Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Org Chem ; 89(9): 6159-6168, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38642058

ABSTRACT

An efficient synthesis of functionalized 3-acyl-2H-indazoles via visible-light-induced self-catalyzed energy transfer was developed. This method utilized a self-catalyzed energy transfer process between 2H-indazoles and α-keto acids, offering advantages like absence of photosensitizers, metal catalysts, and strong oxidants, broad substrate compatibility, and operational simplicity under mild conditions.

2.
Angew Chem Int Ed Engl ; 63(30): e202405634, 2024 07 22.
Article in English | MEDLINE | ID: mdl-38742923

ABSTRACT

In vivo electrochemistry in small brain regions or synapses requires nanoelectrodes with long straight tips for submicron scale measurements. Nanoelectrodes can be fabricated using a Nanoscribe two-photon printer, but annealed tips curl if they are long and thin. We propose a new pulling-force strategy to fabricate a straight carbon nanoneedle structure. A micron-width bridge is printed between two blocks. The annealed structure shrinks during pyrolysis, and the blocks create a pulling force to form a long, thin, and straight carbon bridge. Parameterization study and COMSOL modeling indicate changes in the block size, bridge size and length affect the pulling force and bridge shrinkage. Electrodes were printed on niobium wires, insulated with aluminum oxide, and the bridge cut with focused ion beam (FIB) to expose the nanoneedle tip. Annealed needle diameters ranged from 400 nm to 5.25 µm and length varied from 50.5 µm to 146 µm. The electrochemical properties are similar to glassy carbon, with good performance for dopamine detection with fast-scan cyclic voltammetry. Nanoelectrodes enable biological applications, such as dopamine detection in a specific Drosophila brain region. Long and thin nanoneedles are generally useful for other applications such as cellular sensing, drug delivery, or gas sensing.


Subject(s)
Carbon , Dopamine , Electrodes , Printing, Three-Dimensional , Animals , Dopamine/analysis , Carbon/chemistry , Electrochemical Techniques/instrumentation , Drosophila , Drosophila melanogaster
3.
Langmuir ; 39(36): 12754-12761, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37646437

ABSTRACT

Surface roughness is one of the significant factors affecting liquid-vapor phase change heat transfer. This paper explores the effect of surface roughness on bubble nucleation and boiling heat transfer, as well as the microscopic mechanism, by constructing random rough surfaces using molecular dynamics (MD) simulation. Bubbles randomly nucleate on a flat surface and tend to nucleate in pits on rough surfaces. The pits on the random rough surface gather more argon atoms than the protrusions, forming low potential energy regions on the surface, thus providing stable nucleation sites for bubbles. As the surface roughness increases, bubble generation, merging, and growth are advanced. In addition, rough surfaces offer a larger effective heat transfer area for the heat transfer process, increase the strength of solid-liquid coupling, and obtain smaller solid-liquid interaction energy. The critical heat flux (CHF) value positively correlates with surface roughness. As the roughness increases, the surface superheat at the onset of CHF decreases accordingly. This paper provides new insights into the mechanism of heat transfer enhancement on rough surfaces and surface design in thermal management.

4.
Faraday Discuss ; 233(0): 303-314, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34889344

ABSTRACT

Carbon nanoelectrodes enable the detection of neurotransmitters at the level of single cells, vesicles, synapses and small brain structures. Previously, the etching of carbon fibers and 3D printing based on direct laser writing have been used to fabricate carbon nanoelectrodes, but these methods lack the ability of mass manufacturing. In this paper, we mass fabricate carbon nanoelectrodes by growing carbon nanospikes (CNSs) on metal wires. CNSs have a short, dense and defect-rich surface that produces remarkable electrochemical properties, and they can be mass fabricated on almost any substrate without using catalysts. Tungsten wires and niobium wires were electrochemically etched in batch to form sub micrometer sized tips, and a layer of CNSs was grown on the metal wires using plasma-enhanced chemical vapor deposition (PE-CVD). The thickness of the CNS layer was controlled by the deposition time, and a thin layer of CNSs can effectively cover the entire metal surface while maintaining the tip size within the sub micrometer scale. The etched tungsten wires produced tapered conical nanotips, while the etched niobium wires were long and thin. Both showed excellent sensitivity for the detection of outer sphere ruthenium hexamine and the inner sphere test compound ferricyanide. The CNS nanosensors were used for the measurement of dopamine, serotonin, ascorbic acid and DOPAC with fast-scan cyclic voltammetry. The CNS nanoelectrodes had a large surface area and numerous defect sites, which improved the sensitivity, electron transfer kinetics and adsorption. Finally, the CNS nanoelectrodes were compared with other nanoelectrode fabrication methods, including flame etching, 3D printing, and nanopipettes, which are slower to make and more difficult for mass fabrication. Thus, CNS nanoelectrodes are a promising strategy for the mass fabrication of nanoelectrode sensors for neurotransmitters.


Subject(s)
Carbon , Neurotransmitter Agents , Adsorption , Carbon/chemistry , Dopamine , Microelectrodes
5.
Org Biomol Chem ; 20(44): 8756-8760, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36314247

ABSTRACT

A metal-free photocatalytic Ritter-type C-H amination of unactivated sp3 carbons using molecular oxygen as a terminal oxidant has been developed. By employing a co-catalytic system of 3-dichloro-4,5-dicyano-1,4-benzoquinone (DDQ) and tert-butyl nitrite (TBN), this novel strategy provides a low cost, sustainable and scalable way to synthesise a broad range of secondary amides in moderate to excellent yields under mild conditions.


Subject(s)
Nitrites , Amination , Molecular Structure , Catalysis
6.
Phys Chem Chem Phys ; 24(9): 5546-5554, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35174847

ABSTRACT

Graphene has been extensively applied in composite materials due to its high thermal conductivity. Multi-layered graphene has great potential in the construction of a continuous filler network but is restricted by the high interfacial thermal resistance between adjacent graphene layers. This paper investigates the effects of the overlapping area and interlayer sp3 bonding of partially overlapped bilayer graphene on the interfacial thermal resistance using molecular dynamic simulations. The results show the linear relationship between the interfacial thermal resistance and the overlapping area. Then, identical vacancy defects of the same plane coordinates were added to each of the two graphene sheets, and it was found that the presence of an armchair edge restricted the formation of interface sp3 bonding to some extent, while the zigzag edge did not. However, their similar bond length and the phonon density of state of bonded atoms in the models with different edges indicated their similar effects on the heat transfer. Therefore, the thermal resistance of all single sp3 bonds in different models could be approximated to 14.3 × 10-9 m2 KW-1. A formula is proposed to describe the inverse relationship between the number of sp3 bonds and the interfacial thermal resistance. Finally, the vacancy defect on the upper graphene sheet was moved to stagger the two vacancies. The length of sp3 bonds was changed slightly due to the staggered arrangement, and the interfacial thermal resistance was found to be positively correlated with the bond length. This allows valuable interfacial heat-transfer properties of the partially overlapped bilayer graphene to contribute to the thermal management of the 3D filler network.

7.
Langmuir ; 37(17): 5202-5212, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33881886

ABSTRACT

Nanoscale liquid film evaporation plays an essential role in many engineering applications. This study carries out molecular dynamics simulations on the effects of the depositional nanoparticle's wettability and volume in base fluid on the evaporation process to understand how the depositional nanoparticle affects the evaporation heat transfer. Increasing the nanoparticle's wettability can enhance the evaporation heat transfer process, and the enhancement effect of the hydrophobic surface is more remarkable than that of the hydrophilic surface. This because the increasing wettability causes more significant solid-liquid interaction. However, the potential energy of argon atoms at the liquid-vapor interface is almost unaffected by wettability. Moreover, when the depositional nanoparticle locates below the free liquid film, increasing the nanoparticle volume has a better heat transfer performance. As the volume increases, the heat transfer through the nanoparticle becomes more obvious, which effectively enhances the heat transfer at the solid-liquid interface and the liquid-vapor interface. The latent heat of phase change at the liquid-vapor interface is almost unchanged so that the evaporation can be enhanced. This research provides an understanding of the effects of depositional nanoparticles on nanoscale evaporation, which can impact several engineering applications, including devices' cooling and fluid transport.

8.
Langmuir ; 37(8): 2667-2676, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33591763

ABSTRACT

The geometric structure of carbon electrodes affects their electrochemical behavior, and large-scale surface roughness leads to thin layer electrochemistry when analyte is trapped in pores. However, the current response is always a mixture of both thin layer and diffusion processes. Here, we systematically explore the effects of thin layer electrochemistry and diffusion at carbon fiber (CF), carbon nanospike (CNS), and carbon nanotube yarn (CNTY) electrodes. The cyclic voltammetry (CV) response to the surface-insensitive redox couple Ru(NH3)63+/2+ is tested, so the geometric structure is the only factor. At CFs, the reaction is diffusion-controlled because the surface is smooth. CNTY electrodes have gaps between nanotubes that are about 10 µm deep, comparable with the diffusion layer thickness. CNTY electrodes show clear thin layer behavior due to trapping effects, with more symmetrical peaks and ΔEp closer to zero. CNS electrodes have submicrometer scale roughness, so their CV shape is mostly due to diffusion, not thin layer effects. However, even the 10% contribution of thin layer behavior reduces the peak separation by 30 mV, indicating ΔEp is influenced not only by electron transfer kinetics but also by surface geometry. A new simulation model is developed to quantitate the thin layer and diffusion contributions that explains the CV shape and peak separation for CNS and CNTY electrodes, providing insight on the impact of scan rate and surface structure size. Thus, this study provides key understanding of thin layer and diffusion processes at different surface structures and will enable rational design of electrodes with thin layer electrochemistry.

9.
Anal Bioanal Chem ; 413(27): 6737-6746, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34302181

ABSTRACT

Carbon fiber microelectrodes (CFMEs) are the standard electrodes for fast-scan cyclic voltammetry (FSCV) detection of neurotransmitters. CFMEs are generally used untreated but the surface can be activated with different treatments to improve electrochemical performance. In this work, we explored electrochemical treatments to clean and activate the CFME surface. We used different solution conditions for electrochemical treatment and found that electrochemical pretreatment in KOH outperforms treatment in KCl, H2O2, or HCl by accelerating the surface renewal process. The etching rate of carbon with electrochemical treatment in KOH is 37 nm/min, which is 10 times faster than that in the other solutions. Electrochemical treatment in KOH for several minutes regenerates a new carbon surface, which introduces more oxygen functional groups beneficial for adsorption and electron transfer. The KOH-treated CFMEs improved the limit of detection (LOD) to 9 ± 2 nM from 14 ± 4 nM for untreated CFMEs, and they successfully detected stimulated dopamine release in rat brain slices, demonstrating that they are stable and sensitive enough to use in biological systems. Electrochemical treatment in KOH completely restores the electrode sensitivity after biofouling. The proposed electrochemical treatment is simple and fast and can be applied prior to using CFMEs or after use to restore the surface. Thus, the method has potential to be a standard step to clean the carbon surface, or restore the sensitivity of electrodes from biofouling.

10.
Hemoglobin ; 45(4): 254-255, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34547968

ABSTRACT

We have identified a new α chain hemoglobin (Hb) variant in a Chinese subject. Sequencing of the α-globin gene revealed a mutation in exon 1 at nucleotide 55, which results in the replacement of a glycine by cysteine at codon 18 [α18(A16)Gly→Cys, HBA2: c.55G>T] that we have named Hb Jiujiang for the region of origin of the proband.


Subject(s)
Cysteine , Hemoglobins, Abnormal , Codon , Glycine/genetics , Hemoglobin A2/genetics , Hemoglobins, Abnormal/genetics , Humans , alpha-Globins/genetics
11.
Nano Lett ; 20(9): 6831-6836, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32813535

ABSTRACT

Direct laser writing, a nano 3D-printing approach, has enabled fabrication of customized carbon microelectrode sensors for neurochemical detection. However, to detect neurotransmitters in tiny biological organisms or synapses, submicrometer nanoelectrodes are required. In this work, we used 3D printing to fabricate carbon nanoelectrode sensors. Customized structures were 3D printed and then pyrolyzed, resulting in free-standing carbon electrodes with nanotips. The nanoelectrodes were insulated with atomic layer deposition of Al2O3 and the nanotips were polished by a focused ion beam to form 600 nm disks. Using fast-scan cyclic voltammetry, the electrodes successfully detected stimulated dopamine in the adult fly brain, demonstrating that they are robust and sensitive enough to use in tiny biological systems. This work is the first demonstration of 3D printing to fabricate free-standing carbon nanoelectrode sensors and will enable batch fabrication of customized nanoelectrode sensors with precise control and excellent reproducibility.


Subject(s)
Carbon , Neurotransmitter Agents , Microelectrodes , Printing, Three-Dimensional , Reproducibility of Results
12.
Langmuir ; 36(11): 2802-2815, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32114765

ABSTRACT

Rough nanostructured surfaces can enhance evaporation heat transfer. Most studies artificially optimized the geometry and size during the design of nanostructured surfaces. Instead of the empirical design of nanostructured surfaces, this paper proposes a mathematical optimization method of the grooved nanostructured surface design. This method is inspired by the molecular dynamics simulations of grooved nanostructured surfaces. The results show that the heat transfer performance exhibits a positive correlation with the defined sectional area of the grooved nanostructured surface; thus, this method is developed to convert the maximum heat transfer and evaporation rate to a mathematical conditional extremum solution. The mathematical description of the optimization method is to solve the surface structure with the maximum sectional area when the heat transfer area is constant. Comparing the molecular dynamics (MD) simulation results of the optimal surface and the existing ones under the same simulation conditions indicates that the optimal surface has the best heat transfer performance compared with the other ones. Additionally, discussions on the types of grooved nanostructured surfaces, the materials of solid and liquid, and the wettability of grooved surfaces verify the generality of the calculation results and the optimization method. The explanation of the method is that different nanostructured surfaces have a similar potential energy per liquid atom, which affects the latent heat of the evaporation process. However, the maximum sectional area corresponds to the minimum interfacial thermal resistance and the maximum interaction energy per unit area, which will enhance the heat transfer at the solid-liquid interface. Moreover, a nanostructured surface with the maximum sectional area also obtains the maximum area of the liquid-vapor interface and thus enhances the evaporation heat transfer process.

13.
Analyst ; 145(4): 1158-1168, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31922176

ABSTRACT

Fast-scan cyclic voltammetry (FSCV) is used with carbon-fiber microelectrodes for the real-time detection of neurotransmitters on the subsecond time scale. With FSCV, the potential is ramped up from a holding potential to a switching potential and back, usually at a 400 V s-1 scan rate and a frequency of 10 Hz. The plot of current vs. applied potential, the cyclic voltammogram (CV), has a very different shape for FSCV than for traditional cyclic voltammetry collected at scan rates which are 1000-fold slower. Here, we explore the theory of FSCV, with a focus on dopamine detection. First, we examine the shape of the CVs. Background currents, which are 100-fold higher than faradaic currents, are subtracted out. Peak separation is primarily due to slow electron transfer kinetics, while the symmetrical peak shape is due to exhaustive electrolysis of all the adsorbed neurotransmitters. Second, we explain the origins of the dopamine waveform, and the factors that limit the holding potential (oxygen reduction), switching potential (water oxidation), scan rate (electrode instability), and repetition rate (adsorption). Third, we discuss data analysis, from data visualization with color plots, to the automated algorithms like principal components regression that distinguish dopamine from pH changes. Finally, newer applications are discussed, including optimization of waveforms for analyte selectivity, carbon nanomaterial electrodes that trap dopamine, and basal level measurements that facilitate neurotransmitter measurements on a longer time scale. FSCV theory is complex, but understanding it enables better development of new techniques to monitor neurotransmitters in vivo.


Subject(s)
Dopamine/analysis , Electrochemistry/methods , Animals , Data Analysis , Dopamine/chemistry , Humans , Time Factors
14.
J Clin Lab Anal ; 34(10): e23440, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32715518

ABSTRACT

BACKGROUND: Selective immunoglobulin A deficiency (SIgAD) is the most common primary antibody deficiency disease and frequently reported in the Western countries. However, large-scale epidemiologic studies on SIgAD in China are still lacking. METHODS: The clinical information of 555 180 subjects (age >4 years) including the outpatient, inpatient, and healthy subjects who had ordered serum immunoglobulin A, G, M in 9 hospitals of Zhejiang Province in China was collected. The SIgAD individuals were defined as IgA level <0.07 g/L with normal levels of serum IgG and IgM, whose age should be over 4 years, and any other secondary diseases causing SIgAD were also excluded. Then, the geographical and prevalence distribution of SIgAD individuals in Zhejiang Province and patients' clinical characteristics at the time of diagnosis were also reviewed. RESULT: Among these 555 180 subjects who had ordered the immunoglobulin evaluation, the prevalence of SIgAD was 109/555180 (0.02%). The ratio of male to female of these SIgAD individuals was 1:1.37, which also included 87 adults (≥18 years) and 22 children (18 > age >4 years). For adults, the common clinical features were infections (43/87, 49.43%), autoimmune disorders (31/87, 35.63%), allergic cases (5/87, 5.75%), and tumor cases (4/87, 4.60%). Additionally, infectious diseases (20/22, 90.91%), autoimmune disorders (4/22, 18.18%), and allergic cases (1/22, 4.55%) were found in 22 children. CONCLUSION: We first describe a large cohort of SIgAD individuals of Zhejiang Province in China. The incidence was 0.020%. The common clinical features were infection, autoimmune disorders, tumor, and allergy, and the infection rate was higher in children than the adults.


Subject(s)
IgA Deficiency/epidemiology , IgA Deficiency/pathology , Adolescent , Adult , Child , Child, Preschool , China/epidemiology , Female , Geography , Hospitals , Humans , IgA Deficiency/complications , Male , Middle Aged , Prevalence , Young Adult
15.
Angew Chem Int Ed Engl ; 59(11): 4478-4483, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-31829494

ABSTRACT

A continuous, scalable, and solvent-free method for the synthesis of various naphthalic imides and perylene diimides (PDIs) using twin-screw extrusion (TSE) is reported. Using TSE, naphthalic imides were obtained quantitatively without the need for excess amine reactant or product purification. With good functional-group tolerance, alkyl and benzyl amine derived PDIs (incl. commercial dyes) were obtained in 50-99 % yield. Use of K2 CO3 , enabled synthesis of more difficult aniline-derived PDIs. Furthermore, an automated continuous TSE process for Pigments Black 31 and 32 is demonstrated, with a throughput rate of about 1500 g day-1 , corresponding to a space time yield of about 30×103  kg m-3  day-1 , which is 1-2 orders of magnitude greater than for solvent-based batch methods. These methods provide substantial waste reductions and improved efficiency compared to conventional solvent-based methods.

16.
Org Biomol Chem ; 17(7): 1722-1726, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30226258

ABSTRACT

An operationally simple mechanochemical method for the Pd catalysed Buchwald-Hartwig amination of arylhalides with secondary amines has been developed using a Pd PEPPSI catalyst system. The system is demonstrated on 30 substrates and applied in the context of a target synthesis. Furthermore, the performance of the reaction under aerobic conditions has been probed under traditional solution and mechanochemical conditions, the observations are discussed herein.

17.
Carbon N Y ; 155: 250-257, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31588146

ABSTRACT

Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS electrodes have a short, dense, defect-filled surface that produces remarkable electrochemical properties, much better than CNTs or CFs. The CNS surface roughness is 5.5 times greater than glassy carbon, while CNTs enhance roughness only 1.8-fold. D/G ratios are higher for CNS electrodes than CNT electrodes, an indication of more defect sites. For cyclic voltammetry of dopamine and ferricyanide, CNSs have both higher currents and smaller ΔEp values than CNTs and CFs. CNS electrodes also have a very low resistance to charge transfer. With fast-scan cyclic voltammetry (FSCV), CNS electrodes have enhanced current density for dopamine and cationic neurotransmitters due to increased adsorption to edge plane sites. This study establishes that not all carbon nanomaterials are equally advantageous for dopamine electrochemistry, but that short, dense nanomaterials that add defect sites provide improved current and electron transfer. CNSs are simple to mass fabricate on a variety of substrates and thus could be a favorable material for neurotransmitter sensing.

18.
Angew Chem Int Ed Engl ; 57(35): 11339-11343, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30015403

ABSTRACT

A form independent activation of zinc, concomitant generation of organozinc species and engagement in a Negishi cross-coupling reaction via mechanochemical methods is reported. The reported method exhibits a broad substrate scope for both C(sp3 )-C(sp2 ) and C(sp2 )-C(sp2 ) couplings and is tolerant to many important functional groups. The method may offer broad reaching opportunities for the in situ generation organometallic compounds from base metals and their concomitant engagement in synthetic reactions via mechanochemical methods.

19.
Angew Chem Int Ed Engl ; 57(43): 14255-14259, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30207021

ABSTRACT

Implantable neural microsensors have significantly advanced neuroscience research, but the geometry of most probes is limited by the fabrication methods. Therefore, new methods are needed for batch-manufacturing with high reproducibility. Herein, a novel method is developed using two-photon nanolithography followed by pyrolysis for fabrication of free-standing microelectrodes with a carbon electroactive surface. 3D-printed spherical and conical electrodes were characterized with slow scan cyclic voltammetry (CV). With fast-scan CV, the electrodes showed low dopamine LODs of 11±1 nm (sphere) and 10±2 nm (cone), high sensitivity to multiple neurochemicals, and high reproducibility. Spherical microelectrodes were used to detect dopamine in a brain slice and in vivo, demonstrating they are robust enough for tissue implantation. This work is the first demonstration of 3D-printing of free-standing carbon electrodes; and the method is promising for batch fabrication of customized, implantable neural sensors.


Subject(s)
Carbon/chemistry , Microelectrodes , Neurotransmitter Agents/analysis , Printing, Three-Dimensional , Electrochemical Techniques , Microscopy, Electron, Scanning , Spectrum Analysis, Raman
20.
Chemistry ; 22(34): 11982-5, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27305489

ABSTRACT

A homogeneous Pd(II) catalyst, utilizing a simple and inexpensive amine ligand (TMEDA), allows 2-alkynoates to be prepared in high yields by an oxidative carbonylation of terminal alkynes and alcohols. The catalyst system overcomes many of the limitations of previous palladium carbonylation catalysts. It has an increased substrate scope, avoids large excesses of alcohol substrate and uses a desirable solvent. The catalyst employs oxygen as the terminal oxidant and can be operated under safer gas mixtures.

SELECTION OF CITATIONS
SEARCH DETAIL