We performed a meta-analysis of randomized clinical trials for World Health Organization (WHO) grade 2-3 gliomas (2009 to present) to determine the effect of alkylating chemotherapy on IDH-wt and -mutant gliomas using a random-effects model with inverse-variance pooling. RESULTS: We identified six trials with 1,204 patients (430 IDH-wt, 774 IDH-mutant) that evaluated alkylating chemoradiotherapy versus radiotherapy alone, allowing us to perform an analysis focused on the value of adding alkylating chemotherapy to radiotherapy. For patients with IDH-wt tumors, alkylating chemotherapy added to radiotherapy was associated with improved PFS (HR:0.77 [95%CI 0.62-0.97], P=.03) but not OS (HR:0.87 [95%CI 0.64-1.18], P=.17). For patients with IDH-mutant tumors, alkylating chemotherapy added to radiotherapy improved both OS (HR:0.52 [95%CI 0.42-0.64], P<.001) and PFS (HR=0.47 [95%CI 0.39-0.57], P<.001) compared to radiotherapy alone. The magnitude of benefit was similar for IDH-mutant gliomas with or without 1p19q-codeletion. CONCLUSIONS: Alkylating chemotherapy reduces mortality by 48% and progression by 53% for patients with IDH-mutant gliomas. Optimal management of IDH-wt diffuse histologic lower grade gliomas remains to be determined, as there is little evidence supporting an OS benefit from alkylating chemotherapy.

2.
Int J Radiat Oncol Biol Phys ; 119(4): 1248-1260, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38364947

ABSTRACT

PURPOSE: Diffuse midline glioma (DMG) is a fatal tumor traditionally treated with radiation therapy (RT) and previously characterized as having a noninflammatory tumor immune microenvironment (TIME). FLASH is a novel RT technique using ultra-high dose rate that is associated with decreased toxicity and effective tumor control. However, the effect of FLASH and conventional (CONV) RT on the DMG TIME has not yet been explored. METHODS AND MATERIALS: Here, we performed single-cell RNA sequencing (scRNA-seq) and flow cytometry on immune cells isolated from an orthotopic syngeneic murine model of brainstem DMG after the use of FLASH (90 Gy/sec) or CONV (2 Gy/min) dose-rate RT and compared to unirradiated tumor (SHAM). RESULTS: At day 4 post-RT, FLASH exerted similar effects as CONV in the predominant microglial (MG) population, including the presence of two activated subtypes. However, at day 10 post-RT, we observed a significant increase in the type 1 interferon α/ß receptor (IFNAR+) in MG in CONV and SHAM compared to FLASH. In the non-resident myeloid clusters of macrophages (MACs) and dendritic cells (DCs), we found increased type 1 interferon (IFN1) pathway enrichment for CONV compared to FLASH and SHAM by scRNA-seq. We observed this trend by flow cytometry at day 4 post-RT in IFNAR+ MACs and DCs, which equalized by day 10 post-RT. DMG control and murine survival were equivalent between RT dose rates. CONCLUSIONS: Our work is the first to map CONV and FLASH immune alterations of the DMG TIME with single-cell resolution. Although DMG tumor control and survival were similar between CONV and FLASH, we found that changes in immune compartments differed over time. Importantly, although both RT modalities increased IFN1, we found that the timing of this response was cell-type and dose-rate dependent. These temporal differences, particularly in the context of tumor control, warrant further study.


Subject(s)
Glioma , Microglia , Animals , Glioma/radiotherapy , Glioma/immunology , Glioma/pathology , Mice , Microglia/radiation effects , Microglia/immunology , Tumor Microenvironment/immunology , Brain Neoplasms/radiotherapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Receptor, Interferon alpha-beta/genetics , Mice, Inbred C57BL , Single-Cell Analysis/methods , Dendritic Cells/immunology , Dendritic Cells/radiation effects , Macrophages/immunology
3.
Cancer Discov ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767413

ABSTRACT

High-grade gliomas (HGG) are deadly diseases for both adult and pediatric patients. Recently, it has been shown that neuronal activity promotes progression of multiple subgroups of HGG. However, epigenetic mechanisms that govern this process remain elusive. Here we report that the chromatin remodeler CHD2 regulates neuron-glioma interactions in diffuse midline glioma (DMG) characterized by onco-histone H3.1K27M. Depletion of CHD2 in H3.1K27M DMG cells compromises cell viability and neuron-to-glioma synaptic connections in vitro, neuron-induced proliferation of H3.1K27M DMG cells in vitro and in vivo, activity-dependent calcium transients in vivo, and extends the survival of H3.1K27M DMG-bearing mice. Mechanistically, CHD2 coordinates with the transcription factor FOSL1 to control the expression of axon-guidance and synaptic genes in H3.1K27M DMG cells. Together, our study reveals a mechanism whereby CHD2 controls the intrinsic gene program of the H3.1K27M DMG subtype, which in turn regulates the tumor growth-promoting interactions of glioma cells with neurons.

SELECTION OF CITATIONS
SEARCH DETAIL