Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Chem Soc Rev ; 52(9): 3215-3264, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37073529

ABSTRACT

MXenes have been extensively studied due to their high metallic conductivity, hydrophilic properties, tunable layer structure and attractive surface chemistry, making them highly desirable for energy-related applications. However, slow catalytic reaction kinetics and limited active sites have severely impeded their further practical applications. Surface engineering of MXenes has been rationally designed and investigated to regulate their electronic structure, increase the density of active sites, optimize the binding energy, and thus boost the electrocatalytic performance. In this review, we comprehensively summarized the surface engineering strategies for MXene nanostructures, including surface termination engineering, defect engineering, heteroatom doping engineering (metals or non-metals), secondary material engineering, and extension to MXene analogues. By identifying the roles of each component in the engineered MXenes at the atomic level, their intrinsic active sites have been discussed to establish the relationships between the atomic structures and catalytic activities. We highlighted the state-of-the-art progress of MXenes in electrochemical conversion reactions including hydrogen, oxygen, carbon dioxide, nitrogen and sulfur conversion reactions. The challenges and perspectives of MXene-based catalysts for electrochemical conversion reactions are presented to inspire more efforts toward the understanding and development of MXene-based materials to meet the ever-growing demand for a sustainable future.

2.
Small ; 19(41): e2302639, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37309285

ABSTRACT

Rational design and development of highly efficient hydrogen evolution reaction (HER) electrocatalysts is of great significance for the development of green water electrolysis hydrogen production technology. Ru-engineered 1D PtCo-Ptrich nanowires (Ru-Ptrich Co NWs) are fabricated by a facile electrodeposition method. The rich Pt surface on 1D Pt3 Co contributes to the fully exposed active sites and enhanced intrinsic catalytic activity (co-engineered by Ru and Co atoms) for HER. The incorporation of Ru atoms can not only accelerate the water dissociation in alkaline condition to provide sufficient H* but also modulate the electronic structure of Pt to achieve optimized H* adsorption energy. As a result, Ru-Ptrich Co NWs have exhibited ultralow HER overpotentials (η) of 8 and 112 mV to achieve current densities of 10 and 100 mA cm-2 in 1 m KOH, respectively, which far exceed those of commercial Pt/C catalyst (η10  = 29 mV, η100  = 206 mV). Density functional theory (DFT) calculations further demonstrate that the incorporated Ru atoms possess strong water adsorption capacity (-0.52 vs -0.12 eV for Pt), facilitating water dissociation. The Pt atoms in the outermost Pt-rich skin of Ru-Ptrich Co NWs achieve optimized H* adsorption free energy (ΔGH* ) of -0.08 eV, boosting hydrogen generation.

3.
Angew Chem Int Ed Engl ; 62(36): e202308349, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37452696

ABSTRACT

Electrocatalysts for highly efficient oxygen reduction reaction (ORR) are crucial for energy conversion and storage devices. Single-atom catalysts with maximized metal utilization and altered electronic structure are the most promising alternatives to replace current benchmark precious metals. However, the atomic level understanding of the functional role for each species at the anchoring sites is still unclear and poorly elucidated. Herein, we report Fe single atom catalysts with the sulfur and oxygen functional groups near the atomically dispersed metal centers (Fe1/NSOC) for highly efficient ORR. The Fe1/NSOC delivers a half-wave potential of 0.92 V vs. RHE, which is much better than those of commercial Pt/C (0.88 V), Fe single atoms on N-doped carbon (Fe1/NC, 0.89 V) and most reported nonprecious metal catalysts. The spectroscopic measurements reveal that the presence of sulfur group induces the formation of epoxy groups near the FeN4S2 centers, which not only modulate the electronic structure of Fe single atoms but also participate the catalytic process to improve the kinetics. The density functional theory calculations demonstrate the existence of sulfur and epoxy group engineer the charges of Fe reactive center and facilitate the reductive release of OH* (rate-limiting step), thus boosting the overall oxygen reduction efficiency.

