Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Bioorg Med Chem Lett ; 25(6): 1196-205, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25686852

ABSTRACT

The design, synthesis and structure-activity relationships of a novel series of 3,4-disubstituted pyrrolidine acid analogs as PPAR ligands is outlined. In both the 1,3- and 1,4-oxybenzyl pyrrolidine acid series, the preferred stereochemistry was shown to be the cis-3R,4S isomer, as exemplified by the potent dual PPARα/γ agonists 3k and 4i. The N-4-trifluoromethyl-pyrimidinyl pyrrolidine acid analog 4i was efficacious in lowering fasting glucose and triglyceride levels in diabetic db/db mice.


Subject(s)
Hypoglycemic Agents/chemical synthesis , PPAR alpha/agonists , PPAR gamma/agonists , Pyrrolidines/chemistry , Animals , Blood Glucose/analysis , Diabetes Mellitus, Type 2/drug therapy , Drug Design , Female , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Ligands , Mice , Mice, Obese , PPAR alpha/metabolism , PPAR gamma/metabolism , Pyrrolidines/chemical synthesis , Pyrrolidines/therapeutic use , Stereoisomerism , Structure-Activity Relationship , Triglycerides/blood
2.
J Med Chem ; 65(5): 4291-4317, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35179904

ABSTRACT

Glucokinase (GK) is a key regulator of glucose homeostasis, and its small-molecule activators represent a promising opportunity for the treatment of type 2 diabetes. Several GK activators have been advanced into clinical trials and have demonstrated promising efficacy; however, hypoglycemia represents a key risk for this mechanism. In an effort to mitigate this hypoglycemia risk while maintaining the efficacy of the GK mechanism, we have investigated a series of amino heteroaryl phosphonate benzamides as ''partial" GK activators. The structure-activity relationship studies starting from a "full GK activator" 11, which culminated in the discovery of the "partial GK activator" 31 (BMS-820132), are discussed. The synthesis and in vitro and in vivo preclinical pharmacology profiles of 31 and its pharmacokinetics (PK) are described. Based on its promising in vivo efficacy and preclinical ADME and safety profiles, 31 was advanced into human clinical trials.


Subject(s)
Azetidines , Diabetes Mellitus, Type 2 , Hypoglycemia , Organophosphonates , Azetidines/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Glucokinase , Humans , Hypoglycemia/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Organophosphonates/pharmacology , Organophosphonates/therapeutic use
3.
Bioorg Med Chem Lett ; 21(22): 6646-51, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21996520

ABSTRACT

Design, synthesis, and SAR of 7-oxopyrrolopyridine-derived DPP4 inhibitors are described. The preferred stereochemistry of these atropisomeric biaryl analogs has been identified as Sa. Compound (+)-3t, with a K(i) against DPP4, DPP8, and DPP9 of 0.37 nM, 2.2, and 5.7 µM, respectively, showed a significant improvement in insulin response after single doses of 3 and 10 µmol/kg in ob/ob mice.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Ether-A-Go-Go Potassium Channels/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Animals , Catalytic Domain , Diabetes Mellitus/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/pharmacokinetics , Humans , Insulin/blood , Insulin/metabolism , Mice , Mice, Inbred C57BL , Models, Molecular , Pyridines/pharmacokinetics , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Stereoisomerism
4.
Bioorg Med Chem Lett ; 19(5): 1451-6, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19201606

ABSTRACT

The design, synthesis and structure-activity relationships of a novel series of N-phenyl-substituted pyrrole, 1,2-pyrazole and 1,2,3-triazole acid analogs as PPAR ligands are outlined. The triazole acid analogs 3f and 4f were identified as potent dual PPARalpha/gamma agonists both in binding and functional assays in vitro. The 3-oxybenzyl triazole acetic acid analog 3f showed excellent glucose and triglyceride lowering in diabetic db/db mice.


Subject(s)
Azoles/chemical synthesis , Drug Design , PPAR alpha/agonists , PPAR gamma/agonists , Animals , Azoles/pharmacology , Cell Line/enzymology , Crystallography, X-Ray , Female , Humans , Hydrogen-Ion Concentration , Mice , Mice, Transgenic , PPAR alpha/metabolism , PPAR gamma/metabolism , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 18(6): 1939-44, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18291645

ABSTRACT

A novel class of azetidinone acid-derived dual PPARalpha/gamma agonists has been synthesized for the treatment of diabetes and dyslipidemia. The preferred stereochemistry in this series for binding and functional agonist activity against both PPARalpha and PPARgamma receptors was shown to be 3S,4S. Synthesis, in vitro and in vivo activities of compounds in this series are described. A high-yielding method for N-arylation of azetidinone esters is also described.


Subject(s)
Azetidines/chemistry , Azetidines/pharmacology , PPAR alpha/agonists , PPAR gamma/agonists , Administration, Oral , Animals , Azetidines/chemical synthesis , Biological Availability , Copper/pharmacology , Crystallography, X-Ray , Cytochrome P-450 Enzyme Inhibitors , Diabetes Mellitus, Experimental/drug therapy , Dyslipidemias/drug therapy , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/metabolism , Glucose/metabolism , Mice , Mice, Mutant Strains , Molecular Structure , PPAR alpha/metabolism , PPAR gamma/metabolism , Protein Conformation , Stereoisomerism , Structure-Activity Relationship , Triglycerides/blood
6.
Diabetes ; 55(1): 240-8, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16380499

ABSTRACT

Muraglitazar, a novel dual (alpha/gamma) peroxisome proliferator-activated receptor (PPAR) activator, was investigated for its antidiabetic properties and its effects on metabolic abnormalities in genetically obese diabetic db/db mice. In db/db mice and normal mice, muraglitazar treatment modulates the expression of PPAR target genes in white adipose tissue and liver. In young hyperglycemic db/db mice, muraglitazar treatment (0.03-50 mg . kg(-1) . day(-1) for 2 weeks) results in dose-dependent reductions of glucose, insulin, triglycerides, free fatty acids, and cholesterol. In older hyperglycemic db/db mice, longer-term muraglitazar treatment (30 mg . kg(-1) . day(-1) for 4 weeks) prevents time-dependent deterioration of glycemic control and development of insulin deficiency. In severely hyperglycemic db/db mice, muraglitazar treatment (10 mg . kg(-1) . day(-1) for 2 weeks) improves oral glucose tolerance and reduces plasma glucose and insulin levels. In addition, treatment increases insulin content in the pancreas. Finally, muraglitazar treatment increases abnormally low plasma adiponectin levels, increases high-molecular weight adiponectin complex levels, reduces elevated plasma corticosterone levels, and lowers elevated liver lipid content in db/db mice. The overall conclusions are that in db/db mice, the novel dual (alpha/gamma) PPAR activator muraglitazar 1) exerts potent and efficacious antidiabetic effects, 2) preserves pancreatic insulin content, and 3) improves metabolic abnormalities such as hyperlipidemia, fatty liver, low adiponectin levels, and elevated corticosterone levels.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glycine/analogs & derivatives , Hypoglycemic Agents/therapeutic use , Insulin-Secreting Cells/drug effects , Oxazoles/therapeutic use , Peroxisome Proliferator-Activated Receptors/agonists , Adiponectin/blood , Animals , Blood Glucose/drug effects , Corticosterone/blood , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diet , Female , Glycine/pharmacology , Glycine/therapeutic use , Hyperlipidemias/drug therapy , Hypoglycemic Agents/pharmacology , Insulin/blood , Insulin-Secreting Cells/metabolism , Liver , Mice , Obesity , Oxazoles/pharmacology , Peroxisome Proliferator-Activated Receptors/metabolism , Rosiglitazone , Thiazolidinediones/therapeutic use
7.
ACS Med Chem Lett ; 7(6): 590-4, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27326332

ABSTRACT

BMS-711939 (3) is a potent and selective peroxisome proliferator-activated receptor (PPAR) α agonist, with an EC50 of 4 nM for human PPARα and >1000-fold selectivity vs human PPARγ (EC50 = 4.5 µM) and PPARδ (EC50 > 100 µM) in PPAR-GAL4 transactivation assays. Compound 3 also demonstrated excellent in vivo efficacy and safety profiles in preclinical studies and thus was chosen for further preclinical evaluation. The synthesis, structure-activity relationship (SAR) studies, and in vivo pharmacology of 3 in preclinical animal models as well as its ADME profile are described.

8.
J Med Chem ; 48(15): 5025-37, 2005 Jul 28.
Article in English | MEDLINE | ID: mdl-16033281

ABSTRACT

Efforts to further elucidate structure-activity relationships (SAR) within our previously disclosed series of beta-quaternary amino acid linked l-cis-4,5-methanoprolinenitrile dipeptidyl peptidase IV (DPP-IV) inhibitors led to the investigation of vinyl substitution at the beta-position of alpha-cycloalkyl-substituted glycines. Despite poor systemic exposure, vinyl-substituted compounds showed extended duration of action in acute rat ex vivo plasma DPP-IV inhibition models. Oxygenated putative metabolites were prepared and were shown to exhibit the potency and extended duration of action of their precursors in efficacy models measuring glucose clearance in Zucker(fa/fa) rats. Extension of this approach to adamantylglycine-derived inhibitors led to the discovery of highly potent inhibitors, including hydroxyadamantyl compound BMS-477118 (saxagliptin), a highly efficacious, stable, and long-acting DPP-IV inhibitor, which is currently undergoing clinical trials for treatment of type 2 diabetes.


Subject(s)
Adamantane/analogs & derivatives , Adamantane/chemical synthesis , Diabetes Mellitus, Type 2/drug therapy , Dipeptides/chemical synthesis , Dipeptidyl Peptidase 4/metabolism , Glycine/analogs & derivatives , Glycine/chemical synthesis , Hypoglycemic Agents/chemical synthesis , Protease Inhibitors/chemical synthesis , Adamantane/pharmacology , Animals , Biological Availability , Blood Glucose/analysis , Diabetes Mellitus, Type 2/physiopathology , Dipeptides/pharmacology , Glucose Tolerance Test , Glycine/pharmacology , Humans , Hypoglycemic Agents/pharmacology , In Vitro Techniques , Insulin/blood , Male , Mice , Mice, Obese , Microsomes, Liver/metabolism , Nitriles/chemical synthesis , Nitriles/pharmacology , Proline/analogs & derivatives , Proline/chemical synthesis , Proline/pharmacology , Protease Inhibitors/pharmacology , Rats , Rats, Zucker , Stereoisomerism , Structure-Activity Relationship
9.
J Med Chem ; 48(6): 2248-50, 2005 Mar 24.
Article in English | MEDLINE | ID: mdl-15771468

ABSTRACT

Muraglitazar/BMS-298585 (2) has been identified as a non-thiazolidinedione PPAR alpha/gamma dual agonist that shows potent activity in vitro at human PPARalpha (EC(50) = 320 nM) and PPARgamma(EC(50) = 110 nM). Compound 2 shows excellent efficacy for lowering glucose, insulin, triglycerides, and free fatty acids in genetically obese, severely diabetic db/db mice and has a favorable ADME profile. Compound 2 is currently in clinical development for the treatment of type 2 diabetes and dyslipidemia.


Subject(s)
Glycine/analogs & derivatives , Glycine/chemical synthesis , Hypoglycemic Agents/chemical synthesis , Hypolipidemic Agents/chemical synthesis , Oxazoles/chemical synthesis , PPAR alpha/agonists , PPAR gamma/agonists , Adipocytes/cytology , Animals , Blood Glucose/drug effects , Cell Line , Diabetes Mellitus, Type 2/drug therapy , Fatty Acids/blood , Glycine/chemistry , Glycine/pharmacology , Humans , Hyperlipidemias/drug therapy , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/pharmacokinetics , Hypolipidemic Agents/pharmacology , Insulin/blood , Male , Mice , Mice, Obese , Oxazoles/chemistry , Oxazoles/pharmacology , Transcriptional Activation , Triglycerides/blood
10.
J Med Chem ; 47(10): 2587-98, 2004 May 06.
Article in English | MEDLINE | ID: mdl-15115400

ABSTRACT

A series of methanoprolinenitrile-containing dipeptide mimetics were synthesized and assayed as inhibitors of the N-terminal sequence-specific serine protease dipeptidyl peptidase IV (DPP-IV). The catalytic action of DPP-IV is the principle means of degradation of glucagon-like peptide-1, a key mediator of glucose-stimulated insulin secretion, and DPP-IV inhibition shows clinical benefit as a novel mechanism for treatment of type 2 diabetes. However, many of the reversible inhibitors to date suffer from chemical instability stemming from an amine to nitrile intramolecular cyclization. Installation of a cyclopropyl moiety at either the 3,4- or 4,5-position of traditional 2-cyanopyrrolidide proline mimetics led to compounds with potent inhibitory activity against the enzyme. Additionally, cis-4,5-methanoprolinenitriles with beta-branching in the N-terminal amino acid provided enhanced chemical stability and high inhibitory potency. This class of inhibitors also exhibited the ability to suppress prandial glucose elevations after an oral glucose challenge in male Zucker rats.


Subject(s)
Cyclopropanes/chemical synthesis , Dipeptidyl Peptidase 4/metabolism , Enzyme Inhibitors/chemical synthesis , Nitriles/chemical synthesis , Proline/analogs & derivatives , Proline/chemical synthesis , Animals , Computer Simulation , Crystallography, X-Ray , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Dipeptides/chemistry , Dipeptidyl Peptidase 4/chemistry , Drug Stability , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Male , Models, Molecular , Molecular Conformation , Molecular Mimicry , Nitriles/chemistry , Nitriles/pharmacology , Proline/chemistry , Proline/pharmacology , Rats , Rats, Zucker , Solutions
11.
J Med Chem ; 56(18): 7343-57, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-23964740

ABSTRACT

Optimization of a 5-oxopyrrolopyridine series based upon structure-activity relationships (SARs) developed from our previous efforts on a number of related bicyclic series yielded compound 2s (BMS-767778) with an overall activity, selectivity, efficacy, PK, and developability profile suitable for progression into the clinic. SAR in the series and characterization of 2s are described.


Subject(s)
Acetamides/chemistry , Acetamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Drug Design , Pyrroles/chemistry , Pyrroles/pharmacology , Acetamides/chemical synthesis , Animals , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Catalytic Domain , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Glucose Tolerance Test , Humans , Male , Mice , Models, Molecular , Pyrroles/chemical synthesis , Substrate Specificity
12.
J Med Chem ; 53(7): 2854-64, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20218621

ABSTRACT

An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) alpha agonist, with an EC(50) of 10 nM for human PPARalpha and approximately 410-fold selectivity vs human PPARgamma in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPARdelta. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPARalpha ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPARalpha in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.


Subject(s)
Drug Discovery , Glycine/analogs & derivatives , Oxazoles/chemistry , Oxazoles/pharmacology , PPAR alpha/agonists , Animals , Cell Line , Cricetinae , Crystallography, X-Ray , Drug-Related Side Effects and Adverse Reactions , Glycine/chemical synthesis , Glycine/chemistry , Glycine/pharmacology , Glycine/toxicity , Humans , Male , Mice , Models, Molecular , Oxazoles/chemical synthesis , Oxazoles/toxicity , PPAR alpha/chemistry , PPAR alpha/genetics , Protein Structure, Tertiary , Substrate Specificity , Transcriptional Activation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL