Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38724452

ABSTRACT

AIM: Biotechnical processes in Escherichia coli often operate with artificial plasmids. However, these bioprocesses frequently encounter plasmid loss. To ensure stable expression of heterologous genes in E. coli BL21(DE3), a novel plasmid addiction system (PAS) was developed. METHODS AND RESULTS: This PAS employed an essential gene grpE encoding a cochaperone in the DnaK-DnaJ-GrpE chaperone system as the selection marker, which represented a chromosomal ΔgrpE mutant harboring episomal expression plasmids that carry supplementary grpE alleles to restore the deficiency. To demonstrate the feasibility of this system, it was implemented in phloroglucinol (PG) biosynthesis, manifesting improved host tolerance to PG and increased PG production. Specifically, PG titer significantly improved from 0.78 ± 0.02 to 1.34 ± 0.04 g l-1, representing a 71.8% increase in shake-flask fermentation. In fed-batch fermentation, the titer increased from 3.71 ± 0.11 to 4.54 ± 0.10 g l-1, showing a 22.4% increase. RNA sequencing and transcriptome analysis revealed that the improvements were attributed to grpE overexpression and upregulation of various protective chaperones and the biotin acetyl-CoA carboxylase ligase coding gene birA. CONCLUSION: This novel PAS could be regarded as a typical example of nonanabolite- and nonmetabolite-related PAS. It effectively promoted plasmid maintenance in the host, improved tolerance to PG, and increased the titer of this compound.


Subject(s)
Escherichia coli Proteins , Heat-Shock Proteins , Phloroglucinol , Plasmids , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fermentation , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Phloroglucinol/metabolism , Phloroglucinol/analogs & derivatives , Plasmids/genetics
2.
Microb Cell Fact ; 21(1): 166, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35986320

ABSTRACT

Confronted with the exhaustion of the earth's fossil fuel reservoirs, bio-based process to produce renewable energy is receiving significant interest. Hydrogen is considered as an attractive energy carrier that can replace fossil fuels in the future mainly due to its high energy content, recyclability and environment-friendly nature. Biological hydrogen production from renewable biomass or waste materials by dark fermentation is a promising alternative to conventional routes since it is energy-saving and reduces environmental pollution. However, the current yield and evolution rate of fermentative hydrogen production are still low. Strain improvement of the microorganisms employed for hydrogen production is required to make the process competitive with traditional production methods. The present review summarizes recent progresses on the screening for highly efficient hydrogen-producing strains using various strategies. As the metabolic pathways for fermentative hydrogen production have been largely resolved, it is now possible to engineer the hydrogen-producing strains by rational design. The hydrogen yields and production rates by different genetically modified microorganisms are discussed. The key limitations and challenges faced in present studies are also proposed. We hope that this review can provide useful information for scientists in the field of fermentative hydrogen production.


Subject(s)
Hydrogen , Renewable Energy , Biomass , Fermentation , Hydrogen/metabolism , Waste Products
3.
Microb Cell Fact ; 20(1): 6, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413404

ABSTRACT

BACKGROUND: The majority of microbial fermentations are currently performed in the batch or fed-batch manner with the high process complexity and huge water consumption. The continuous microbial production can contribute to the green sustainable development of the fermentation industry. The co-culture systems of photo-autotrophic and heterotrophic species can play important roles in establishing the continuous fermentation mode for the bio-based chemicals production. RESULTS: In the present paper, the co-culture system of Synechococcus elongates-Escherichia coli was established and put into operation stably for isoprene production. Compared with the axenic culture, the fermentation period of time was extended from 100 to 400 h in the co-culture and the isoprene production was increased to eightfold. For in depth understanding this novel system, the differential omics profiles were analyzed. The responses of BL21(DE3) to S. elongatus PCC 7942 were triggered by the oxidative pressure through the Fenton reaction and all these changes were linked with one another at different spatial and temporal scales. The oxidative stress mitigation pathways might contribute to the long-lasting fermentation process. The performance of this co-culture system can be further improved according to the fundamental rules discovered by the omics analysis. CONCLUSIONS: The isoprene-producing co-culture system of S. elongates-E. coli was established and then analyzed by the omics methods. This study on the co-culture system of the model S. elongates-E. coli is of significance to reveal the common interactions between photo-autotrophic and heterotrophic species without natural symbiotic relation, which could provide the scientific basis for rational design of microbial community.


Subject(s)
Butadienes/metabolism , Escherichia coli/metabolism , Hemiterpenes/metabolism , Metabolome , Proteome/analysis , Synechococcus/metabolism , Transcriptome , Coculture Techniques , Escherichia coli/genetics , Escherichia coli/growth & development , Proteome/metabolism , Synechococcus/genetics , Synechococcus/growth & development
4.
Biotechnol Lett ; 42(4): 633-640, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31965395

ABSTRACT

OBJECTIVES: Acetyl-CoA is a precursor for phloroglucinol (PG), and pyruvate is one of the sources of intracellular acetyl-CoA. Therefore, enhancing intracellular pyruvate levels may help to improve the anabolic pathway of PG. RESULTS: In this study, the effects of phosphoenolpyruvate carboxykinase (PckA, encoded by pckA) or triosephosphate isomerase (TpiA, encoded by tpiA) overexpression on the production of PG were studied. Overexpression of pckA or tpiA could enhance the pyruvate anabolic pathway in shake-flask culture compared to the control strain, and the concentration of PG also increased by 44% and 92%, respectively. In addition, the acetate levels were all down regulated by the overexpression of the two genes to some extent and lower acetate level resulted in lower ATP pool and higher survival rate. CONCLUSIONS: These results indicate that overexpression of pckA or tpiA can enhance the pyruvate "pool" and PG production in Escherichia coli, which provides a new reference for further increasing the production of PG.


Subject(s)
Escherichia coli/growth & development , Phloroglucinol/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Pyruvic Acid/metabolism , Triose-Phosphate Isomerase/metabolism , Batch Cell Culture Techniques/instrumentation , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fermentation , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Plasmids/genetics , Transformation, Bacterial , Triose-Phosphate Isomerase/genetics
5.
Microb Cell Fact ; 18(1): 39, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30782155

ABSTRACT

Microbial fuel cell (MFC) is an environmentally friendly technology for electricity harvesting from a variety of substrates. Microorganisms used as catalysts in the anodic chamber, which are termed as electricigens, play a major role in the operation of MFCs. This review provides an introduction to the currently identified electricigens on their taxonomical groups and electricity producing abilities. The mechanism of electron transfer from electricigens to electrode is highlighted. The performances of pure culture and mixed communities are compared particularly. It has been proved that the electricity generation capacity and the ability to adapt to the complex environment of MFC systems constructed by pure microbial cultures are less than the systems constructed by miscellaneous consortia. However, pure cultures are useful to clarify the electron transfer mechanism at the microbiological level and further reduce the complexity of mixed communities. Future research trends of electricigens in MFCs should be focused on screening, domestication, modification and optimization of multi-strains to improve their electrochemical activities. Although the MFC techniques have been greatly advanced during the past few years, the present state of this technology still requires to be combined with other processes for cost reduction.


Subject(s)
Bioelectric Energy Sources/microbiology , Electrodes , Biofilms , Catalysis , Electricity , Electron Transport
6.
Appl Microbiol Biotechnol ; 103(6): 2597-2608, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30719552

ABSTRACT

The biosynthesis of isoprene by microorganisms is a promising green route. However, the yield of isoprene is limited due to the generation of excess NAD(P)H via the mevalonate (MVA) pathway, which converts more glucose into CO2 or undesired reduced by-products. The production of 1,3-propanediol (1,3-PDO) from glycerol is a typical NAD(P)H-consuming process, which restricts 1,3-PDO yield to ~ 0.7 mol/mol. In this study, we propose a strategy of redox cofactor balance by coupling the production of isoprene with 1,3-PDO fermentation. With the introduction and optimization of the dual pathways in an engineered Escherichia coli, ~ 85.2% of the excess NADPH from isoprene pathway was recycled for 1,3-PDO production. The best strain G05 simultaneously produced 665.2 mg/L isoprene and 2532.1 mg/L 1,3-PDO under flask fermentation conditions. The yields were 0.3 mol/mol glucose and 1.0 mol/mol glycerol, respectively, showing 3.3- and 4.3-fold improvements relative to either pathway independently. Since isoprene is a volatile organic compound (VOC) whereas 1,3-PDO is separated from the fermentation broth, their coproduction process does not increase the complexity or cost for the separation from each other. Hence, the presented strategy will be especially useful for developing efficient biocatalysts for other biofuels and biochemicals, which are driven by cofactor concentrations.


Subject(s)
Coenzymes/metabolism , Escherichia coli/metabolism , Hemiterpenes/biosynthesis , Metabolic Engineering , Propylene Glycols/metabolism , Biosynthetic Pathways , Butadienes , Enzymes , Escherichia coli/genetics , Fermentation , Glucose/metabolism , Glycerol/metabolism , Mevalonic Acid/metabolism , NADP/metabolism , Oxidation-Reduction
7.
Appl Microbiol Biotechnol ; 102(4): 1535-1544, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29264773

ABSTRACT

Sabinene is an important naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Up to now, this valuable terpene is commercially unavailable since there is no applicable manufacturing process. Microbial synthesis can be a promising route for sabinene production. In this review, we summarize knowledge about the metabolic pathway and key enzymes for sabinene biosynthesis. Recent advances that have been made in production of sabinene by microbial fermentation are highlighted. In these studies, researchers have identified the general synthetic pathway of sabinene from simple intermediate metabolites. Sabinene synthases of different origins were also cloned and characterized. Additionally, heterologous systems of the model microbes Escherichia coli and Saccharomyces cerevisiae were constructed to produce sabinene. This review also suggests new directions and attempts to gain some insights for achieving an industrial level production of sabinene. The combination of traditional molecular biology with new genome and proteome analysis tools will provide a better view of sabinene biosynthesis and a greater potential of microbial production.


Subject(s)
Biosynthetic Pathways , Escherichia coli/metabolism , Monoterpenes/metabolism , Saccharomyces cerevisiae/metabolism , Bicyclic Monoterpenes , Escherichia coli/genetics , Industrial Microbiology/methods , Metabolic Engineering/methods , Saccharomyces cerevisiae/genetics
8.
BMC Biotechnol ; 17(1): 66, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28789688

ABSTRACT

BACKGROUND: Phloroglucinol is an important chemical, and the biosynthesis processes which can convert glucose to phloroglucinol have been established. However, due to approximate 80% of the glucose being transformed into undesirable by-products and biomass, this biosynthesis process only shows a low yield with the highest value of about 0.20 g/g. The industrial applications are usually hindered by the low current productivity and yield and also by the high costs. Generally, several different aspects limit the development of phloroglucinol biosynthesis. The yield of phloroglucinol is one of the most important parameters for its bioconversion especially from economic and ecological points of view. The in vitro biosynthesis of bio-based chemicals, is a flexible alternative with potentially high-yield to in vivo biosynthetic technology. RESULTS: By comparing the activity of acetyl-CoA synthetase (ACS) from Escherichia coli and Acetobacter pasteurianus, the highly active ACS2 was identified in A. pasteurianus. Acetyl-CoA carboxylase (ACC) from Acinetobacter calcoaceticus and phloroglucinol synthase (PhlD) from Pseudomonas fluorescens pf-5 were expressed and purified. Acetate was successfully transformed into phloroglucinol by the combined activity of above-mentioned enzymes and required cofactor. After optimization of the in vitro reaction system, phloroglucinol was then produced with a yield of nearly 0.64 g phloroglucinol/g acetic acid, which was equal to 91.43% of the theoretically possible maximum. CONCLUSIONS: In this work, a novel in vitro synthetic system for a highly efficient production of phloroglucinol from acetate was demonstrated. The system's performance suggests that in vitro synthesis of phloroglucinol has some advantages and is potential to become a feasible industrial alternative. Based on the results presented herewith, it is believed that in vitro biosystem will provide a feasible option for production of important industrial chemicals from acetate, which could work as a versatile biosynthetic platform.


Subject(s)
Acetates/metabolism , Acetobacter/enzymology , Acetyl-CoA Carboxylase/metabolism , Biotechnology/methods , Phloroglucinol/metabolism , Acetyl-CoA Carboxylase/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Kinetics , Pseudomonas fluorescens/enzymology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
9.
Microb Cell Fact ; 16(1): 227, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29258595

ABSTRACT

BACKGROUND: Phloroglucinol is an important chemical which has been successfully produced by engineered Escherichia coli. However, the toxicity of phloroglucinol can enormously inhibit E. coli cell growth and viability, and the productivity is still too low and not economically feasible for industrial applications. Therefore, strain tolerance to toxic metabolites remains a key issue during the production of chemicals using biological processes. RESULTS: In the present work, we examined the impact of the native GroESL chaperone system with different overexpression levels on phloroglucinol tolerance and production in E. coli. The groESL gene was cloned into an expression vector, of which expression level was regulated by three different promoters (natural, tac and T7 promoter). Strain tolerance was evaluated employing viable cell counts and phloroglucinol production. In comparison with the control strain, all GroESL overexpressing strains showed good characteristics in cell viability and phloroglucinol synthesis. Strain which overexpressed GroESL under tac promoter was found to show the best tolerance in all of those tested, resulting in a 3.19-fold increase in viable cell numbers compared with control strain of agar-plate culture under the condition of 0.7 g/L phloroglucinol, and a 39.5% increase in phloroglucinol production under fed-batch fermentation. This engineered strain finally accumulated phloroglucinol up to 5.3 g/L in the fed-batch cultivation 10 h after induction, and the productivity was 0.53 g/L/h. To date, the highest phloroglucinol production was achieved in this work compared with the previous reports, which is promising to make the bioprocess feasible from the economical point. CONCLUSIONS: The data show that appropriate expression level of GroESL plays a critical role in improving phloroglucinol tolerance and production in E. coli, and maybe involve in controlling some aspects of the stress response system through upregulation of GroESL. GroESL overexpression is therefore a feasible and efficient approach for improvement of E. coli tolerance.


Subject(s)
Bacterial Proteins/genetics , Chaperonins/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Phloroglucinol/metabolism , Bacterial Proteins/metabolism , Chaperonins/metabolism , Escherichia coli Proteins/metabolism , Fermentation , Metabolic Engineering , Promoter Regions, Genetic
10.
Appl Microbiol Biotechnol ; 101(2): 521-532, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28012046

ABSTRACT

As the most abundant biomass in nature, cellulose is considered to be an excellent feedstock to produce renewable fuels and fine chemicals. Due to its hydrogen-bonded supramolecular structure, cellulose is hardly soluble in water and most conventional organic solvents, limiting its further applications. The emergence of ionic liquids (ILs) provides an environmentally friendly, biodegradable solvent system to dissolve cellulose. This review summarizes recent advances concerning imidazolium-based ILs for cellulose pretreatment. The structure of cations and anions which has an influence on the solubility is emphasized. Methods to assist cellulose pretreatment with ILs are discussed. The state of art of the recovery, regeneration, and reuse aspects of ILs is also presented in this work. The current challenges and development directions of cellulose dissolution in ILs are put forward. Although further studies are still much required, commercialization of IL-based processes has made great progress in recent years.


Subject(s)
Cellulose/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Solvents/chemistry , Solubility
11.
BMC Biotechnol ; 16: 26, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26956722

ABSTRACT

BACKGROUND: Hydroxy fatty acids (HFAs) are valuable chemicals for a broad variety of applications. However, commercial production of HFAs has not been established so far due to the lack of low cost routes for their synthesis. Although the microbial transformation pathway of HFAs was extensively studied decades ago, these attempts mainly focused on converting fatty acids or vegetable oils to their hydroxyl counterparts. The use of a wider range of feedstocks to produce HFAs would reduce the dependence on oil crops and be expected to cut down the manufacturing cost. RESULTS: In this study, the industrially important microorganism Escherichia coli was engineered to produce HFAs directly from glucose. Through the coexpression of the acetyl-CoA carboxylase (ACCase) and the leadless acyl-CoA thioesterase ('TesA), and knockout of the endogenous acyl-CoA synthetase (FadD), an engineered E. coli strain was constructed to efficiently synthesize free fatty acids (FFAs). Under shake-flask conditions, 244.8 mg/L of FFAs were obtained by a 12 h induced culture. Then the fatty acid hydroxylase (CYP102A1) from Bacillus megaterium was introduced into this strain and high-level production of HFAs was achieved. The finally engineered strain BL21ΔfadD/pE-A1'tesA&pA-acc accumulated up to 58.7 mg/L of HFAs in the culture broth. About 24 % of the FFAs generated by the thioesterase were converted to HFAs. Fatty acid composition analysis showed that the HFAs mainly consisted of 9-hydroxydecanoic acid (9-OH-C10), 11-hydroxydodecanoic acid (11-OH-C12), 10-hydroxyhexadecanoic acid (10-OH-C16) and 12-hydroxyoctadecanoic acid (12-OH-C18). Fed-batch fermentation of this strain further increased the final titer of HFAs to 548 mg/L. CONCLUSIONS: A robust HFA-producing strain was successfully constructed using glucose as the feedstock, which demonstrated a novel strategy for bioproduction of HFAs. The results of this work suggest that metabolically engineered E. coli has the potential to be a microbial cell factory for large-scale production of HFAs.


Subject(s)
Escherichia coli/metabolism , Fatty Acids/metabolism , Glucose/metabolism , Metabolic Engineering/methods , Acetyl-CoA Carboxylase/chemistry , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Escherichia coli/genetics , Fermentation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
12.
BMC Biotechnol ; 16(1): 61, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27557638

ABSTRACT

BACKGROUND: Diols are important monomers for the production of plastics and polyurethanes, which are widely used in our daily life. The medium-chain diols with one hydroxyl group at its subterminal end are able to confer more flexibility upon the synthesized materials. But unfortunately, this type of diols has not been synthesized so far. The strong need for advanced materials impelled us to develop a new strategy for the production of these novel diols. In this study, we use the remodeled P450BM3 for high-specificity production of 1,7-decanediol. RESULTS: The native P450BM3 was capable of converting medium-chain alcohols into corresponding α, ω1-, α, ω2- and α, ω3-diols, with each of them accounting for about one third of the total diols, but it exhibited a little or no activity on the short-chain alcohols. Greatly improved regiospecificity of alcohol hydroxylation was obtained by laboratory evolution of P450BM3. After substitution of 12 amino acid residues (J2-F87A), the ratio of 1,7-decanediol (ω-3 hydroxylation) to total decanediols increased to 86.8 % from 34.0 %. Structure modeling and site-directed mutagenesis demonstrated that the heme end residues such as Ala(78), Phe(87) and Arg(255) play a key role in controlling the regioselectivity of the alcohol hydroxylation, while the residues at the mouth of substrate binding site is not responsible for the regioselectivity. CONCLUSIONS: Herein we employ an engineered P450BM3 for the first time to enable the high-specificity biosynthesis of 1,7-decanediol, which is a promising monomer for the development of advanced materials. Several key amino acid residues that control the regioselectivity of alcohol hydroxylation were identified, providing some new insights into how to improve the regiospecificity of alcohol hydroxylation. This report not only provides a good strategy for the biosynthesis of 1,7-decanediol, but also gives a promising approach for the production of other useful diols.


Subject(s)
Alcohols/chemistry , Bacterial Proteins/chemistry , Cytochrome P-450 Enzyme System/chemistry , Glycols/chemical synthesis , Mixed Function Oxygenases/chemistry , NADPH-Ferrihemoprotein Reductase/chemistry , Computer Simulation , Enzyme Activation , Hydroxyl Radical , Models, Chemical , Models, Molecular , Protein Engineering/methods , Substrate Specificity
13.
Prep Biochem Biotechnol ; 46(6): 552-8, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-26460683

ABSTRACT

Spider dragline silk is a remarkably strong fiber with impressive mechanical properties, which were thought to result from the specific structures of the underlying proteins and their molecular size. In this study, silk protein 11R26 from the dragline silk protein of Nephila clavipes was used to analyze the potential effects of the special amino acids on the function of 11R26. Three protein derivatives, ZF4, ZF5, and ZF6, were obtained by site-directed mutagenesis, based on the sequence of 11R26, and among these derivatives, serine was replaced with cysteine, isoleucine, and arginine, respectively. After these were expressed and purified, the mechanical performance of the fibers derived from the four proteins was tested. Both hardness and average elastic modulus of ZF4 fiber increased 2.2 times compared with those of 11R26. The number of disulfide bonds in ZF4 protein was 4.67 times that of 11R26, which implied that disulfide bonds outside the poly-Ala region affect the mechanical properties of spider silk more efficiently. The results indicated that the mechanical performances of spider silk proteins with small molecular size can be enhanced by modification of the amino acids residues. Our research not only has shown the feasibility of large-scale production of spider silk proteins but also provides valuable information for protein rational design.


Subject(s)
Amino Acids/chemistry , Insect Proteins/biosynthesis , Materials Testing , Silk/metabolism , Amino Acid Sequence , Animals , Disulfides/chemistry , Elasticity , Fermentation , Insect Proteins/chemistry , Insect Proteins/metabolism , Microscopy, Electron , Spiders
14.
Microb Cell Fact ; 13: 20, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24512040

ABSTRACT

BACKGROUND: Sabinene, one kind of monoterpene, accumulated limitedly in natural organisms, is being explored as a potential component for the next generation of aircraft fuels. And demand for advanced fuels impels us to develop biosynthetic routes for the production of sabinene from renewable sugar. RESULTS: In this study, sabinene was significantly produced by assembling a biosynthetic pathway using the methylerythritol 4-phosphate (MEP) or heterologous mevalonate (MVA) pathway combining the GPP and sabinene synthase genes in an engineered Escherichia coli strain. Subsequently, the culture medium and process conditions were optimized to enhance sabinene production with a maximum titer of 82.18 mg/L. Finally, the fed-batch fermentation of sabinene was evaluated using the optimized culture medium and process conditions, which reached a maximum concentration of 2.65 g/L with an average productivity of 0.018 g h⁻¹ g⁻¹ dry cells, and the conversion efficiency of glycerol to sabinene (gram to gram) reached 3.49%. CONCLUSIONS: This is the first report of microbial synthesis of sabinene using an engineered E. coli strain with the renewable carbon source as feedstock. Therefore, a green and sustainable production strategy has been established for sabinene.


Subject(s)
Biofuels , Monoterpenes/metabolism , Terpenes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Batch Cell Culture Techniques , Bicyclic Monoterpenes , Biosynthetic Pathways/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gas Chromatography-Mass Spectrometry , Genetic Engineering , Monoterpenes/chemistry , Multigene Family , Plasmids/genetics , Plasmids/metabolism , Terpenes/chemistry
15.
Appl Microbiol Biotechnol ; 97(8): 3323-31, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23494626

ABSTRACT

Hydroxy fatty acids (HFAs) are very important chemicals for versatile applications in biodegradable polymer materials and cosmetic and pharmaceutical industries. They are difficult to be synthesized via chemical routes due to the inertness of the fatty acyl chain. In contrast, these fatty acids make up a major class of natural products widespread among bacteria, yeasts, and fungi. A number of microorganisms capable of producing HFAs from fatty acids or vegetable oils have been reported. Therefore, HFAs could be produced by biotechnological strategies, especially by microbial conversion processes. Microorganisms could oxidize fatty acids either at the terminal carbon or inside the acyl chain to produce various HFAs, including α-HFAs, ß-HFAs, mid-position HFAs, ω-HFAs, di-HFAs, and tri-HFAs. The enzymes and their encoded genes responsible for the hydroxylation of the carbon chain have been identified and characterized during the past few years. The involved microbes and catalytic mechanisms for the production of different types of HFAs are systematically demonstrated in this review. It provides a better view of HFA biosynthesis and lays the foundation for further industrial production.


Subject(s)
Bacteria/metabolism , Biotechnology/methods , Fatty Acids/metabolism , Fungi/metabolism , Hydroxy Acids/metabolism , Bacteria/genetics , Biotransformation , Fungi/genetics , Metabolic Networks and Pathways/genetics
16.
Appl Microbiol Biotechnol ; 97(12): 5423-31, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23271670

ABSTRACT

Traditional temperature-sensitive systems use either heat shock (40-42 °C) or cold shock (15-23 °C) to induce gene expression at temperatures that are not the optimal temperature for host cell growth (37 °C). This impacts the overall productivity and yield by disturbing cell growth and cellular metabolism. Here, we have developed a new system which controls gene expression in Escherichia coli at more permissive temperatures. The temperature-sensitive cI857-P L system and the classic lacI-P lacO system were connected in series to control the gene of interest. When the culture temperature was lowered, the thermolabile cI857 repressor was activated and blocked the expression of lacI from P L. Subsequently, the decrease of LacI derepressed the expression of gene of interest from P lacO . Using a green fluorescent protein marker, we demonstrated that (1) gene expression was tightly regulated at 42 °C and strongly induced by lowering temperature to 25-37 °C; (2) different levels of gene expression can be induced by varying culture temperature; and (3) gene expression after induction was sustained until the end of the log phase. We then applied this system in the biosynthesis of acetoin and demonstrated that high yield and production could be achieved using temperature induction. The ability to express proteins at optimal growth temperatures without chemical inducers is advantageous for large-scale and industrial fermentations.


Subject(s)
Biotechnology/methods , Escherichia coli/genetics , Gene Expression , Genetics, Microbial/methods , Transcriptional Activation , Acetoin/metabolism , Escherichia coli/metabolism , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Promoter Regions, Genetic , Temperature
17.
Food Chem ; 424: 136389, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37209437

ABSTRACT

The antioxidant activity of corn peptides is related to their molecular weight and structure. Corn gluten meal (CGM) was hydrolyzed using a combination of Alcalase, Flavorzyme and Protamex, and the hydrolysates were subjected to antioxidant activity analysis after further fractionation. Corn peptides with molecular weights less than 1 kDa (CPP1) exhibited excellent antioxidant activity. A novel peptide, Arg-Tyr-Leu-Leu (RYLL), was identified from CPP1. RYLL displayed preferable scavenging capacities for ABTS radicals and DPPH radicals, with IC50 values of 0.122 mg/ml and 0.180 mg/ml, respectively. Based on quantum calculations, RYLL had multiple antioxidant active sites, and tyrosine was the main active site due to the highest energy of the highest occupied molecular orbit (HOMO). Moreover, the simple peptide structure and hydrogen bond network of RYLL contributed to the exposure of the active site. This study elucidated the antioxidant mechanism of corn peptides, which could provide an understanding for CGM hydrolysates as natural antioxidants.


Subject(s)
Antioxidants , Glutens , Antioxidants/chemistry , Glutens/chemistry , Zea mays/chemistry , Hydrolysis , Peptides/chemistry , Protein Hydrolysates/chemistry
18.
J Agric Food Chem ; 71(50): 20167-20176, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38088131

ABSTRACT

Biocatalysis has advantages in asymmetric synthesis due to the excellent stereoselectivity of enzymes. The present study established an efficient biosynthesis pathway for optically pure (S)-3-hydroxy-γ-butyrolactone [(S)-3HγBL] production using engineered Escherichia coli. We mimicked the 1,2,4-butanetriol biosynthesis route and constructed a five-step pathway consisting of d-xylose dehydrogenase, d-xylonolactonase, d-xylonate dehydratase, 2-keto acid decarboxylase, and aldehyde dehydrogenase. The engineered strain harboring the five enzymes could convert d-xylose to 3HγBL with glycerol as the carbon source. Stereochemical analysis by chiral GC proved that the microbially synthesized product was a single isomer, and the enantiomeric excess (ee) value reached 99.3%. (S)-3HγBL production was further enhanced by disrupting the branched pathways responsible for d-xylose uptake and intermediate reduction. Fed-batch fermentation of the best engineered strain showed the highest (S)-3HγBL titer of 3.5 g/L. The volumetric productivity and molar yield of (S)-3HγBL on d-xylose reached 50.6 mg/(L·h) and 52.1%, respectively. The final fermentation product was extracted, purified, and confirmed by NMR. This process utilized renewable d-xylose as the feedstock and offered an alternative approach for the production of the valuable chemical.


Subject(s)
Escherichia coli , Xylose , Escherichia coli/genetics , Escherichia coli/metabolism , Xylose/metabolism , Metabolic Engineering , Biosynthetic Pathways , Fermentation
19.
Appl Microbiol Biotechnol ; 93(2): 487-95, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22101786

ABSTRACT

Phloroglucinol derivatives are a major class of secondary metabolites of wide occurrence in biological systems. In the bacteria kingdom, these compounds can only be synthesized by some species of Pseudomonads. Pseudomonas spp. could produce 2,4-diacetylphloroglucinol (DAPG) that plays an important role in the biological control of many plant pathogens. In this review, we summarize knowledge about synthesis of phloroglucinol compounds based on the DAPG biosynthetic pathway. Recent advances that have been made in understanding phloroglucinol compound biosynthesis and regulation are highlighted. From these studies, researchers have identified the biosynthesis pathway of DAPG. Most of the genes involved in the biosynthesis pathway have been cloned and characterized. Additionally, heterologous systems of the model microorganism Escherichia coli are constructed to produce phloroglucinol. Although further work is still required, a full understanding of phloroglucinol compound biosynthesis is almost within reach. This review also suggests new directions and attempts to gain some insights for better understanding of the biosynthesis and regulation of DAPG. The combination of traditional biochemistry and molecular biology with new systems biology and synthetic biology tools will provide a better view of phloroglucinol compound biosynthesis and a greater potential of microbial production.


Subject(s)
Biosynthetic Pathways/genetics , Escherichia coli/metabolism , Pseudomonas/metabolism , Escherichia coli/genetics , Metabolic Engineering , Phloroglucinol/analogs & derivatives , Phloroglucinol/metabolism , Pseudomonas/genetics
20.
Front Bioeng Biotechnol ; 10: 881326, 2022.
Article in English | MEDLINE | ID: mdl-35769103

ABSTRACT

Fluoride plays an important role in the fields of materials and medicine. Compared with chemical synthesis, fluorinases are natural catalysts with more application potential, which provide a green and effective way to obtain organofluorine. However, the application of fluorinases is limited by certain factors, such as the limited number of enzymes and their low activity. In this work, two new fluorinases from Amycolatopsis sp. CA-128772 and Methanosaeta sp. PtaU1.Bin055 were identified by gene mining and named Fam and Fme, respectively. The activities of these two enzymes were reported for the first time, and Fme showed good thermal stability, which was different from the reported fluorinases. In addition, the activity toward natural substrate of Fam was improved by site-directed mutagenesis, the catalytic efficiency (k cat /K m ) of the best mutant containing two amino acid substitutions (T72A and S164G) toward the substrate S-adenosyl-L-methionine was improved by 2.2-fold compared to the wild-type. Structural modeling analysis revealed that the main reason for the increased enzyme activity might be the formation of a new substrate channel. Experimental evidence suggests that the substrate channel may indeed play a key role in regulating the function of the fluorinases.

SELECTION OF CITATIONS
SEARCH DETAIL