4.
Small ; 18(32): e2202394, 2022 08.
Article in English | MEDLINE | ID: mdl-35853722

ABSTRACT

Single-atom catalysts (SACs) have attracted tremendous research interest due to their unique atomic structure, maximized atom utilization, and remarkable catalytic performance. Among the SACs, the carbon-supported SACs have been widely investigated due to their easily controlled properties of the carbon substrates, such as the tunable morphologies, ordered porosity, and abundant anchoring sites. The electrochemical performance of carbon-supported SACs is highly related to the morphological structure of carbon substrates (macro-environment) and the local coordination environments of center metals (micro-environment). This review aims to provide a comprehensive summary on the macro/micro-environment regulating carbon-supported SACs for highly efficient hydrogen/oxygen conversion reactions. The authors first summarize the macro-environment engineering strategies of carbon-supported SACs with altered specific surface areas and porous properties of the carbon substrates, facilitating the mass diffusion kinetics and structural stability. Then the micro-environment engineering strategies of carbon-supported SACs are discussed with the regulated atomic structure and electronic structure of metal centers, boosting the catalytic performance. Insights into the correlation between the co-boosted effect from the macro/micro-environments and catalytic activity for hydrogen/oxygen conversion reactions are summarized and discussed. Finally, the challenges and perspectives are addressed in building highly efficient carbon-supported SACs for practical applications.


Subject(s)
Carbon , Hydrogen , Carbon/chemistry , Catalysis , Metals/chemistry , Oxygen
5.
Nanotechnology ; 31(33): 335706, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32340008

ABSTRACT

Designing a high-energy-density and power-density electrode for supercapacitors has become an increasingly important concept in the energy storage community. In this article, NiCoSe2 nanostructures were electrodeposited on nickel (Ni) foam and directly used as electrodes for supercapacitors. The effect on the morphology and electrochemical performance of NiCoSe2 prepared under different scan rates was measured through scanning electron microscopy and various electrochemical measurements. The resultant NiCoSe2 prepared with 5 mV s-1 exhibits a cross-linked porous nanostructure and a high specific capacitance of 2185 F g-1 at a current density of 1 A g-1. Taking advantage of these features, an ASC is constructed by using NiCoSe2 on Ni foam as the positive electrode and an active carbon electrode as the negative electrode with 3 M KOH as the electrolyte. The ASC displays a high-energy density of 41.8 Wh kg-1, an ultrahigh power output of 8 kW kg-1, as well as a long cycling life (91.4% capacity retention after 10 000 cycles). The excellent electrochemical performance makes the porous NiCoSe2 nanostructures a promising alternative in energy storage devices.

6.
Nanoscale ; 16(18): 8960-8967, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38639878

ABSTRACT

The exploration of powerful, efficient and precious metal-free electrocatalysts for facilitating the sluggish kinetics of the oxygen reduction reaction (ORR) is a crucial endeavor in the development and application of energy conversion and storage devices. Herein, we have rationally designed and synthesized bimetallic CoFe species consisting of CoFe nanoparticles and atomically dispersed dual atoms anchored on an ordered mesoporous carbon matrix (CoFe/NC) as highly efficient ORR electrocatalysts. The pyrolyzation temperature for CoFe/NC plays a vital role in regulating the morphology and composition of both the carbon matrix and CoFe species. The optimized CoFe/NC-750 exhibits a favorable ORR performance in 0.1 M KOH with a high half-wave potential (E1/2) of 0.87 V vs. RHE, excellent tolerance to methanol and remarkable durability (no obvious decrease in E1/2 value after 3000 cycles), all of which are superior to the performance of commercial Pt/C. Experimental measurements and density functional theory (DFT) calculations reveal that the improved ORR performance of CoFe/NC-750 is mainly attributed to the electronic structure of atomically dispersed Fe active sites modulated by the surrounding CoFe alloys and Co single atoms, which accelerates the dissociation and reduction of intermediate OH* species and promotes the ORR process.

7.
Nanomicro Lett ; 15(1): 178, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37433948

ABSTRACT

Electrochemical carbon dioxide reduction reaction (CO2RR) provides a promising way to convert CO2 to chemicals. The multicarbon (C2+) products, especially ethylene, are of great interest due to their versatile industrial applications. However, selectively reducing CO2 to ethylene is still challenging as the additional energy required for the C-C coupling step results in large overpotential and many competing products. Nonetheless, mechanistic understanding of the key steps and preferred reaction pathways/conditions, as well as rational design of novel catalysts for ethylene production have been regarded as promising approaches to achieving the highly efficient and selective CO2RR. In this review, we first illustrate the key steps for CO2RR to ethylene (e.g., CO2 adsorption/activation, formation of *CO intermediate, C-C coupling step), offering mechanistic understanding of CO2RR conversion to ethylene. Then the alternative reaction pathways and conditions for the formation of ethylene and competitive products (C1 and other C2+ products) are investigated, guiding the further design and development of preferred conditions for ethylene generation. Engineering strategies of Cu-based catalysts for CO2RR-ethylene are further summarized, and the correlations of reaction mechanism/pathways, engineering strategies and selectivity are elaborated. Finally, major challenges and perspectives in the research area of CO2RR are proposed for future development and practical applications.

8.
Nanoscale ; 15(11): 5448-5457, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36852590

ABSTRACT

Developing efficient and robust catalysts to replace Pt group metals for the oxygen reduction reaction (ORR) is conducive to achieving highly efficient energy conversion. Here, we develop a general ion exchange strategy to construct highly efficient ORR catalysts consisting of various atomically dispersed metal atoms anchored on N-doped porous carbon (M-SAs/NC) to investigate the atomic structure-catalytic activity relationship. The structure characterization results demonstrated that the achieved atomic structure varied due to the presence of different metal centers. Mn-SAs/NC consists of MnN3O1 centers, in which the Mn single atoms are stabilized by 3 N and 1 O. In contrast, the center metals in Fe-/Co-/Cu single-atom catalysts are coordinated by merely N atoms. Mn-SAs/NC delivers superior performance for the ORR with a half-wave potential (E1/2) of 0.91 V vs. RHE in 0.1 M KOH solution, outperforming that of the commercial Pt/C catalyst and the control Fe-/Co-/Cu single-atom catalysts. Furthermore, Mn-SAs/NC also shows excellent methanol tolerance and stability up to 5000 cycles. Density functional theory (DFT) calculations reveal that Mn single atom catalysts with MnN3O1 centers contributed to the superior ORR performance with lower energy barriers and optimized adsorption capacity of intermediates. These findings provide insights into the design and development of specific coordinated structures of atomically dispersed catalysts to facilitate the practical applications of energy conversion.

9.
Materials (Basel) ; 15(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079226

ABSTRACT

Electrode materials are key factors for supercapacitors to endow them with excellent electrochemical properties. Here, a novel hybrid structure of a CoSe/Co3O4-CNTs binder free composite electrode on nickel foam was prepared via a facile flame method, followed by an electrodeposition process. Benefitting from the synergetic effects of the multicomponent (with low resistances of 1.542 Ω cm2 and a moderate mesoporous size of 3.12 nm) and the enlarged specific surface area of the composite material (77.4 m2 g-1), the CoSe/Co3O4-CNTs composite electrode delivers a high specific capacitance of 2906 F g-1 at 5 mV s-1 with an excellent rate stability. The fabricated CoSe/Co3O4-CNTs/NF//AC ASC exhibits a high energy density of 43.4 Wh kg-1 at 0.8 kW kg-1 and a long cycle life (92.7% capacitance retention after 10,000 cycles).

10.
ACS Appl Mater Interfaces ; 13(45): 53868-53876, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34726382

ABSTRACT

The rapidly developing wearable flexible electronics makes the development of high-performance flexible energy storage devices, such as all-solid-state supercapacitors (SCs), particularly important. Herein, we report the fabrication of CNTs/NiCoSe2 hybrid films on carbon cloth (CC) through a facile co-electrodeposition method based on flexible electrodes for all-solid-state SCs. The NiCoSe2 sheets grown on CNTs uniformly with a diameter of 50-100 nm act as the active materials. The CNTs in the hybrid films act as the scaffold to offer more deposition sites for NiCoSe2 and provide a conductive network to facilitate the transfer of electrons. Moreover, the one-step electrodeposition process avoids the usage of any organic binders. Benefiting from the high intrinsic reactivity and unique 3D architecture, the obtained CNTs/NiCoSe2 electrode delivers high specific capacity (218.1 mA h g-1) and satisfactory durability (over 5000 cycles). Remarkably, the CNTs/NiCoSe2//AC flexible all-solid-state (FASS) ASC provides remarkable energy density (112.2 W h kg-1) within 0-1.7 V and maintains 98.1% of its initial capacity after 10,000 cycles. In addition, this flexible ASC device could be fabricated at a large scale (5 × 6 cm2), and the LED arrays (>3.7 V) can be easily lighted up by three ASCs in series, showing its potential practical application.

11.
J Bone Miner Res ; 32(10): 2062-2073, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28600887

ABSTRACT

Fibroblast growth factor 23 (FGF23) is the causative factor of X-linked hypophosphatemia (XLH), a genetic disorder effecting 1:20,000 that is characterized by excessive phosphate excretion, elevated FGF23 levels and a rickets/osteomalacia phenotype. FGF23 inhibits phosphate reabsorption and suppresses 1α,25-dihydroxyvitamin D (1,25D) biosynthesis, analytes that differentially contribute to bone integrity and deleterious soft-tissue mineralization. As inhibition of ligand broadly modulates downstream targets, balancing efficacy and unwanted toxicity is difficult when targeting the FGF23 pathway. We demonstrate that a FGF23 c-tail-Fc fusion molecule selectively modulates the phosphate pathway in vivo by competitive antagonism of FGF23 binding to the FGFR/α klotho receptor complex. Repeated injection of FGF23 c-tail Fc in Hyp mice, a preclinical model of XLH, increases cell surface abundance of kidney NaPi transporters, normalizes phosphate excretion, and significantly improves bone architecture in the absence of soft-tissue mineralization. Repeated injection does not modulate either 1,25D or calcium in a physiologically relevant manner in either a wild-type or disease setting. These data suggest that bone integrity can be improved in models of XLH via the exclusive modulation of phosphate. We posit that the selective modulation of the phosphate pathway will increase the window between efficacy and safety risks, allowing increased efficacy to be achieved in the treatment of this chronic disease. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Familial Hypophosphatemic Rickets/drug therapy , Fibroblast Growth Factors/therapeutic use , Animals , Bone Density/drug effects , Bone and Bones/diagnostic imaging , Bone and Bones/drug effects , Bone and Bones/pathology , Calcification, Physiologic/drug effects , Calcitriol/blood , Calcitriol/pharmacology , Calcium/blood , Cancellous Bone/pathology , Disease Models, Animal , Familial Hypophosphatemic Rickets/blood , Familial Hypophosphatemic Rickets/diagnostic imaging , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/chemistry , HEK293 Cells , Humans , Mice , Peptides/pharmacology , Phosphates/blood , Rats, Wistar , Recombinant Proteins/pharmacology , Renal Reabsorption/drug effects
12.
J Cardiothorac Surg ; 10: 80, 2015 Jun 06.
Article in English | MEDLINE | ID: mdl-26045082

ABSTRACT

Interruption of the descending aorta is an extremely rare great vessel malformation. In this report, we describe a very unusual case of a 29-year-old female with a 13-year history of hypertension who was found to have an interruption of the descending aorta when she was hospitalized with a subarachnoid hemorrhage and symptoms of acute paraplegia. We successfully surgically corrected the defect using a Gore-Tex® graft to bypass the aortic interruption. The patient's blood pressure postoperatively returned to normal, and the patient recovered completely from her paraplegia by the time of her 5-month follow-up visit.


Subject(s)
Aorta, Thoracic/abnormalities , Blood Vessel Prosthesis Implantation/methods , Paraplegia/etiology , Subarachnoid Hemorrhage/complications , Vascular Malformations/surgery , Adult , Aorta, Thoracic/surgery , Female , Humans , Paraplegia/surgery , Subarachnoid Hemorrhage/surgery , Vascular Malformations/complications
13.
Mol Cancer Ther ; 14(8): 1868-76, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26089370

ABSTRACT

Antibody-drug conjugates (ADC) represent a promising therapeutic modality for managing cancer. Here, we report a novel humanized ADC that targets the tetraspanin-like protein TM4SF1. TM4SF1 is highly expressed on the plasma membranes of many human cancer cells and also on the endothelial cells lining tumor blood vessels. TM4SF1 is internalized upon interaction with antibodies. We hypothesized that an ADC against TM4SF1 would inhibit cancer growth directly by killing cancer cells and indirectly by attacking the tumor vasculature. We generated a humanized anti-human TM4SF1 monoclonal antibody, v1.10, and armed it with an auristatin cytotoxic agent LP2 (chemical name mc-3377). v1.10-LP2 selectively killed cultured human tumor cell lines and human endothelial cells that express TM4SF1. Acting as a single agent, v1.10-LP2 induced complete regression of several TM4SF1-expressing tumor xenografts in nude mice, including non-small cell lung cancer and pancreas, prostate, and colon cancers. As v1.10 did not react with mouse TM4SF1, it could not target the mouse tumor vasculature. Therefore, we generated a surrogate anti-mouse TM4SF1 antibody, 2A7A, and conjugated it to LP2. At 3 mpk, 2A7A-LP2 regressed several tumor xenografts without noticeable toxicity. Combination therapy with v1.10-LP2 and 2A7A-LP2 together was more effective than either ADC alone. These data provide proof-of-concept that TM4SF1-targeting ADCs have potential as anticancer agents with dual action against tumor cells and the tumor vasculature. Such agents could offer exceptional therapeutic value and warrant further investigation. Mol Cancer Ther; 14(8); 1868-76. ©2015 AACR.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Angiogenesis Inhibitors/toxicity , Animals , Antigens, Surface/genetics , Antigens, Surface/metabolism , Antineoplastic Agents/toxicity , Cell Line, Tumor , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gene Expression , Humans , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic , Rabbits , Tissue Distribution , Xenograft Model Antitumor Assays
14.
Cancer Biol Ther ; 9(6): 437-45, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20061819

ABSTRACT

Integrin alpha6beta4 signaling interactions have been implicated in tumor progression, and beta4 expression has been linked to poor prognosis in certain breast cancer subtypes. We generated human antibodies to alpha6beta4 to further evaluate its role in tumor cell signaling. Biochemical characterization indicated these antibodies are specific for alpha6beta4, recognize distinct epitopes and have low nanomolar affinities for both human and murine protein. The antibodies demonstrated differing effects on alpha6beta4-mediated cellular adhesion, highlighting the existence of different functional epitopes on alpha6beta4. Interestingly however both antibodies blocked adhesion-independent growth in a panel of breast cancer cell lines. Antibody induced apoptosis and inhibition of phosphoinositide 3-kinase (PI3K) signaling were also observed within the context of matrix adhesion. Enhanced inhibitory effects were observed when the alpha6beta4 antibodies were used in combination with antibodies to epidermal growth factor receptor (EGFR) or erythoblastic leukemia viral oncogene homolog 2 (ErbB2). These findings illustrate a role for both the adhesive and signaling functions of alpha6beta4 in breast cancer cell survival. The antibodies and data generated herein advance our understanding of alpha6beta4 in regulating tumorigenic processes, and suggest that combination therapies involving alpha6beta4 may be therapeutically effective in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Integrin alpha6beta4/metabolism , Integrin alpha6beta4/physiology , Antibodies/metabolism , Apoptosis/drug effects , Cell Adhesion/physiology , Cell Line , ErbB Receptors/metabolism , Female , Humans , Integrins/metabolism , Neoplasms/metabolism , Signal Transduction
15.
J Biol Chem ; 284(15): 10254-67, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19211557

ABSTRACT

Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at escalating ligand concentrations (>1 microm) to investigate allosteric versus competitive blocking mechanisms. Four distinct inhibitory classes were found as follows: 1) allosteric IGF-1 blockers, 2) allosteric IGF-2 blockers, 3) allosteric IGF-1 and IGF-2 blockers, and 4) competitive IGF-1 and IGF-2 blockers. The epitopes of representative antibodies from each of these classes were mapped using a purified IGF-1R library containing 64 mutations. Most of these antibodies bound overlapping surfaces on the cysteine-rich repeat and L2 domains. One class of allosteric IGF-1 and IGF-2 blocker was identified that bound a separate epitope on the outer surface of the FnIII-1 domain. Using various biophysical techniques, we show that the dual IGF blockers inhibit ligand binding using a spectrum of mechanisms ranging from highly allosteric to purely competitive. Binding of IGF-1 or the inhibitory antibodies was associated with conformational changes in IGF-1R, linked to the ordering of dynamic or unstructured regions of the receptor. These results suggest IGF-1R uses disorder/order within its polypeptide sequence to regulate its activity. Interestingly, the activity of representative allosteric and competitive inhibitors on H322M tumor cell growth in vitro was reflective of their individual ligand-blocking properties. Many of the antibodies in the clinic likely adopt one of the inhibitory mechanisms described here, and the outcome of future clinical studies may reveal whether a particular inhibitory mechanism leads to optimal clinical efficacy.


Subject(s)
Epitopes/chemistry , Receptors, Somatomedin/chemistry , Allosteric Site , Animals , CHO Cells , Calorimetry, Differential Scanning , Cricetinae , Cricetulus , Epitope Mapping , Humans , Insulin-Like Growth Factor II/chemistry , Kinetics , Ligands , Molecular Conformation , Receptor, IGF Type 1/metabolism
16.
Cell Commun Adhes ; 15(4): 317-31, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18979297

ABSTRACT

Integrin alpha6beta4-mediated adhesion interactions play key roles in keratinocyte and epithelial tumor cell biology. In order to evaluate how alpha6beta4 adhesion interactions contribute to these important cellular processes, the authors generated soluble versions of the integrin by recombinant expression of the subunit ectodomains fused to a human immunoglobulin G (IgG) Fc constant domain. Coexpression of the appropriate subunits enabled dimerization, secretion and purification of stable Fc-containing alpha6beta4 heterodimers. The soluble proteins exhibited the same metal ion and ligand dependency in their binding characteristics as intact alpha6beta4. Using these reagents in combination with anti-beta4 antibodies, the authors identified two distinct functional epitopes on the beta4 subunit. They demonstrated the involvement of one epitope in adhesion interactions and the other in regulating adhesion-independent growth in alpha6beta4-expressing tumor cell lines. The availability of these soluble integrin reagents and the data provided herein help to further delineate the structure-function relationships regulating alpha6beta4 signaling biology.


Subject(s)
Integrin alpha6beta4/physiology , Integrin beta4/chemistry , Animals , Antibodies/metabolism , CHO Cells , Cell Adhesion , Cell Communication , Cell Line, Tumor , Cricetinae , Cricetulus , Dimerization , Humans , Integrin beta4/immunology , Integrin beta4/physiology , K562 Cells , Keratinocytes/cytology , Keratinocytes/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/metabolism , Signal Transduction , Structure-Activity Relationship
17.
J Biol Chem ; 281(41): 30755-67, 2006 Oct 13.
Article in English | MEDLINE | ID: mdl-16905745

ABSTRACT

The interaction between IgE-Fc (Fcepsilon) and its high affinity receptor FcepsilonRI on the surface of mast cells and basophils is a key event in allergen-induced allergic inflammation. Recently, several therapeutic strategies have been developed based on this interaction, and some include Fcepsilon-containing moieties. Unlike well characterized IgG therapeutics, the stability and folding properties of IgE are not well understood. Here, we present comparative biophysical analyses of the pH stability and thermostability of Fcepsilon and IgG1-Fc (Fcgamma). Fcepsilon was found to be significantly less stable than Fcgamma under all pH and NaCl conditions tested. Additionally, the Cepsilon3Cepsilon4 domains of Fcepsilon were shown to become intrinsically unfolded at pH values below 5.0. The interaction between Fcepsilon and an Fcgamma-FcepsilonRIalpha fusion protein was studied between pH 4.5 and 7.4 using circular dichroism and a combination of differential scanning calorimetry and isothermal titration calorimetry. Under neutral pH conditions, the apparent affinity of Fcepsilon for the dimeric fusion protein was extremely high compared with published values for the monomeric receptor (KD < 10(-12) m). Titration to pH 6.0 did not significantly change the binding affinity, and titration to pH 5.5 only modestly attenuated affinity. At pH values below 5.0, the receptor binding domains of Fcepsilon unfolded, and interaction of Fcepsilon with the Fcgamma-FcepsilonRIalpha fusion protein was abrogated. The unusual pH sensitivity of Fcepsilon may play a role in antigen-dependent regulation of receptor-bound, non-circulating IgE.


Subject(s)
Immunoglobulin E/chemistry , Receptors, IgE/chemistry , Animals , CHO Cells , Calorimetry, Differential Scanning , Cloning, Molecular , Cricetinae , Hydrogen-Ion Concentration , Immunoglobulin G/chemistry , Inflammation , Protein Binding , Protein Denaturation , Protein Folding , Recombinant Fusion Proteins/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL