Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 774
Filter
Add more filters

Publication year range
1.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38935070

ABSTRACT

Inferring gene regulatory network (GRN) is one of the important challenges in systems biology, and many outstanding computational methods have been proposed; however there remains some challenges especially in real datasets. In this study, we propose Directed Graph Convolutional neural network-based method for GRN inference (DGCGRN). To better understand and process the directed graph structure data of GRN, a directed graph convolutional neural network is conducted which retains the structural information of the directed graph while also making full use of neighbor node features. The local augmentation strategy is adopted in graph neural network to solve the problem of poor prediction accuracy caused by a large number of low-degree nodes in GRN. In addition, for real data such as E.coli, sequence features are obtained by extracting hidden features using Bi-GRU and calculating the statistical physicochemical characteristics of gene sequence. At the training stage, a dynamic update strategy is used to convert the obtained edge prediction scores into edge weights to guide the subsequent training process of the model. The results on synthetic benchmark datasets and real datasets show that the prediction performance of DGCGRN is significantly better than existing models. Furthermore, the case studies on bladder uroepithelial carcinoma and lung cancer cells also illustrate the performance of the proposed model.


Subject(s)
Computational Biology , Gene Regulatory Networks , Neural Networks, Computer , Humans , Computational Biology/methods , Algorithms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Escherichia coli/genetics
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38581416

ABSTRACT

The inference of gene regulatory networks (GRNs) from gene expression profiles has been a key issue in systems biology, prompting many researchers to develop diverse computational methods. However, most of these methods do not reconstruct directed GRNs with regulatory types because of the lack of benchmark datasets or defects in the computational methods. Here, we collect benchmark datasets and propose a deep learning-based model, DeepFGRN, for reconstructing fine gene regulatory networks (FGRNs) with both regulation types and directions. In addition, the GRNs of real species are always large graphs with direction and high sparsity, which impede the advancement of GRN inference. Therefore, DeepFGRN builds a node bidirectional representation module to capture the directed graph embedding representation of the GRN. Specifically, the source and target generators are designed to learn the low-dimensional dense embedding of the source and target neighbors of a gene, respectively. An adversarial learning strategy is applied to iteratively learn the real neighbors of each gene. In addition, because the expression profiles of genes with regulatory associations are correlative, a correlation analysis module is designed. Specifically, this module not only fully extracts gene expression features, but also captures the correlation between regulators and target genes. Experimental results show that DeepFGRN has a competitive capability for both GRN and FGRN inference. Potential biomarkers and therapeutic drugs for breast cancer, liver cancer, lung cancer and coronavirus disease 2019 are identified based on the candidate FGRNs, providing a possible opportunity to advance our knowledge of disease treatments.


Subject(s)
Gene Regulatory Networks , Liver Neoplasms , Humans , Systems Biology/methods , Transcriptome , Algorithms , Computational Biology/methods
3.
Mol Biol Evol ; 41(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829799

ABSTRACT

Global climate change has led to shifts in the distribution ranges of many terrestrial species, promoting their migration from lower altitudes or latitudes to higher ones. Meanwhile, successful invaders have developed genetic adaptations enabling the colonization of new environments. Over the past 40 years, Rattus tanezumi (RT) has expanded into northern China (Northwest and North China) from its southern origins. We studied the cold adaptation of RT and its potential for northward expansion by comparing it with sympatric Rattus norvegicus (RN), which is well adapted to cold regions. Through population genomic analysis, we revealed that the invading RT rats have split into three distinct populations: the North, Northwest, and Tibetan populations. The first two populations exhibited high genetic diversity, while the latter population showed remarkably low genetic diversity. These rats have developed various genetic adaptations to cold, arid, hypoxic, and high-UV conditions. Cold acclimation tests revealed divergent thermoregulation between RT and RN. Specifically, RT exhibited higher brown adipose tissue activity and metabolic rates than did RN. Transcriptome analysis highlighted changes in genes regulating triglyceride catabolic processes in RT, including Apoa1 and Apoa4, which were upregulated, under selection and associated with local adaptation. In contrast, RN showed changes in carbohydrate metabolism genes. Despite the cold adaptation of RT, we observed genotypic and phenotypic constraints that may limit its ability to cope with severe low temperatures farther north. Consequently, it is less likely that RT rats will invade and overlap with RN rats in farther northern regions.


Subject(s)
Acclimatization , Cold Temperature , Animals , Rats , Acclimatization/genetics , China , Phenotype , Genetic Variation , Adaptation, Physiological/genetics , Body Temperature Regulation/genetics , Climate Change
4.
Bioinformatics ; 40(1)2024 01 02.
Article in English | MEDLINE | ID: mdl-38191683

ABSTRACT

MOTIVATION: Multi-trait analysis has been shown to have greater statistical power than single-trait analysis. Most of the existing multi-trait analysis methods only work with a limited number of traits and usually prioritize high statistical power over identifying relevant traits, which heavily rely on domain knowledge. RESULTS: To handle diseases and traits with obscure etiology, we developed TraitScan, a powerful and fast algorithm that identifies potential pleiotropic traits from a moderate or large number of traits (e.g. dozens to thousands) and tests the association between one genetic variant and the selected traits. TraitScan can handle either individual-level or summary-level GWAS data. We evaluated TraitScan using extensive simulations and found that it outperformed existing methods in terms of both testing power and trait selection when sparsity was low or modest. We then applied it to search for traits associated with Ewing Sarcoma, a rare bone tumor with peak onset in adolescence, among 754 traits in UK Biobank. Our analysis revealed a few promising traits worthy of further investigation, highlighting the use of TraitScan for more effective multi-trait analysis as biobanks emerge. We also extended TraitScan to search and test association with a polygenic risk score and genetically imputed gene expression. AVAILABILITY AND IMPLEMENTATION: Our algorithm is implemented in an R package "TraitScan" available at https://github.com/RuiCao34/TraitScan.


Subject(s)
Algorithms , Genome-Wide Association Study , Humans , Genome-Wide Association Study/methods , Phenotype , Genetic Risk Score , Polymorphism, Single Nucleotide
5.
Nucleic Acids Res ; 51(13): 6981-6998, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37246706

ABSTRACT

The molecular mechanism underlying white adipogenesis in humans has not been fully elucidated beyond the transcriptional level. Here, we found that the RNA-binding protein NOVA1 is required for the adipogenic differentiation of human mesenchymal stem cells. By thoroughly exploring the interactions between NOVA1 and its binding RNA, we proved that NOVA1 deficiency resulted in the aberrant splicing of DNAJC10 with an in-frame premature stop codon, reduced DNAJC10 expression at the protein level and hyperactivation of the unfolded protein response (UPR). Moreover, NOVA1 knockdown abrogated the down-regulation of NCOR2 during adipogenesis and up-regulated the 47b+ splicing isoform, which led to decreased chromatin accessibility at the loci of lipid metabolism genes. Interestingly, these effects on human adipogenesis could not be recapitulated in mice. Further analysis of multispecies genomes and transcriptomes indicated that NOVA1-targeted RNA splicing is evolutionarily regulated. Our findings provide evidence for human-specific roles of NOVA1 in coordinating splicing and cell organelle functions during white adipogenesis.


Subject(s)
Chromatin , RNA-Binding Proteins , Unfolded Protein Response , Animals , Humans , Mice , Adipogenesis/genetics , Chromatin/genetics , Neuro-Oncological Ventral Antigen , RNA Splicing , RNA-Binding Proteins/metabolism
6.
Chem Soc Rev ; 53(11): 5593-5625, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38646825

ABSTRACT

The water oxidation reaction, a crucial process for solar energy conversion, has garnered significant research attention. Achieving efficient energy conversion requires the development of cost-effective and durable water oxidation catalysts. To design effective catalysts, it is essential to have a fundamental understanding of the reaction mechanisms. This review presents a comprehensive overview of recent advancements in the understanding of the mechanisms of water oxidation using transition metal-based heterogeneous electrocatalysts, including Mn, Fe, Co, Ni, and Cu-based catalysts. It highlights the catalytic mechanisms of different transition metals and emphasizes the importance of monitoring of key intermediates to explore the reaction pathway. In addition, advanced techniques for physical characterization of water oxidation intermediates are also introduced, for the purpose of providing information for establishing reliable methodologies in water oxidation research. The study of transition metal-based water oxidation electrocatalysts is instrumental in providing novel insights into understanding both natural and artificial energy conversion processes.

7.
BMC Genomics ; 25(1): 328, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38566015

ABSTRACT

BACKGROUND: Whole-genome duplication and long terminal repeat retrotransposons (LTR-RTs) amplification in organisms are essential factors that affect speciation, local adaptation, and diversification of organisms. Understanding the karyotype projection and LTR-RTs amplification could contribute to untangling evolutionary history. This study compared the karyotype and LTR-RTs evolution in the genomes of eight oaks, a dominant lineage in Northern Hemisphere forests. RESULTS: Karyotype projections showed that chromosomal evolution was relatively conservative in oaks, especially on chromosomes 1 and 7. Modern oak chromosomes formed through multiple fusions, fissions, and rearrangements after an ancestral triplication event. Species-specific chromosomal rearrangements revealed fragments preserved through natural selection and adaptive evolution. A total of 441,449 full-length LTR-RTs were identified from eight oak genomes, and the number of LTR-RTs for oaks from section Cyclobalanopsis was larger than in other sections. Recent amplification of the species-specific LTR-RTs lineages resulted in significant variation in the abundance and composition of LTR-RTs among oaks. The LTR-RTs insertion suppresses gene expression, and the suppressed intensity in gene regions was larger than in promoter regions. Some centromere and rearrangement regions indicated high-density peaks of LTR/Copia and LTR/Gypsy. Different centromeric regional repeat units (32, 78, 79 bp) were detected on different Q. glauca chromosomes. CONCLUSION: Chromosome fusions and arm exchanges contribute to the formation of oak karyotypes. The composition and abundance of LTR-RTs are affected by its recent amplification. LTR-RTs random retrotransposition suppresses gene expression and is enriched in centromere and chromosomal rearrangement regions. This study provides novel insights into the evolutionary history of oak karyotypes and the organization, amplification, and function of LTR-RTs.


Subject(s)
Quercus , Retroelements , Quercus/genetics , Genome, Plant , Karyotype , Terminal Repeat Sequences/genetics , Evolution, Molecular , Phylogeny
8.
Small ; : e2403310, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773872

ABSTRACT

Understanding the structure-activity correlation is an important prerequisite for the rational design of high-efficiency electrocatalysts at the atomic level. However, the effect of coordination environment on electrocatalytic oxygen evolution reaction (OER) remains enigmatic. In this work, the regulation of proton transfer involved in water oxidation by coordination engineering based on Co3(PO4)2 and CoHPO4 is reported. The HPO4 2- anion has intermediate pKa value between Co(II)-H2O and Co(III)-H2O to be served as an appealing proton-coupled electron transfer (PCET) induction group. From theoretical calculations, the pH-dependent OER properties, deuterium kinetic isotope effects, operando electrochemical impedance spectroscopy (EIS) and Raman studies, the CoHPO4 catalyst beneficially reduces the energy barrier of proton hopping and modulates the formation energy of high-valent Co species, thereby enhancing OER activity. This work demonstrates a promising strategy that involves tuning the local coordination environment to optimize PCET steps and electrocatalytic activities for electrochemical applications. In addition, the designed system offers a motif to understand the structure-efficiency relationship from those amino-acid residue with proton buffer ability in natural photosynthesis.

9.
Bioconjug Chem ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954733

ABSTRACT

Fibroblast activation protein (FAP) has recently gained significant attention as a promising tumor biomarker for both diagnosis and therapeutic applications. A series of radiopharmaceuticals based on fibroblast activation protein inhibitors (FAPIs) have been developed and translated into the clinic. Though some of them such as radiolabeled FAPI-04 probes have achieved favorable in vivo imaging performance, further improvement is still highly desired for obtaining radiopharmaceuticals with a high theranostics potential. In this study, we innovatively designed an FAPI ligand SMIC-3002 by changing the core quinoline motif of FAPI-04 to the quinolinium scaffold. The engineered molecule was further radiolabeled with 68Ga to generate a positron emission tomography (PET) probe, [68Ga]Ga-SMIC-3002, which was then evaluated in vitro and in vivo. [68Ga]Ga-SMIC-3002 demonstrated high in vitro stability, nanomolar affinity for FAP (8 nM for protein, 23 nM for U87MG cells), and specific uptake in FAP-expressing tumors, with a tumor/muscle ratio of 19.1 and a tumor uptake of 1.48 ± 0.03 ID/g% at 0.5 h in U87MG tumor-bearing mice. In summary, the quinolinium scaffold can be successfully used for the development of the FAP-targeted tracer. [68Ga]Ga-SMIC-3002 not only shows high potential for clinical translation but also offers insights into designing a new generation of FAPI tracers.

10.
FASEB J ; 37(2): e22749, 2023 02.
Article in English | MEDLINE | ID: mdl-36688808

ABSTRACT

Tacrolimus (TAC)-induced renal injury is detrimental to long-term kidney function, but a treatment medication is not available. Glycyrrhizic acid (GA) is an active ingredient in licorice widely used to treat kidney disease. Thus, this study explored the mechanisms of renoprotection by GA on TAC-induced renal injury. C57BL/6 mice were subjected daily to TAC or a combination of TAC and GA for 4 weeks, and then renal function, histopathology, and autophagy were assessed to examine the effect of GA on a renal injury. Next, Human kidney proximal tubular epithelial (HK-2) cells were pretreated with GA for 2 h and then treated with TAC for 24 h. The effect of GA on TAC-induced HK-2 cell injury was assessed by measuring cell viability, apoptosis, autophagy, and lysosomes. Mice exposed to TAC and treated with GA had significantly greater improvements in renal function and tubulointerstitial fibrosis in comparison to mice not treated with GA. In addition, fibrosis-related protein expression, including α-smooth muscle actin and fibronectin, decreased after GA treatment. GA treatment also relieved autophagic clearance in TAC-induced renal injury. Several in vitro studies found that TAC inhibited cell viability, autophagy, lysosomal acidification, and promoted apoptosis. However, these results were less pronounced with GA pretreatment. In addition, bafilomycin A1 (which inhibits lysosomal function) reduced the protective effect of GA, indicating that lysosomal function plays an important role in this effect. Our data suggest that GA improves lysosomal function and regulates autophagy to protect against TAC-induced renal injury.


Subject(s)
Kidney Diseases , Tacrolimus , Mice , Humans , Animals , Tacrolimus/pharmacology , Glycyrrhizic Acid/metabolism , Glycyrrhizic Acid/pharmacology , Mice, Inbred C57BL , Kidney/metabolism , Autophagy , Kidney Diseases/pathology
11.
Chemphyschem ; 25(7): e202400213, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38488296

ABSTRACT

The front cover artwork is provided by Rui Cao's group at Shaanxi Normal University. The image shows the design of Co-porphyrin-engineered phenolic resins with intramolecular phenolic hydroxyl groups to facilitate proton and electron transfers for efficient oxygen electrocatalysis, which is bioinspired by cytochrome c oxidases, and shows the excellent performance of Zn-air batteries assembled with the hybrid material. Read the full text of the Research Article at 10.1002/cphc.202400017.

12.
Chemphyschem ; 25(7): e202400017, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38319009

ABSTRACT

Using functionalized supporting materials for the immobilization of molecular catalysts is an appealing strategy to improve the efficiency of molecular electrocatalysis. Herein, we report the covalent tethering of cobalt porphyrins on phenolic resins (PR) for improved electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A cobalt porphyrin bearing an alkyl bromide substituent was covalently tethered on phenolic resins, through the substitution reaction of alkyl bromides with phenolic hydroxyl groups, to afford molecule-engineered phenolic resins (Co-PR). The resulted Co-PR was efficient for electrocatalytic ORR and OER by displaying an ORR half-wave potential of E1/2=0.78 V versus RHE and an OER overpotential of 420 mV to get 10 mA/cm2 current density. We propose that the many residual phenolic hydroxyl groups on PR will surround the tethered Co porphyrin and play critical roles in facilitating proton and electron transfers. Importantly, Co-PR outperformed unmodified PR and PR loaded with Co porphyrins through simple physical adsorption (termed Co@PR). The zinc-air battery assembled using Co-PR displayed a performance comparable to that using Pt/C+Ir/C. This work is significant to present phenolic resins as a functionalized material to support molecular electrocatalysts and demonstrate the strategy to improve molecular electrocatalysis with the use of phenolic resin residues.

13.
Inorg Chem ; 63(11): 4797-4801, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38427578

ABSTRACT

Two peripheral functionalized clamp-shaped cobalt porphyrin(2.1.2.1) complexes were synthesized, and their electrocatalytic ORR abilities were investigated. The crystal data and optical and redox properties of them were revised by peripheral modification. The ORR capacities and DFT calculations of F5PhCo and F5NCo suggest superior selectivity for the 4e- ORR pathway. This work further confirms the clamp-shaped cobalt porphyrin complexes are ideal Co-N4 ORR catalysts.

14.
Environ Sci Technol ; 58(10): 4802-4811, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38427711

ABSTRACT

Economic and environmentally friendly strategies are needed to promote the bifunctional catalytic removal of carbonyl sulfide (COS) by hydrolysis and hydrogen sulfide (H2S) by oxidation. N doping is considered to be an effective strategy, but the essential and intrinsic role of N dopants in catalysts is still not well understood. Herein, the conjugation of urea and biochar during Cu/biochar annealing produced pyridine N, which increased the combined COS/H2S capacity of the catalyst from 260.7 to 374.8 mg·g-1 and enhanced the turnover frequency of H2S from 2.50 × 10-4 to 5.35 × 10-4 s-1. The nucleophilic nature of pyridine N enhances the moderate basic sites of the catalyst, enabling the attack of protons and strong H2O dissociation. Moreover, pyridine N also forms cavity sites that anchor CuO, improving Cu dispersion and generating more reactive oxygen species. By providing original insight into the pyridine N-induced bifunctional catalytic removal of COS/H2S in a slightly oxygenated and humid atmosphere, this study offers valuable guidance for further C═S and C-S bond-breaking in the degradation of sulfur-containing pollutants.


Subject(s)
Hydrogen Sulfide , Sulfur Oxides , Hydrogen Sulfide/metabolism , Charcoal , Pyridines
15.
Mol Biol Rep ; 51(1): 755, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874707

ABSTRACT

BACKGROUND: Cataract contributes to visual impairment worldwide, and diabetes mellitus accelerates the formation and progression of cataract. Here we found that the expression level of miR-204-5p was diminished in the lens epithelium with anterior lens capsule of cataract patients compared to normal donors, and decreased more obviously in those of diabetic cataract (DC) patients. However, the contribution and mechanism of miR-204-5p during DC development remain elusive. METHODS AND RESULT: The mitochondrial membrane potential (MMP) was reduced in the lens epithelium with anterior lens capsule of DC patients and the H2O2-induced human lens epithelial cell (HLEC) cataract model, suggesting impaired mitochondrial functional capacity. Consistently, miR-204-5p knockdown by the specific inhibitor also attenuated the MMP in HLECs. Using bioinformatics and a luciferase assay, further by immunofluorescence staining and Western blot, we identified IGFBP5, an insulin-like growth factor binding protein, as a direct target of miR-204-5p in HLECs. IGFBP5 expression was upregulated in the lens epithelium with anterior lens capsule of DC patients and in the HLEC cataract model, and IGFBP5 knockdown could reverse the mitochondrial dysfunction in the HLEC cataract model. CONCLUSIONS: Our results demonstrate that miR-204-5p maintains mitochondrial functional integrity through repressing IGFBP5, and reveal IGFBP5 may be a new therapeutic target and prognostic factor for DC.


Subject(s)
Cataract , Diabetes Complications , Epithelial Cells , Insulin-Like Growth Factor Binding Protein 5 , MicroRNAs , Mitochondria , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Cataract/genetics , Cataract/metabolism , Cataract/pathology , Mitochondria/metabolism , Insulin-Like Growth Factor Binding Protein 5/genetics , Insulin-Like Growth Factor Binding Protein 5/metabolism , Epithelial Cells/metabolism , Diabetes Complications/genetics , Diabetes Complications/metabolism , Membrane Potential, Mitochondrial , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Male , Female , Middle Aged
16.
Nature ; 564(7734): E7, 2018 12.
Article in English | MEDLINE | ID: mdl-30397347

ABSTRACT

Change history: In this Article, Extended Data Fig. 9 was appearing as Fig. 2 in the HTML, and in Fig. 2, the panel labels 'n' and 'o' overlapped the figure; these errors have been corrected online.

17.
Nature ; 560(7717): 185-191, 2018 08.
Article in English | MEDLINE | ID: mdl-30046111

ABSTRACT

Ageing is a major risk factor for many neurological pathologies, but its mechanisms remain unclear. Unlike other tissues, the parenchyma of the central nervous system (CNS) lacks lymphatic vasculature and waste products are removed partly through a paravascular route. (Re)discovery and characterization of meningeal lymphatic vessels has prompted an assessment of their role in waste clearance from the CNS. Here we show that meningeal lymphatic vessels drain macromolecules from the CNS (cerebrospinal and interstitial fluids) into the cervical lymph nodes in mice. Impairment of meningeal lymphatic function slows paravascular influx of macromolecules into the brain and efflux of macromolecules from the interstitial fluid, and induces cognitive impairment in mice. Treatment of aged mice with vascular endothelial growth factor C enhances meningeal lymphatic drainage of macromolecules from the cerebrospinal fluid, improving brain perfusion and learning and memory performance. Disruption of meningeal lymphatic vessels in transgenic mouse models of Alzheimer's disease promotes amyloid-ß deposition in the meninges, which resembles human meningeal pathology, and aggravates parenchymal amyloid-ß accumulation. Meningeal lymphatic dysfunction may be an aggravating factor in Alzheimer's disease pathology and in age-associated cognitive decline. Thus, augmentation of meningeal lymphatic function might be a promising therapeutic target for preventing or delaying age-associated neurological diseases.


Subject(s)
Aging/cerebrospinal fluid , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/physiopathology , Lymphatic Vessels/physiopathology , Meninges/physiopathology , Aging/pathology , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Cognition , Cognition Disorders/physiopathology , Cognition Disorders/therapy , Disease Models, Animal , Extracellular Fluid/metabolism , Female , Homeostasis , Humans , Lymph Nodes/metabolism , Lymphatic Vessels/pathology , Male , Meninges/pathology , Mice , Mice, Transgenic , Perfusion
18.
Cell Mol Biol Lett ; 29(1): 47, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589823

ABSTRACT

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS: An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS: The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION: Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.


Subject(s)
Glucosephosphate Dehydrogenase , Muscle, Smooth, Vascular , Voltage-Dependent Anion Channel 1 , Humans , Hyperplasia/metabolism , Hyperplasia/pathology , Becaplermin/genetics , Becaplermin/metabolism , Cell Proliferation , bcl-2-Associated X Protein/metabolism , Glucosephosphate Dehydrogenase/metabolism , Muscle, Smooth, Vascular/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Neointima/genetics , Neointima/metabolism , Neointima/pathology , Apoptosis , Myocytes, Smooth Muscle/metabolism , Cell Movement/genetics , Cells, Cultured , Phenotype
19.
Mem Cognit ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38361018

ABSTRACT

In the present research, we produce a coherent account of the storage and retrieval processes in short- and long-term event memory, and long-term knowledge, that produce response accuracy and response time in a wide variety of conditions in our studies of recognition memory. Two to nine pictures are studied sequentially followed by a target or foil test picture in four conditions used in Nosofsky et al. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47, 316-342, (2021) and in our new paradigm: VM: target and foil responses to a given stimulus change from trial to trial; CM: the responses do not change from trial to trial; AN: every trial uses new stimuli; MIXED: combinations of VM, CN, and AN occur on each trial. In the new paradigm a given picture is equally often tested as old or new, but only in CM is the response key the same and learnable. Our model has components that have appeared in a variety of prior accounts, including learning and familiarity, but are given support by our demonstration that accuracy and response time data from a large variety of conditions can be predicted by these processes acting together, with parameter values that largely are unchanged. A longer version of this article, containing information not found here due to space, is available online  https://doi.org/10.31234/osf.io/h8msp .The avalibility of the data (supplement materials), info and link is attached at the end section ( https://psyarxiv.com/h8msp .).

20.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 23-33, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38062774

ABSTRACT

Neural tube defects (NTDs) represent a developmental disorder of the nervous system that can lead to significant disability in children and impose substantial social burdens. Valproic acid (VPA), a widely prescribed first-line antiepileptic drug for epilepsy and various neurological conditions, has been associated with a 4-fold increase in the risk of NTDs when used during pregnancy. Consequently, urgent efforts are required to identify innovative prevention and treatment approaches for VPA-induced NTDs. Studies have demonstrated that the disruption in the delicate balance between cell proliferation and apoptosis is a crucial factor contributing to NTDs induced by VPA. Encouragingly, our current data reveal that melatonin (MT) significantly inhibits apoptosis while promoting the restoration of neuroepithelial cell proliferation impaired by VPA. Moreover, further investigations demonstrate that MT substantially reduces the incidence of neural tube malformations resulted from VPA exposure, primarily by suppressing apoptosis through the modulation of intracellular reactive oxygen species levels. In addition, the Src/PI3K/ERK signaling pathway appears to play a pivotal role in VPA-induced NTDs, with significant inhibition observed in the affected samples. Notably, MT treatment successfully reinstates Src/PI3K/ERK signaling, thereby offering a potential underlying mechanism for the protective effects of MT against VPA-induced NTDs. In summary, our current study substantiates the considerable protective potential of MT in mitigating VPA-triggered NTDs, thereby offering valuable strategies for the clinical management of VPA-related birth defects.


Subject(s)
Melatonin , Neural Tube Defects , Pregnancy , Female , Child , Humans , Valproic Acid , Melatonin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Neural Tube Defects/chemically induced , Neural Tube Defects/prevention & control , Oxidative Stress , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL