Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mar Drugs ; 22(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921586

ABSTRACT

Cyclic pentapeptide compounds have garnered much attention as a drug discovery resource. This study focused on the characterization and anti-benign prostatic hyperplasia (BPH) properties of avellanin A from Aspergillus fumigatus fungus in marine sediment samples collected in the Beibu Gulf of Guangxi Province in China. The antiproliferative effect and molecular mechanism of avellanin A were explored in testosterone propionate (TP)-induced RWPE-1 cells. The transcriptome results showed that avellanin A significantly blocked the ECM-receptor interaction and suppressed the downstream PI3K-Akt signalling pathway. Molecular docking revealed that avellanin A has a good affinity for the cathepsin L protein, which is involved in the terminal degradation of extracellular matrix components. Subsequently, qRT-PCR analysis revealed that the expression of the genes COL1A1, COL1A2, COL5A2, COL6A3, MMP2, MMP9, ITGA2, and ITGB3 was significantly downregulated after avellanin A intervention. The Western blot results also confirmed that it not only reduced ITGB3 and FAK/p-FAK protein expression but also inhibited PI3K/p-PI3K and Akt/p-Akt protein expression in the PI3K-Akt signalling pathway. Furthermore, avellanin A downregulated Cyclin D1 protein expression and upregulated Bax, p21WAF1/Cip1, and p53 proapoptotic protein expression in TP-induced RWPE-1 cells, leading to cell cycle arrest and inhibition of cell proliferation. The results of this study support the use of avellanin A as a potential new drug for the treatment of BPH.


Subject(s)
Cell Proliferation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Cell Proliferation/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Cell Line , Male , Apoptosis/drug effects
2.
Mar Drugs ; 22(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38921593

ABSTRACT

Four new cyclic pentapeptides, avellanins D-G (1-4), together with four known compounds (5-8), were isolated from a mangrove-derived Aspergillus fumigatus GXIMD 03099 fungus from Acanthus ilicifolius L. Their structures were elucidated by analysis of HRESIMS, NMR, and ESI-MS/MS data. Their absolute configurations were determined by X-ray diffraction analysis and Marfey's method. Compounds 1-8 were screened for insecticidal and antibacterial activities. Compound 2 showed insecticidal activity against newly hatched larvae of Culex quinquefasciatus with an LC50 value of 86.6 µM; compound 4 had weak activity against Vibrio harveyi with an MIC value of 5.85 µM.


Subject(s)
Anti-Bacterial Agents , Aspergillus fumigatus , Insecticides , Microbial Sensitivity Tests , Peptides, Cyclic , Aspergillus fumigatus/drug effects , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/isolation & purification , Vibrio/drug effects , Culex/drug effects , Larva/drug effects , Molecular Structure
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731885

ABSTRACT

Lysine is an essential amino acid that cannot be synthesized in humans. Rice is a global staple food for humans but has a rather low lysine content. Identification of the quantitative trait nucleotides (QTNs) and genes underlying lysine content is crucial to increase lysine accumulation. In this study, five grain and three leaf lysine content datasets and 4,630,367 single nucleotide polymorphisms (SNPs) of 387 rice accessions were used to perform a genome-wide association study (GWAS) by ten statistical models. A total of 248 and 71 common QTNs associated with grain/leaf lysine content were identified. The accuracy of genomic selection/prediction RR-BLUP models was up to 0.85, and the significant correlation between the number of favorable alleles per accession and lysine content was up to 0.71, which validated the reliability and additive effects of these QTNs. Several key genes were uncovered for fine-tuning lysine accumulation. Additionally, 20 and 30 QTN-by-environment interactions (QEIs) were detected in grains/leaves. The QEI-sf0111954416 candidate gene LOC_Os01g21380 putatively accounted for gene-by-environment interaction was identified in grains. These findings suggested the application of multi-model GWAS facilitates a better understanding of lysine accumulation in rice. The identified QTNs and genes hold the potential for lysine-rich rice with a normal phenotype.


Subject(s)
Genome-Wide Association Study , Lysine , Oryza , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Oryza/genetics , Oryza/metabolism , Lysine/metabolism , Genome-Wide Association Study/methods , Phenotype , Gene-Environment Interaction , Edible Grain/genetics , Edible Grain/metabolism
4.
J Integr Plant Biol ; 65(11): 2505-2518, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37675654

ABSTRACT

Specialized plant metabolism is a rich resource of compounds for drug discovery. The acylated flavonoid glycoside melitidin is being developed as an anti-cholesterol statin drug candidate, but its biosynthetic route in plants has not yet been fully characterized. Here, we describe the gene discovery and functional characterization of a new flavonoid gene cluster (UDP-glucuronosyltransferases (CgUGTs), 1,2 rhamnosyltransferase (Cg1,2RhaT), acyltransferases (CgATs)) that is responsible for melitidin biosynthesis in pummelo (Citrus grandis (L.) Osbeck). Population variation analysis indicated that the tailoring of acyltransferases, specific for bitter substrates, mainly determine the natural abundance of melitidin. Moreover, 3-hydroxy-3-methylglutaryl-CoA reductase enzyme inhibition assays showed that the product from this metabolic gene cluster, melitidin, may be an effective anti-cholesterol statin drug candidate. Co-expression of these clustered genes in Nicotiana benthamiana resulted in the formation of melitidin, demonstrating the potential for metabolic engineering of melitidin in a heterologous plant system. This study establishes a biosynthetic pathway for melitidin, which provides genetic resources for the breeding and genetic improvement of pummelo aimed at fortifying the content of biologically active metabolites.


Subject(s)
Citrus , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Biosynthetic Pathways/genetics , Plant Breeding , Flavonoids/metabolism , Citrus/genetics , Acyltransferases/metabolism
5.
Mikrochim Acta ; 186(9): 659, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31471765

ABSTRACT

A homogeneous electrochemical aptasensor was obtained by modifying a glassy carbon electrode (GCE) with a porous carbon nanomaterial (Z-1000, about 70 nm, deteced by transmission electron microscopic) that was obtained by carbonization of a zinc(II)-2-methylimidazole metal-organic framework. Z-1000 possesses a large specific surface and outstanding electrochemical properties. A thrombin-binding aptamer (CP) was immobilized on the magnetite nanoparticles MNPs by the condensation reaction and further combined with reporter probe (RP) that is functionalized with electroactive methylene blue (MB). In the presence of thrombin, the CP was specifically recognized with it to form the CP/MNP/Thb complex, and the RP was dissociated from MNPs. The released RP was captured by the modified GCE through π-stacking interaction between nucleobases and carbon nanostructure. The electrical signal generated by MB can be monitored by differential pulse voltammetry (DPV). Under the optimized conditions, the DPV peak current at around -0.28 V (vs. SCE) increases with thrombin concentration. The sensor has a detection limit of 0.8 fM of thrombin and a linear range that extends from 10 fM to 100 nM. It was successfully applied to the analysis of spiked serum. The recoveries are 98.1-99.4% and RSDs are 3.9%-4.0%. Conceivably, this aptasensor scheme can be easily extended to other proteins and gives inspiration to manufacture sensitive aptasensor. Graphical abstract A homogeneous electrochemical aptasensor is obtained by modifying a glassy carbon electrode with the MOF-derived porous carbon. The sensor has a detection limit of 0.8 fM and a wide linear range from 10 fM to 100 nM for thrombin detection.

7.
Mol Plant ; 15(1): 189-202, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34509640

ABSTRACT

Volatile organic compounds play essential roles in plant environment interactions as well as determining the fragrance of plants. Although gas chromatography-mass spectrometry-based untargeted metabolomics is commonly used to assess plant volatiles, it suffers from high spectral convolution, low detection sensitivity, a limited number of annotated metabolites, and relatively poor reproducibility. Here, we report a widely targeted volatilomics (WTV) method that involves using a "targeted spectra extraction" algorithm to address spectral convolution, constructing a high-coverage MS2 spectral tag library to expand volatile annotation, adapting a multiple reaction monitoring mode to improve sensitivity, and using regression models to adjust for signal drift. The newly developed method was used to profile the volatilome of rice grains. Compared with the untargeted method, the newly developed WTV method shows higher sensitivity (for example, the signal-to-noise ratio of guaicol increased from 4.1 to 18.8), high annotation coverage (the number of annotated volatiles increased from 43 to 132), and better reproducibility (the number of volatiles in quality control samples with relative standard deviation value below 30.0% increased from 14 to 92 after normalization). Using the WTV method, we studied the metabolic responses of tomato to environmental stimuli and profiled the volatilomes of different rice accessions. The results identified benzothiazole as a potential airborne signal priming tomato plants for enhanced defense and 2-nonanone and 2-heptanone as novel aromatic compounds contributing to rice fragrance. These case studies suggest that the widely targeted volatilomics method is more efficient than those currently used and may considerably promote plant volatilomics studies.


Subject(s)
Crops, Agricultural/metabolism , Fruit/metabolism , Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Plant Leaves/metabolism , Seeds/metabolism , Volatile Organic Compounds/metabolism , Reproducibility of Results
8.
J Antibiot (Tokyo) ; 75(9): 526-529, 2022 09.
Article in English | MEDLINE | ID: mdl-35918478

ABSTRACT

One new xanthene derivative, named penicixanthene E (1), together with one known compound 2, was isolated from the EtOAc extract of the endophytic fungus Penicillium sp. GXIMD 03101, which was identified from the mangrove Acanthus ilicifolius L. collected in the South China Sea. The structure of 1 was elucidated by 1D and 2D NMR spectral interpretation and HREISMS data. The absolute configurations of C-9 and C-11 in 1 were proposed based on electronic circular dichroism (ECD), but the configuration at C-3 in 1 was unassigned. Compound 1 represents a xanthene derivative that was first reported, in which carbon-carbon double bond has been reduced. The cytotoxic activities of all compounds were evaluated, the result showed that compound 1 has weak activity against pancreatic cancer SW1990.


Subject(s)
Penicillium , Carbon , Circular Dichroism , Magnetic Resonance Spectroscopy , Molecular Structure , Penicillium/chemistry , Xanthenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL