Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 609(7925): 46-51, 2022 09.
Article in English | MEDLINE | ID: mdl-36045238

ABSTRACT

Superlattices-a periodic stacking of two-dimensional layers of two or more materials-provide a versatile scheme for engineering materials with tailored properties1,2. Here we report an intrinsic heterodimensional superlattice consisting of alternating layers of two-dimensional vanadium disulfide (VS2) and a one-dimensional vanadium sulfide (VS) chain array, deposited directly by chemical vapour deposition. This unique superlattice features an unconventional 1T stacking with a monoclinic unit cell of VS2/VS layers identified by scanning transmission electron microscopy. An unexpected Hall effect, persisting up to 380 kelvin, is observed when the magnetic field is in-plane, a condition under which the Hall effect usually vanishes. The observation of this effect is supported by theoretical calculations, and can be attributed to an unconventional anomalous Hall effect owing to an out-of-plane Berry curvature induced by an in-plane magnetic field, which is related to the one-dimensional VS chain. Our work expands the conventional understanding of superlattices and will stimulate the synthesis of more extraordinary superstructures.

2.
Small ; : e2402808, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764281

ABSTRACT

The metal indium sulfides have attracted extensive research interest in photocatalysis due to regulable atomic configuration and excellent optoelectronic properties. However, the synthesis of metal indium sulfide atomic layers is still challenging since intrinsic non-van-der-Waals layered structures of some components. Here, a surfactant self-assembly growth mechanism is proposed to controllably synthesize metal indium sulfide atomic layers. Eleven types of atomic layers with tunable compositions, thickness, and defect concentrations are successfully achieved namely In2S3, MgIn2S4, CaIn2S4, MnIn2S4, FeIn2S4, ZnIn2S4, Zn2In2S5, Zn4In16S33, CuInS2, CuIn5S8, and CdIn2S4. The typical CaIn2S4 shows a defect-dependence activity for CO2 photoreduction. The designed S vacancies in CaIn2S4 can serve as catalytic centers to activate CO2 molecules via localized electrons for π-back-donation. The engineered S vacancies tune the non-covalent interaction with CO2 and intermediates, manages to tune the free energy, and lower the reaction energy barrier. As a result, the defect-rich CaIn2S4 displays 2.82× improved reduction rate than defect-poor CaIn2S4. Meantime, other components also display promising photocatalytic performance, such as Zn2In2S5 with a H2O2 photosynthesis rate of 292 µmol g-1 h-1 and CuInS2 with N2-NH4 + conversion rate of 54 µmol g-1 h-1. This work paves the way for the multidisciplinary exploration of metal indium sulfide atomic layers with unique photocatalysis properties.

3.
J Transl Med ; 22(1): 244, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448996

ABSTRACT

AIMS: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for hematological malignancies. However, viral infections, particularly EBV infection, frequently occur following allo-HSCT and can result in multi-tissue and organ damage. Due to the lack of effective antiviral drugs, these infections can even progress to post-transplant lymphoproliferative disorders (PTLD), thereby impacting the prognosis. In light of this, our objective is to develop a prediction model for EBV infection following allo-HSCT. METHODS: A total of 466 patients who underwent haploidentical hematopoietic stem cell transplantation (haplo-HSCT) between September 2019 and December 2020 were included in this study. The patients were divided into a development cohort and a validation cohort based on the timing of their transplantation. Our aim was to develop and validate a grading scale using these cohorts to predict the risk of EBV infection within the first year after haplo-HSCT. Additionally, single-cell RNA sequencing (sc-RNAseq) data from the bone marrow of healthy donors were utilized to assess the impact of age on immune cells and viral infection. RESULTS: In the multivariate logistic regression model, four predictors were retained: donor age, female-to-male transplant, graft MNC (mononuclear cell) dose, and CD8 dose. Based on these predictors, an EBV reactivation predicting score system was constructed. The scoring system demonstrated good calibration in both the derivation and validation cohorts, as confirmed by the Hosmer-Lemeshow test (p > 0.05). The scoring system also exhibited favorable discriminative ability, as indicated by the C statistics of 0.72 in the derivation cohort and 0.60 in the validation cohort. Furthermore, the clinical efficacy of the scoring system was evaluated using Kaplan-Meier curves based on risk ratings. The results showed significant differences in EBV reactivation rates between different risk groups, with p-values less than 0.001 in both the derivation and validation cohorts, indicating robust clinical utility. The analysis of sc-RNAseq data from the bone marrow of healthy donors revealed that older age had a profound impact on the quantity and quality of immune subsets. Functional enrichment analysis highlighted that older age was associated with a higher risk of infection. Specifically, CD8 + T cells from older individuals showed enrichment in the pathway of "viral carcinogenesis", while older CD14 + monocytes exhibited enrichment in the pathway of "regulation of viral entry into host cell." These findings suggest that older age may contribute to an increased susceptibility to viral infections, as evidenced by the altered immune profiles observed in the sc-RNAseq data. CONCLUSION: Overall, these results demonstrate the development and validation of an effective scoring system for predicting EBV reactivation after haplo-HSCT, and provide insights into the impact of age on immune subsets and viral infection susceptibility based on sc-RNAseq analysis of healthy donors' bone marrow.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Humans , Female , Male , Hematopoietic Stem Cell Transplantation/adverse effects , Antiviral Agents , CD8-Positive T-Lymphocytes , Calibration
4.
Opt Lett ; 49(2): 210-213, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38194530

ABSTRACT

The kinetics of optical switching due to the insulator-metal phase transition in a VO2 thin film is studied experimentally at different laser pulse repetition frequencies (PRFs) in the NIR range and compared with temperature kinetics obtained through the thermal conductance calculations. Two switching processes have been found with characteristic times <2 ms and <15 ms depending on the PRF; the former is explained by the accumulation of metallic domains remaining after a single-pulse phase transition, and the latter is referred to the heat accumulation in the film. Consequently, the dynamics of the microscopic domains is leading in the initiation of phase transition under pulse-periodic conditions compared to the macroscopic heat transfer. The reverse transition at the radiation turn-off depends on the PRF with a time coefficient of 17.5 µs/kHz and is determined by the metallic domains' decay in the film. The results are important for understanding the nature of the insulator-metal transition in thin films of VO2 as well as using them in all-optical switches of pulse-periodic laser radiation.

5.
J Immunol ; 208(2): 492-500, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34937746

ABSTRACT

The interaction of inhibitory receptors with self-MHC class I (MHC-I) molecules is responsible for NK cell education. The intensity of DNAM-1 expression correlates with NK cell education. However, whether DNAM-1 expression directly influences the functional competence of NK cells via the KIR/MHC-I interaction remains unclear. Based on allogeneic haploidentical hematopoietic stem cell transplantation, we investigated the intensity of DNAM-1 expression on reconstituted NK cells via the interaction of KIR with both donor HLA and recipient HLA at days 30, 90, and 180 after hematopoietic stem cell transplantation. The reconstituted NK cells educated by donor and recipient HLA molecules showed the highest DNAM-1 expression, whereas DNAM-1 expression on educated NK cells with only recipient HLA molecules was higher than that on educated NK cells with only donor HLA molecules, indicating that NK cells with donor or recipient HLA molecules regulate DNAM-1 expression and thereby affect NK cell education. Additionally, the effects of recipient cells on NK cell education were greater than those of donor cells. However, only when the DNAM-1, NKP30, and NKG2D receptors were blocked simultaneously was the function of educated and uneducated NK cells similar. Therefore, activating receptors may collaborate with DNAM-1 to induce educated NK cell hyperresponsiveness. Our data, based on in vitro and in vivo studies, demonstrate that the functional competence of NK cells via the KIR/MHC-I interaction correlates with DNAM-1 expression in human NK cells.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/metabolism , Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Receptors, KIR/immunology , Antigens, Differentiation, T-Lymphocyte/biosynthesis , Case-Control Studies , Hematopoietic Stem Cell Transplantation , Humans , Leukemia, Lymphoid/therapy , Leukemia, Myeloid/therapy , Myelodysplastic Syndromes/therapy , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Natural Cytotoxicity Triggering Receptor 3/metabolism , Prospective Studies
6.
Sensors (Basel) ; 24(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474950

ABSTRACT

In the exploration of ocean resources, the submarine electric field signal plays a crucial role through marine electromagnetic methods. However, due to the field signal's low-frequency and weak characteristics, it often encounters interference from the instrument's own 1/f noise during its acquisition. To address this issue, we developed a low-noise amplifier for the submarine electric field signal based on chopping amplification technology. This amplifier utilizes low-temperature electronic components to adapt to the cold submarine environment and enhances its independence by incorporating a square wave generator. Additionally, we conducted simulations and experimental tests on the designed chopper amplifier circuit, evaluating the equivalent input voltage noise spectrum (EIVNS) and the frequency response within 1 mHz~100 Hz. The experimental results indicate that the amplifier designed in this study achieves sufficiently low noise 2 nV/√Hz@1 mHz, effectively amplifying the submarine electric field signal measured with the electric field sensor.

7.
J Obstet Gynaecol ; 44(1): 2361849, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38920019

ABSTRACT

BACKGROUND: Endometrial cancer is a kind of gynaecological cancer. S100A2 is a newfound biomarker to diagnose endometrial cancer. This study was to investigate the role of S100A2 on regulating migration and invasion of endometrial cancer. METHODS: The mRNA and protein levels of S100A2 were obtained by quantitative real-time polymerase chain reaction, immunohistochemistry and western blot methods. Cell viability was measured by the Cell Counting Kit-8 assay. Cell migration and invasion were quantified using transwell assays. Western blot assay was conducted to quantify protein expressions of epithelial to mesenchymal transition-related proteins (N-cadherin and E-cadherin). Furthermore, in vivo tumour formation experiments were performed to evaluate the role of S100A2 on tumour xenografts. RESULTS: S100A2 was significantly up-regulated in endometrial cancer tissues. Knockdown of S100A2 inhibited cell viability, migration and invasion of endometrial cancer cells. Meanwhile, STING pathway was activated by the inhibited S100A2. STING inhibitor C-176 significantly reversed the effects of S100A2 knockdown on aggressive behaviours of endometrial cancer cells. Inhibition of S100A2 dramatically suppresses the tumour growth in vivo. CONCLUSIONS: S100A2 functions as an oncogene in endometrial cancer. Targeting S100A2 may be a promising therapeutic method to treat endometrial carcinoma.


This study was to investigate the role of S100A2 on regulating migration and invasion of endometrial cancer. S100A2 was significantly up-regulated in endometrial cancer tissues. Knockdown of S100A2 inhibited cell viability, migration and invasion of endometrial cancer cells. Meanwhile, STING pathway was activated by the inhibited S100A2. STING inhibitor C-176 significantly reversed the effects of S100A2 knockdown on aggressive behaviours of endometrial cancer cells. Inhibition of S100A2 dramatically suppresses the tumour growth in vivo. S100A2 functions as an oncogene in endometrial cancer. Targeting S100A2 may be a promising therapeutic method to treat endometrial carcinoma.


Subject(s)
Cell Movement , Endometrial Neoplasms , Membrane Proteins , Neoplasm Invasiveness , S100 Proteins , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Humans , S100 Proteins/metabolism , S100 Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cell Line, Tumor , Animals , Cell Movement/genetics , Mice , Gene Knockdown Techniques , Epithelial-Mesenchymal Transition/genetics , Signal Transduction , Up-Regulation , Cell Survival , Chemotactic Factors
8.
BMC Cancer ; 23(1): 410, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149594

ABSTRACT

BACKGROUND: To develop and validate a predictive nomogram for tumor residue 3-6 months after treatment based on postradiotherapy plasma Epstein-Barr virus (EBV) deoxyribonucleic acid (DNA), clinical stage, and radiotherapy (RT) dose in patients with stage II-IVA nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). METHODS: In this retrospective study, 1050 eligible patients with stage II-IVA NPC, who completed curative IMRT and underwent pretreatment and postradiotherapy (-7 to +28 days after IMRT) EBV DNA testing, were enrolled from 2012 to 2017. The prognostic value of the residue was explored using Cox regression analysis in patients (n=1050). A nomogram for predicting tumor residues after 3-6 months was developed using logistic regression analyses in the development cohort (n=736) and validated in an internal cohort (n=314). RESULTS: Tumor residue was an independent inferior prognostic factor for 5-year overall survival, progression-free survival, locoregional recurrence-free survival and distant metastasis-free survival (all P<0.001). A prediction nomogram based on postradiotherapy plasma EBV DNA level (0 vs. 1-499 vs. ≥500 copies/ml), clinical stage (II vs. III vs. IVA), and RT dose (68.00-69.96 vs. 70.00-74.00 Gy) estimated the probability of residue development. The nomogram showed better discrimination (area under the curve (AUC): 0.752) than either the clinical stage (0.659) or postradiotherapy EBV DNA level (0.627) alone in the development and validation cohorts (AUC: 0.728). CONCLUSIONS: We developed and validated a nomogram model integrating clinical characteristics at the end of IMRT for predicting whether tumor will residue or not after 3-6 months. Thus, high-risk NPC patients who might benefit from immediate additional intervention could be identified by the model, and the probability of residue can be reduced in the future.


Subject(s)
Carcinoma , Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Nasopharyngeal Carcinoma/pathology , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/radiotherapy , Carcinoma/pathology , Retrospective Studies , Nomograms , Nasopharyngeal Neoplasms/pathology , DNA, Viral , Prognosis
10.
Lipids Health Dis ; 22(1): 81, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365637

ABSTRACT

BACKGROUND: Dysregulation of lipid metabolism is closely associated with cancer progression. The study aimed to establish a prognostic model to predict distant metastasis-free survival (DMFS) in patients with nasopharyngeal carcinoma (NPC), based on lipidomics. METHODS: The plasma lipid profiles of 179 patients with locoregionally advanced NPC (LANPC) were measured and quantified using widely targeted quantitative lipidomics. Then, patients were randomly split into the training (125 patients, 69.8%) and validation (54 patients, 30.2%) sets. To identify distant metastasis-associated lipids, univariate Cox regression was applied to the training set (P < 0.05). A deep survival method called DeepSurv was employed to develop a proposed model based on significant lipid species (P < 0.01) and clinical biomarkers to predict DMFS. Concordance index and receiver operating curve analyses were performed to assess model effectiveness. The study also explored the potential role of lipid alterations in the prognosis of NPC. RESULTS: Forty lipids were recognized as distant metastasis-associated (P < 0.05) by univariate Cox regression. The concordance indices of the proposed model were 0.764 (95% confidence interval (CI), 0.682-0.846) and 0.760 (95% CI, 0.649-0.871) in the training and validation sets, respectively. High-risk patients had poorer 5-year DMFS compared with low-risk patients (Hazard ratio, 26.18; 95% CI, 3.52-194.80; P < 0.0001). Moreover, the six lipids were significantly correlated with immunity- and inflammation-associated biomarkers and were mainly enriched in metabolic pathways. CONCLUSIONS: Widely targeted quantitative lipidomics reveals plasma lipid predictors for LANPC, the prognostic model based on that demonstrated superior performance in predicting metastasis in LANPC patients.


Subject(s)
Carcinoma , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/pathology , Prognosis , Carcinoma/pathology , Lipidomics , Lipids
11.
Angew Chem Int Ed Engl ; 62(24): e202304079, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37084003

ABSTRACT

Photoelectrochemical lithium (Li) extraction can be expected to provide a useful recycle of Li+ from waste Li-containing battery, but the process is limited by the photocathodes with poor Li+ absorption and low yield rate. Here, we have designed a hierarchical silicon (Si)-based photocathode with mixed-phase tungsten oxide (WO3 ) cocatalysts for photoelectrochemical Li extraction under 1 sun illumination, achieving a high Li yield rate of ≈223.0 µg cm-2 h-1 and an excellent faradaic efficiency of 91.9 % at 0.0817 V versus Li0/+ redox couple. The WO3 cocatalysts with the mixture of amorphous and crystalline phase accelerates the Li+ insertion and precipitation and enriches the concentration of Li+ at the photocathode surface. This robust photoelectrochemical Li extraction system provides a new insight on designing green and efficient route for cyclic utilization of Li resources in the sustainable energy field.

12.
Chin J Cancer Res ; 35(2): 126-139, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37180835

ABSTRACT

Objective: Two cycles of induction chemotherapy (IC) followed by 2 cycles of platinum-based concurrent chemoradiotherapy (CCRT) (2IC+2CCRT) for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) is widely adopted but not evidence-confirmed. This study aimed to determine the clinical value of 2IC+2CCRT regarding efficacy, toxicity and cost-effectiveness. Methods: This real-world study from two epidemic centers used propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) analyses. The enrolled patients were divided into three groups based on treatment modality: Group A (2IC+2CCRT), Group B (3IC+2CCRT or 2IC+3CCRT) and Group C (3IC+3CCRT). Long-term survival, acute toxicities and cost-effectiveness were compared among the groups. We developed a prognostic model dividing the population into high- and low-risk cohorts, and survivals including overall survival (OS), progression-free survival (PFS), distant metastasis-free survival (DMFS) and locoregional relapse-free survival (LRRFS) were compared among the three groups according to certain risk stratifications. Results: Of 4,042 patients, 1,175 were enrolled, with 660, 419, and 96 included in Groups A, B and C, respectively. Five-year survivals were similar among the three groups after PSM and confirmed by IPTW. Grade 3-4 neutropenia and leukocytopenia were significantly higher in Groups C and B than in Group A (52.1% vs. 41.5% vs. 25.2%; 41.7% vs. 32.7% vs. 25.0%) as were grade 3-4 nausea/vomiting and oral mucositis (29.2% vs. 15.0% vs. 6.1%; 32.3% vs. 25.3% vs. 18.0%). Cost-effective analysis suggested that 2IC+2CCRT was the least expensive, while the health benefits were similar to those of the other groups. Further exploration showed that 2IC+2CCRT tended to be associated with a shorter PFS in high-risk patients, while 3IC+3CCRT potentially contributed to poor PFS in low-risk individuals, mainly reflected by LRRFS. Conclusions: In LA-NPC patients, 2IC+2CCRT was the optimal choice regarding efficacy, toxicity and cost-effectiveness; however, 2IC+2CCRT and 3IC+3CCRT probably shortened LRRFS in high- and low-risk populations, respectively.

13.
Genes Immun ; 23(5): 166-174, 2022 08.
Article in English | MEDLINE | ID: mdl-35821521

ABSTRACT

Polymorphisms in the granulocyte colony-stimulating factor receptor gene (GCSFR, CSF3R) have been reported to be associated with peripheral blood stem cell enrichment and hematological diseases. The aim of our study was to investigate the effects of donor CSF3R allelic polymorphisms on the outcomes of allogeneic stem cell transplantation. A total of 273 patients who were diagnosed with hematological diseases and treated with allogeneic hematopoietic stem cell transplantation(allo-HSCT) were enrolled in this study. Single-nucleotide polymorphisms in CSF3R were genotyped by targeted next-generation sequencing. There were six types of CSF3R genotypes with percentages over 1%. LFS and OS analyses showed that recipients receiving grafts from healthy donors with a rs3917980 G/G or A/G genotype had higher LFS rates than those receiving grafts from donors carrying a rs22754272 T/C genotype and the double-negative group (p = 0.036). Univariate cox analysis showed that donor CSF3R with the rs2275472 T/C genotype was associated with higher transplantation-related mortality (TRM) rates (HR = 2.853, 95% CI: 1.405-5.792, p = 0.00371) and lower rates of leukemia-free survival (LFS) (HR = 1.846; 95% CI: 1.018-3.347, p = 0.0435). In addition, donor CSF3R with the rs3917980G/G or A/G genotype was associated with better overall survival (OS) rates (HR = 0.560, 95% CI: 0.3162-0.9916, p = 0.047) and lower TRM rates (HR = 0.497, 95% CI: 0.2628-0.9397, p = 0.0315). Furthermore, multivariate cox analysis found that rs2275472 T/C genotype was an independent risk factors for TRM rates (HR = 3.210, 95% CI: 1.573-6.55, p = 0.001), while no statistical difference was found between rs3917980G/G or A/G genotype and clinical outcomes. Our findings demonstrate the important prognostic value of genetic variations in donor CSF3R to predict clinical outcomes in patients undergoing allo-HSCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Genotype , Graft vs Host Disease/genetics , Humans , Receptors, Colony-Stimulating Factor/genetics , Retrospective Studies , Tissue Donors
14.
J Am Chem Soc ; 144(25): 11444-11455, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35723429

ABSTRACT

Aqueous aluminum metal batteries (AMBs) are regarded as one of the most sustainable energy storage systems among post-lithium-ion candidates, which is attributable to their highest theoretical volumetric capacity, inherent safe operation, and low cost. Yet, the development of aqueous AMBs is plagued by the incapable aluminum plating in an aqueous solution and severe parasitic reactions, which results in the limited discharge voltage, thus making the development of aqueous AMBs unsuccessful so far. Here, we demonstrate that amorphization is an effective strategy to tackle these critical issues of a metallic Al anode by shifting the reduction potential for Al deposition. The amorphous aluminum (a-Al) interfacial layer is triggered by an in situ lithium-ion alloying/dealloying process on a metallic Al substrate with low strength. Unveiled by experimental and theoretical investigations, the amorphous structure greatly lowers the Al nucleation energy barrier, which forces the Al deposition competitive to the electron-stealing hydrogen evolution reaction (HER). Simultaneously, the inhibited HER mitigates the passivation, promoting interfacial ion transfer kinetics and enabling steady aluminum plating/stripping for 800 h in the symmetric cell. The resultant multiple full cells using Al@a-Al anodes deliver approximately a 0.6 V increase in the discharge voltage plateau compared to that of bare Al-based cells, which far outperform all reported aqueous AMBs. In both symmetric cells and full cells, the excellent electrochemical performances are achieved in a noncorrosive, low-cost, and fluorine-free Al2(SO4)3 electrolyte, which is ecofriendly and can be easily adapted for sustainable large-scale applications. This work brings an intriguing picture of the design of metallic anodes for reversible and high-voltage AMBs.

15.
Br J Haematol ; 196(4): 1007-1017, 2022 02.
Article in English | MEDLINE | ID: mdl-34787307

ABSTRACT

Natural killer (NK) cells exert anti-viral effects after haematopoietic stem cell transplantation (HSCT). The balance between inhibition and activation of NK cells determined by the inherited repertoire of killer cell immunoglobulin-like receptors (KIR) genes may influence Epstein-Barr virus (EBV) reactivation after transplantation. To evaluate the relative contributions of KIR genotypes to EBV reactivation, we prospectively enrolled 300 patients with malignant haematological disease who were suitable for haploidentical HSCT. Univariate analysis showed that donors with KIR2DS1, KIR2DS3 or KIR3DS1 genes were associated with an increased risk of EBV reactivation [hazard ratio (HR) 1·86, 95% confidence interval (CI) 1·19-2·9, P = 0·0067; HR 1·78, 95% CI 1·07-2·97, P = 0·027; HR 1·86, 95% CI 1·19-2·91, P = 0·0065 respectively]. Multivariate analysis revealed that the presence of KIR2DS1, KIR2DS3 or KIR3DS1 genes was associated with increased EBV reactivation after HSCT. This effect was more evident in the absence of the cognate ligands for the corresponding activating receptors. Our present data firstly showed that donors with activating KIR genes, specifically activating KIR2DS1, KIR2DS3 and KIR3DS1, had an increased risk of EBV reactivation. Precaution for patients whose donors carry activating genes will help prevent EBV reactivation and improve patient prognosis after HSCT.


Subject(s)
Epstein-Barr Virus Infections/therapy , Hematopoietic Stem Cell Transplantation/methods , Receptors, KIR/genetics , Transplantation Conditioning/methods , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Young Adult
16.
Opt Express ; 30(11): 18168-18178, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221623

ABSTRACT

Lensless imaging has emerged as a robust means for the observation of microscopic scenes, enabling vast applications like whole-slide imaging, wave-front detection and microfluidic on-chip imaging. Such system captures diffractive measurements in a compact optical setup without the use of optical lens, and then typically applies phase retrieval algorithms to recover the complex field of target object. However existing techniques still suffer from unsatisfactory performance with noticeable reconstruction artifacts especially when the imaging parameter is not well calibrated. Here we propose a novel unsupervised Diffractive Neural Field (DNF) method to accurately characterize the imaging physical process to best reconstruct desired complex field of the target object through very limited measurement snapshots by jointly optimizing the imaging parameter and implicit mapping between spatial coordinates and complex field. Both simulations and experiments reveal the superior performance of proposed method, having > 6 dB PSNR (Peak Signal-to-Noise Ratio) gains on synthetic data quantitatively, and clear qualitative improvement on real-world samples. The proposed DNF also promises attractive prospects in practical applications because of its ultra lightweight complexity (e.g., 50× model size reduction) and plug-to-play advantage (e.g., random measurements with a coarse parameter estimation).

17.
Opt Express ; 30(26): 47421-47429, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558670

ABSTRACT

VO2 is a very promising material due to its semiconductor-metal phase transition, however, the research on fs laser-induced phase transition is still very controversial, which greatly limits its development in ultrafast optics. In this work, the fs laser-induced changes in the optical properties of VO2 films were studied with a variable-temperature Z-scan. At room temperature, VO2 consistently maintained nonlinear absorption properties at laser repetition frequencies below 10 kHz while laser-induced phase transition properties appeared at higher repetition frequencies. It was found by temperature variation experiments at 100 kHz that the modulation depth of the laser-induced VO2 phase transition was consistent with that of the ambient temperature-induced phase transition, which was increased linearly with thickness, further confirming that the phase transition was caused by the accumulation of thermal effects of a high-repetition-frequency laser. The phase transition process is reversible and causes substantial changes in optical properties of the film, which holds significant promise for all-optical switches and related applications.

18.
Hum Genomics ; 15(1): 22, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875006

ABSTRACT

BACKGROUND: Currently, Chlamydia trachomatis-specific host defense mechanisms in humans remain poorly defined. To study the characteristics of host cells infected early with Chlamydia trachomatis, we used bioinformatics methods to analyze the RNA transcription profiles of the conjunctiva, fallopian tubes, and endometrium in humans infected with Chlamydia trachomatis. METHOD: The gene expression profiles of GSE20430, GSE20436, GSE26692, and GSE41075 were downloaded from the Gene Expression Synthesis (GEO) database. Then, we obtained the differentially expressed genes (DEGs) through the R 4.0.1 software. STRING was used to construct protein-protein interaction (PPI) networks; then, the Cytoscape 3.7.2 software was used to visualize the PPI and screen hub genes. GraphPad Prism 8.0 software was used to verify the expression of the hub gene. In addition, the gene-miRNA interaction was constructed on the NetworkAnalyst 3.0 platform using the miRTarBase v8.0 database. RESULTS: A total of 600 and 135 DEGs were screened out in the conjunctival infection group and the reproductive tract infection group, respectively. After constructing a PPI network and verifying the hub genes, CSF2, CD40, and CSF3 in the reproductive tract infection group proved to have considerable statistical significance. CONCLUSION: In our research, the key genes in the biological process of reproductive tract infection with Chlamydia trachomatis were clarified through bioinformatics analysis. These hub genes may be further used in clinical treatment and clinical diagnosis.


Subject(s)
CD40 Antigens/genetics , Chlamydia trachomatis/genetics , Conjunctiva/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Reproductive Tract Infections/genetics , Chlamydia trachomatis/pathogenicity , Computational Biology , Conjunctiva/microbiology , Conjunctiva/parasitology , Fallopian Tubes/metabolism , Fallopian Tubes/microbiology , Fallopian Tubes/pathology , Female , Gene Regulatory Networks/genetics , Host-Pathogen Interactions/genetics , Humans , MicroRNAs/genetics , Protein Interaction Maps/genetics , Reproductive Tract Infections/microbiology , Reproductive Tract Infections/pathology , Signal Transduction/genetics , Software
19.
Hum Genomics ; 15(1): 18, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33726831

ABSTRACT

BACKGROUND: In the novel coronavirus pandemic, the high infection rate and high mortality have seriously affected people's health and social order. To better explore the infection mechanism and treatment, the three-dimensional structure of human bronchus has been employed in a better in-depth study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We downloaded a separate microarray from the Integrated Gene Expression System (GEO) on a human bronchial organoids sample to identify differentially expressed genes (DEGS) and analyzed it with R software. After processing with R software, Gene Ontology (GO) and Kyoto PBMCs of Genes and Genomes (KEGG) were analyzed, while a protein-protein interaction (PPI) network was constructed to show the interactions and influence relationships between these differential genes. Finally, the selected highly connected genes, which are called hub genes, were verified in CytoHubba plug-in. RESULTS: In this study, a total of 966 differentially expressed genes, including 490 upregulated genes and 476 downregulated genes were used. Analysis of GO and KEGG revealed that these differentially expressed genes were significantly enriched in pathways related to immune response and cytokines. We construct protein-protein interaction network and identify 10 hub genes, including IL6, MMP9, IL1B, CXCL8, ICAM1, FGF2, EGF, CXCL10, CCL2, CCL5, CXCL1, and FN1. Finally, with the help of GSE150728, we verified that CXCl1, CXCL8, CXCL10, CCL5, EGF differently expressed before and after SARS-CoV-2 infection in clinical patients. CONCLUSIONS: In this study, we used mRNA expression data from GSE150819 to preliminarily confirm the feasibility of hBO as an in vitro model to further study the pathogenesis and potential treatment of COVID-19. Moreover, based on the mRNA differentiated expression of this model, we found that CXCL8, CXCL10, and EGF are hub genes in the process of SARS-COV-2 infection, and we emphasized their key roles in SARS-CoV-2 infection. And we also suggested that further study of these hub genes may be beneficial to treatment, prognostic prediction of COVID-19.


Subject(s)
Bronchi/virology , COVID-19/genetics , Gene Expression Regulation , Bronchi/physiology , Chemokine CXCL10/genetics , Epidermal Growth Factor/genetics , Host-Pathogen Interactions/genetics , Humans , Interleukin-8/genetics , Organoids , Protein Interaction Maps/genetics , Software
20.
J Nat Prod ; 85(11): 2620-2625, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36318598

ABSTRACT

We report the discovery of talaropeptins A (1) and B (2), tripeptides with an unusual 5/6/5 heterocyclic scaffold and an N-trans-cinnamoyl moiety, which were identified from the marine-derived fungus Talaromyces purpureogenus CX11. A bioinformatic analysis of the genome of T. purpureogenus CX11 and gene inactivation revealed that the biosynthesis of talaropeptins involves a nonribosomal peptide synthase gene cluster. Their chemical structures were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The absolute configurations of 1 and 2 were established by electronic circular dichroism calculations and Marfey's method. The plausible biosynthesis of 1 and 2 is also proposed on the basis of gene deletion, substrate feeding, and heterologous expression. Compounds 1 and 2 showed moderate antifungal activity against phytopathogenic fungus Fusarium oxysporum with MIC values of 12.5 and 25 µg/mL, respectively.


Subject(s)
Antifungal Agents , Oligopeptides , Talaromyces , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Circular Dichroism , Magnetic Resonance Spectroscopy , Molecular Structure , Talaromyces/chemistry , Oligopeptides/chemistry , Oligopeptides/isolation & purification , Oligopeptides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL