Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Nano Lett ; 24(22): 6821-6827, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38787786

ABSTRACT

In the quasi-two-dimensional superconductor NbSe2, the superconducting transition temperature (Tc) is layer-dependent, decreasing by about 60% in the monolayer limit. However, for the extremely anisotropic copper-based high-Tc superconductor Bi2Sr2CaCu2O8+δ (Bi-2212), the Tc of the monolayer is almost identical with that of its bulk counterpart. To clarify the effect of dimensionality on superconductivity, here, we successfully fabricate ultrathin flakes of iron-based high-Tc superconductors CsCa2Fe4As4F2 and CaKFe4As4. It is found that the Tc of monolayer CsCa2Fe4As4F2 (after tuning to the optimal doping by ionic liquid gating) is about 20% lower than that of the bulk crystal, while the Tc of three-layer CaKFe4As4 decreases by 46%, showing a more pronounced dimensional effect than that of CsCa2Fe4As4F2. By carefully examining their anisotropy and the c-axis coherence length, we reveal the general trend and empirical law of the layer-dependent superconductivity in these quasi-two-dimensional superconductors.

2.
J Am Chem Soc ; 146(12): 8260-8268, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38497725

ABSTRACT

We report the synthesis, crystal structure, and physical properties of a novel ternary compound, Th2Cu4As5. The material crystallizes in a tetragonal structure with lattice parameters a = 4.0639(3) Å and c = 24.8221(17) Å. Its structure can be described as an alternating stacking of fluorite-type Th2As2 layers with antifluorite-type double-layered Cu4As3 slabs. The measurement of electrical resistivity, magnetic susceptibility, and specific heat reveals that Th2Cu4As5 undergoes bulk superconducting transition at 4.2 K. Additionally, all these physical quantities exhibit anomalies at 48 K, accompanied by a sign change in the Hall coefficient, suggesting a charge-density-wave-like (CDW) phase transition. Drawing from both experimental data and band calculations, we propose that the superconducting and CDW-like phase transitions are, respectively, associated with the Cu4As3 slabs and the As plane in the Th2As2 layers.

3.
Inorg Chem ; 63(1): 211-218, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38153326

ABSTRACT

A quaternary compound, ThCr2Si2C, was synthesized by using the arc-melting technique. The compound adopts a tetragonal CeCr2Si2C-type crystal structure. The electronic resistivity and specific heat data exhibit metallic behavior, while the magnetic susceptibility displays a pronounced broad peak at around 370 K, indicating the antiferromagnetic phase transition. The first-principles calculations suggest A-type antiferromagnetic ordering of the Cr sublattice, which is confirmed by neutron diffraction experiments. By comparing the crystal structure of ThCr2Si2C with the isostructural Cr-based compounds, the magnetic state of Cr 3d orbital is discussed in terms of the band-filling effects and indirect spin exchange interaction.

4.
Small ; 19(33): e2300964, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37066740

ABSTRACT

The long-range magnetic ordering in frustrated magnetic systems is stabilized by coupling magnetic moments to various degrees of freedom, for example, by enhancing magnetic anisotropy via lattice distortion. Here, the unconventional spin-lattice coupled metamagnetic properties of atomically-thin CrOCl, a van der Waals antiferromagnet with inherent magnetic frustration rooted in the staggered square lattice, are reported. Using temperature- and angle-dependent tunneling magnetoconductance (TMC), in complementary with magnetic torque and first-principles calculations, the antiferromagnetic (AFM)-to-ferrimagnetic (FiM) metamagnetic transitions (MTs) of few-layer CrOCl are revealed to be triggered by collective magnetic moment flipping rather than the established spin-flop mechanism, when external magnetic field (H) enforces a lattice reconstruction interlocked with the five-fold periodicity of the FiM phase. The spin-lattice coupled MTs are manifested by drastic jumps in TMC, which show anomalous upshifts at the transition thresholds and persist much higher above the AFM Néel temperature. While the MTs exhibit distinctive triaxial anisotropy, reflecting divergent magnetocrystalline anisotropy of the c-axis AFM ground state, the resulting FiM phase has an a-c easy plane in which the magnetization axis is freely rotated by H. At the 2D limit, such a field-tunable FiM phase may provide unique opportunities to explore exotic emergent phenomena and novel spintronics devices.

5.
Inorg Chem ; 61(43): 17115-17122, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36256887

ABSTRACT

A quaternary compound with the composition Mo3ReRuC is obtained in a previously unexplored MoReRu-Mo2C system. According to X-ray structural analysis, Mo3ReRuC crystallizes in the noncentrosymmetric space group P4132 [cubic ß-Mn-type structure, a = 6.8107(1) Å]. Below 7.7 K, Mo3ReRuC becomes a bulk type-II superconductor with an upper critical field close to the Pauli paramagnetic limit. The specific heat data give a large normalized jump ΔCp/γTc = 2.3 at Tc, which points to a strongly coupled superconducting state. First-principles calculations show that its electronic states at the Fermi level are mainly contributed by Mo, Re, and Ru atoms and strongly increased by the spin-orbit coupling. Our finding suggests that the intermediate phase between alloys and carbides may be a good place to look for ß-Mn-type noncentrosymmetric superconductors.

6.
Inorg Chem ; 61(48): 19232-19239, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36395178

ABSTRACT

We report two novel titanium-based pnictide oxide compounds (EuF)2Ti2Pn2O (Pn = Sb, Bi), which are synthesized by replacing Sr2+ in (SrF)2Ti2Pn2O [Liu, R. H. Structure and Physical Properties of the Layered Pnictide-Oxides: (SrF)2Ti2Pn2O (Pn = As, Sb) and (SmO)2Ti2Sb2O. Chem. Mater. 2010, 22, 1503-1508] with Eu2+ using a solid-state reaction. (EuF)2Ti2Sb2O exhibits an obvious anomaly in resistivity and heat capacity at T ∼ 195 K, which may arise from the spin-density wave/charge-density wave instability. Similar features are also observed in BaTi2Pn2O, (SrF)2Ti2Pn2O, and Na2Ti2Pn2O (Pn = As and Sb) [Liu, R. H. Structure and Physical Properties of the Layered Pnictide-Oxides: (SrF)2Ti2Pn2O (Pn = As, Sb) and (SmO)2Ti2Sb2O. Chem. Mater. 2010, 22, 1503-1508, Ozawa, T. C. Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors. Sci. Technol. Adv. Mater. 2008, 9, 033003, Wang, X. F. Structure and physical properties for a new layered pnictide-oxide: BaTi2As2O. J. Phys.: Condens. Matter. 2010, 22, 075702, and Xu, H. C. Electronic structure of the BaTi2As2O parent compound of the titanium-based oxypnictide superconductor. Phys. Rev. B 2014, 89, 155108]. Magnetic susceptibility measurements indicate an antiferromagnetic transition at T ∼ 2.5 K for (EuF)2Ti2Sb2O. In particular, the electronic specific heat coefficients of both (EuF)2Ti2Sb2O and (EuF)2Ti2Bi2O are significantly enhanced compared to those of (SrF)2Ti2Pn2O, Na2Ti2Pn2O, and BaTi2Pn2O,1,5,6 which may be due to a strong electron correlation effect in this system. Thus, (EuF)2Ti2Pn2O (Pn = Sb, Bi) may provide new platforms for studying density wave, magnetic ordering, and electron correlation effects.

7.
Inorg Chem ; 59(5): 2937-2944, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32064866

ABSTRACT

Mn-based ZrCuSiAs-type pnictides ThMnPnN (Pn = P, As) containing PbO-type Th2N2 layers were synthesized. The crystal and magnetic structures are determined using X-ray and neutron powder diffraction. While neutron diffraction indicates a C-type antiferromagnetic state at 300 K, the temperature dependence of the magnetic susceptibility shows cusps at 36 and 52 K respectively for ThMnPN and ThMnAsN. The susceptibility cusps are ascribed to a spontaneous antiferromagnetic-to-antiferromagnetic transition for Mn2+ moments, which is observed for the first time in Mn-based ZrCuSiAs-type compounds. In addition, measurements of the resistivity and specific heat suggest an abnormal increase in the density of states at the Fermi energy. The result is discussed in terms of the internal chemical pressure effect.

8.
J Am Chem Soc ; 140(12): 4391-4400, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29494136

ABSTRACT

We report a new quasi-one-dimensional compound KMn6Bi5 composed of parallel nanowires crystallizing in a monoclinic space group C2/ m with a = 22.994(2) Å, b = 4.6128(3) Å, c = 13.3830(13) Å and ß = 124.578(6)°. The nanowires are infinite [Mn6Bi5]- columns each of which is composed of a nanotube of Bi atoms acting as the cladding with a nanorod of Mn atoms located in the central axis of the nanotubes. The nanorods of Mn atoms inside the Bi cladding are stabilized by Mn-Mn bonding and are defined by distorted Mn-centered cluster icosahedra of Mn13 sharing their vertices along the b axis. The [Mn6Bi5]- nanowires are linked with weak internanowire Bi-Bi bonds and charge balanced with K+ ions. The [Mn6Bi5]- nanowires were directly imaged by high-resolution transmission electron microscopy and scanning transmission electron microscopy. Magnetic susceptibility studies show one-dimensional characteristics with an antiferromagnetic transition at ∼75 K and a small average effective magnetic moment (1.56 µB/Mn for H ∥ b and 1.37 µB/Mn for H ⊥ b) of Mn from Curie-Weiss fits above 150 K. Specific heat measurements reveal an electronic specific heat coefficient γ of 6.5(2) mJ K-2(mol-Mn)-1 and a small magnetic entropy change Δ Smag ≈ 1.6 J K-1 (mol-Mn)-1 across the antiferromagnetic transition. In contrast to a metallic resistivity along the column, the resistivity perpendicular to the column shows a change from a semiconducting behavior at high temperatures to a metallic one at low temperatures, indicating an incoherent-to-coherent crossover of the intercolumn tunneling of electrons.

9.
Inorg Chem ; 57(23): 14617-14623, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30450892

ABSTRACT

A metastable vanadium oxytelluride V2Te2O is prepared via a topochemical deintercalation of interlayer Rb+ cations in Rb1-δV2Te2O. The new ternary mixed-anion compound crystallizes in a body-centered tetragonal lattice with a = 3.9282(1) Å and c = 13.277(5) Å, containing V2O square nets that are sandwiched by Te-atomic sheets. The charge-neutral [V2OTe2] block layers stack along the c axis with van der Waals forces, which shows a metallic behavior with a dominant T2 dependence for resistivity at low temperatures. The electronic specific-heat coefficient reaches 33.9 mJ K-2 mol-1, ∼4 times that of the electronic structure calculations, suggesting a significant electron-mass renormalization. The electron correlation effect is concurrently demonstrated by the Wilson and Kadowaki-Woods ratios. Neither charge/spin-density wave nor superconductivity was observed down to 0.03 K.

10.
J Am Chem Soc ; 138(25): 7856-9, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27321364

ABSTRACT

We report the synthesis, crystal structure, and physical properties of a quinary iron arsenide fluoride, KCa2Fe4As4F2. The new compound crystallizes in a body-centered tetragonal lattice (space group I4/mmm, a = 3.8684(2) Å, c = 31.007(1) Å, Z = 2) that contains double Fe2As2 conducting layers separated by insulating Ca2F2 layers. Our measurements of electrical resistivity, direct-current magnetic susceptibility, and heat capacity demonstrate bulk superconductivity at 33 K in KCa2Fe4As4F2.

11.
J Am Chem Soc ; 138(7): 2170-3, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26853632

ABSTRACT

We report the first nitrogen-containing iron-pnictide superconductor ThFeAsN, which is synthesized by a solid-state reaction in an evacuated container. The compound crystallizes in a ZrCuSiAs-type structure with the space group P4/nmm and lattice parameters a = 4.0367(1) Å and c = 8.5262(2) Å at 300 K. The electrical resistivity and dc magnetic susceptibility measurements indicate superconductivity at 30 K for the nominally undoped ThFeAsN.

12.
Nat Mater ; 13(8): 777-81, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24859644

ABSTRACT

A quantum critical point arises at a continuous transformation between distinct phases of matter at zero temperature. Studies in antiferromagnetic heavy-fermion materials have revealed that quantum criticality has several classes, with an unconventional type that involves a critical destruction of the Kondo entanglement. To understand such varieties, it is important to extend the materials basis beyond the usual setting of intermetallic compounds. Here we show that a nickel oxypnictide, CeNiAsO, exhibits a heavy-fermion antiferromagnetic quantum critical point as a function of either pressure or P/As substitution. At the quantum critical point, non-Fermi-liquid behaviour appears, which is accompanied by a divergent effective carrier mass. Across the quantum critical point, the low-temperature Hall coefficient undergoes a rapid sign change, suggesting a sudden jump of the Fermi surface and a destruction of the Kondo effect. Our results imply that the enormous materials basis for the oxypnictides, which has been so crucial in the search for high-temperature superconductivity, will also play a vital role in the effort to establish the universality classes of quantum criticality in strongly correlated electron systems.

13.
Phys Rev Lett ; 114(14): 147004, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25910155

ABSTRACT

We report ^{75}As NMR measurements on the new quasi-one-dimensional superconductor K_{2}Cr_{3}As_{3} (T_{c}∼6.1 K) [J. K. Bao et al., Phys. Rev. X 5, 011013 (2015)]. We found evidence for strong enhancement of Cr spin fluctuations above T_{c} in the [Cr_{3}As_{3}]_{∞} double-walled subnanotubes based on the nuclear spin-lattice relaxation rate 1/T_{1}. The power-law temperature dependence, 1/T_{1}T∼T^{-γ} (γ∼0.25), is consistent with the Tomonaga-Luttinger liquid. Moreover, absence of the Hebel-Slichter coherence peak of 1/T_{1} just below T_{c} suggests an unconventional nature of superconductivity.

14.
J Am Chem Soc ; 136(4): 1284-7, 2014 Jan 29.
Article in English | MEDLINE | ID: mdl-24428401

ABSTRACT

Superconductivity in low-dimensional compounds has long attracted much interest. Here we report superconductivity in a low-dimensional ternary telluride Ta4Pd3Te16 in which the repeating layers contain edge-sharing octahedrally coordinated PdTe2 chains along the crystallographic b axis. Measurements of electrical resistivity, magnetic susceptibility and specific heat on the Ta4Pd3Te16 crystals, grown via a self-flux method, consistently demonstrate bulk superconductivity at 4.6 K. Further analyses of the data indicate significant electron-electron interaction, which allows electronic Cooper pairing in the present system.

15.
J Am Chem Soc ; 136(43): 15386-93, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25314008

ABSTRACT

We have synthesized a novel europium bismuth sulfofluoride, Eu3Bi2S4F4, by solid-state reactions in sealed evacuated quartz ampules. The compound crystallizes in a tetragonal lattice (space group I4/mmm, a = 4.0771(1) Å, c = 32.4330(6) Å, and Z = 2), in which CaF2-type Eu3F4 layers and NaCl-like BiS2 bilayers stack alternately along the crystallographic c axis. There are two crystallographically distinct Eu sites, Eu(1) and Eu(2) at the Wyckoff positions 4e and 2a, respectively. Our bond valence sum calculation, based on the refined structural data, indicates that Eu(1) is essentially divalent, while Eu(2) has an average valence of ∼ +2.64(5). This anomalous Eu valence state is further confirmed and supported, respectively, by Mössbauer and magnetization measurements. The Eu(3+) components donate electrons into the conduction bands that are mainly composed of Bi 6px and 6py states. Consequently, the material itself shows metallic conduction and superconducts at 1.5 K without extrinsic chemical doping.

16.
Inorg Chem ; 53(20): 11125-9, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25272272

ABSTRACT

A new quinary oxysulfide LaPbBiS3O was designed and successfully synthesized via a solid-state reaction in a sealed evacuated quartz tube. This material, composed of stacked NaCl-like [M4S6] (where M = Pb, Bi) layers and fluorite-type [La2O2] layers, crystallizes in the tetragonal space group P4/nmm with a = 4.0982(1) Å, c = 19.7754(6) Å, and Z = 2. Electrical resistivity and Hall effect measurements demonstrate that it is a narrow gap semiconductor with an activation energy of ∼17 meV. The thermopower and the figure of merit at room temperature were measured to be -52 µV/K and 0.23, respectively, which makes LaPbBiS3O and its derivatives be promising for thermoelectric applications.

17.
Sci Technol Adv Mater ; 14(5): 055008, 2013 Oct.
Article in English | MEDLINE | ID: mdl-27877615

ABSTRACT

Single crystals of a new iron-based superconductor Ba2Ti2Fe2As4O have been grown successfully via a Ba2As3-flux method in a sealed evacuated quartz tube. Bulk superconductivity with Tc ∼ 21.5 K was demonstrated in resistivity and magnetic susceptibility measurements after the as-grown crystals were annealed at 500 °C in vacuum for a week. X-ray diffraction patterns confirm that the annealed and the as-grown crystals possess the identical crystallographic structure of Ba2Ti2Fe2As4O. Energy-dispersive x-ray spectra indicate that partial Ti/Fe substitution exists in the [Fe2As2] layers and the annealing process redistributes the Ti within the Fe-plane. The ordered Fe-plane stabilized by annealing exhibits superconductivity with magnetic vortex pinned by Ti.

18.
Adv Mater ; 35(8): e2209010, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36468620

ABSTRACT

Owing to its inherent non-trivial geometry, the unique structural motif of the recently discovered kagome topological superconductor AV3 Sb5 (A = K, Rb, Cs) is an ideal host of diverse topologically non-trivial phenomena, including giant anomalous Hall conductivity, topological charge order, charge density wave (CDW), and unconventional superconductivity. Despite possessing a normal-state CDW order in the form of topological chiral charge order and diverse superconducting gaps structures, it remains unclear how fundamental atomic-level properties and many-body effects including Fermi surface nesting, electron-phonon coupling, and orbital hybridization contribute to these symmetry-breaking phenomena. Here, the direct participation of the V3d-Sb5p orbital hybridization in mediating the CDW phase transition in CsV3 Sb5 is reported. The combination of temperature-dependent X-ray absorption and first-principles studies clearly indicates the inverse Star-of-David structure as the preferred reconstruction in the low-temperature CDW phase. The results highlight the critical role that Sb orbitals play and establish orbital hybridization as the direct mediator of the CDW states and structural transition dynamics in kagome unconventional superconductors. This is a significant step toward the fundamental understanding and control of the emerging correlated phases from the kagome lattice through the orbital interactions and provides promising approaches to novel regimes in unconventional orders and topology.

19.
J Am Chem Soc ; 134(31): 12893-6, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22823744

ABSTRACT

We have synthesized a new oxypnictide, Ba2Ti2Fe2As4O, via a solid-state reaction under a vacuum. The compound crystallizes in a body-centered tetragonal lattice, which can be viewed as an intergrowth of BaFe2As2 and BaTi2As2O, thus containing Fe2As2 layers and Ti2O sheets. Bulk superconductivity at 21 K is observed after annealing the as-prepared sample at 773 K for 40 h. In addition, an anomaly in resistivity and magnetic susceptibility around 125 K is revealed, suggesting a charge- or spin-density wave transition in the Ti sublattice.

20.
J Phys Condens Matter ; 34(41)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35896102

ABSTRACT

Eu(Fe0.75Ru0.25)2As2is an intriguing system with unusual coexistence of superconductivity and ferromagnetism, providing a unique platform to study the nature of such coexistence. To establish a magnetic phase diagram, time-domain synchrotron Mössbauer experiments in151Eu have been performed on a single crystalline Eu(Fe0.75Ru0.25)2As2sample under hydrostatic pressures and at low temperatures. Upon compression the magnetic ordering temperature increases sharply from 20 K at ambient pressure, reaching ∼49 K at 10.1 GPa. With further compression, the magnetic order is suppressed and eventually collapses. Isomer shift values from Mössbauer measurements and x-ray absorption spectroscopy data at EuL3edge show that pressure drives Eu ions to a homogeneous intermediate valence state with mean valence of ∼2.4 at 27.4 GPa, possibly responsible for the suppression of magnetism. Synchrotron powder x-ray diffraction experiment reveals a tetragonal to collapsed-tetragonal structural transition around 5 GPa, a lower transition pressure than in the parent compound. These results provide guidance to further work investigating the interplay of superconductivity and magnetism.

SELECTION OF CITATIONS
SEARCH DETAIL