Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
2.
Int J Mol Sci ; 24(19)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37834287

ABSTRACT

Periodontitis is a chronic inflammatory disease characterized by the progressive and irreversible destruction of the periodontium. Its aetiopathogenesis lies in the constant challenge of the dysbiotic biofilm, which triggers a deregulated immune response responsible for the disease phenotype. Although the molecular mechanisms underlying periodontitis have been extensively studied, the regulatory mechanisms at the transcriptional level remain unclear. To generate transcriptomic data, we performed RNA shotgun sequencing of the oral mucosa of periodontitis-affected mice. Since genes are not expressed in isolation during pathological processes, we disclose here the complete repertoire of differentially expressed genes (DEG) and co-expressed modules to build Gene Regulatory Networks (GRNs) and identify the Master Transcriptional Regulators of periodontitis. The transcriptional changes revealed 366 protein-coding genes and 42 non-coding genes differentially expressed and enriched in the immune response. Furthermore, we found 13 co-expression modules with different representation degrees and gene expression levels. Our GRN comprises genes from 12 gene clusters, 166 nodes, of which 33 encode Transcription Factors, and 201 connections. Finally, using these strategies, 26 master regulators of periodontitis were identified. In conclusion, combining the transcriptomic analyses with the regulatory network construction represents a powerful and efficient strategy for identifying potential periodontitis-therapeutic targets.


Subject(s)
Periodontitis , Transcription Factors , Animals , Mice , Transcription Factors/genetics , Periodontitis/genetics , Periodontitis/pathology , Transcriptome , Gene Expression Profiling , Periodontium/pathology , Gene Regulatory Networks
3.
Int J Mol Sci ; 24(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36614064

ABSTRACT

Periodontitis is a non-communicable chronic inflammatory disease characterized by the progressive and irreversible breakdown of the soft periodontal tissues and resorption of teeth-supporting alveolar bone. The etiology of periodontitis involves dysbiotic shifts in the diversity of microbial communities inhabiting the subgingival crevice, which is dominated by anaerobic Gram-negative bacteria, including Porphyromonas gingivalis. Indeed, P. gingivalis is a keystone pathogen with a repertoire of attributes that allow it to colonize periodontal tissues and influence the metabolism, growth rate, and virulence of other periodontal bacteria. The pathogenic potential of P. gingivalis has been traditionally analyzed using classical biochemical and molecular approaches. However, the arrival of new techniques, such as whole-genome sequencing, metagenomics, metatranscriptomics, proteomics, and metabolomics, allowed the generation of high-throughput data, offering a suitable option for bacterial analysis, allowing a deeper understanding of the pathogenic properties of P. gingivalis and its interaction with the host. In the present review, we revise the use of the different -omics technologies and techniques used to analyze bacteria and discuss their potential in studying the pathogenic potential of P. gingivalis.


Subject(s)
Bacteroidaceae Infections , Periodontitis , Humans , Porphyromonas gingivalis/genetics , Bacteroidaceae Infections/microbiology , Periodontitis/pathology , Virulence , Metabolomics
4.
Ann Plast Surg ; 86(3S Suppl 2): S229-S234, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33278073

ABSTRACT

BACKGROUND: Abdominoplasty has been evolving since the 1960s with many technical innovations throughout the years. It has become one of the most frequent and common procedures done in aesthetic plastic surgery, with the ultimate goal of not only to remove the excess tissue in the abdominal area but also to achieve an aesthetic trunk silhouette. OBJECTIVE: The prime objective of this article was to describe our preferred approach for a full cosmetic abdominoplasty. METHODS: We summarized all the key technical aspects from our shared surgical approach for abdominoplasty. The article describes collective experiences from authors performing the surgery in South America, North America, and Asia. RESULTS: The key technical aspects identified were conservative muscle plication, customized excess tissue resection, and ultrasound-assisted liposuction to improve definition in the abdominal lines and body curves, combined with lipofilling. The aesthetic results are presented. CONCLUSIONS: Abdominoplasty should be customized to every patient's anatomy and desired cosmetic outcome, taking into consideration all the anatomical areas surrounding the abdominal wall.


Subject(s)
Abdominal Wall , Abdominoplasty , Lipectomy , Abdominal Wall/surgery , Asia , Humans , South America
5.
Front Microbiol ; 14: 1238580, 2023.
Article in English | MEDLINE | ID: mdl-37779688

ABSTRACT

Akkermansia, a relevant mucin degrader from the vertebrate gut microbiota, is a member of the deeply branched Verrucomicrobiota, as well as the only known member of this phylum to be described as inhabitants of the gut. Only a few Akkermansia species have been officially described so far, although there is genomic evidence addressing the existence of more species-level variants for this genus. This niche specialization makes Akkermansia an interesting model for studying the evolution of microorganisms to their adaptation to the gastrointestinal tract environment, including which kind of functions were gained when the Akkermansia genus originated or how the evolutionary pressure functions over those genes. In order to gain more insight into Akkermansia adaptations to the gastrointestinal tract niche, we performed a phylogenomic analysis of 367 high-quality Akkermansia isolates and metagenome-assembled genomes, in addition to other members of Verrucomicrobiota. This work was focused on three aspects: the definition of Akkermansia genomic species clusters and the calculation and functional characterization of the pangenome for the most represented species; the evolutionary relationship between Akkermansia and their closest relatives from Verrucomicrobiota, defining the gene families which were gained or lost during the emergence of the last Akkermansia common ancestor (LAkkCA) and; the evaluation of the evolutionary pressure metrics for each relevant gene family of main Akkermansia species. This analysis found 25 Akkermansia genomic species clusters distributed in two main clades, divergent from their non-Akkermansia relatives. Pangenome analyses suggest that Akkermansia species have open pangenomes, and the gene gain/loss model indicates that genes associated with mucin degradation (both glycoside hydrolases and peptidases), (micro)aerobic metabolism, surface interaction, and adhesion were part of LAkkCA. Specifically, mucin degradation is a very ancestral innovation involved in the origin of Akkermansia. Horizontal gene transfer detection suggests that Akkermansia could receive genes mostly from unknown sources or from other Gram-negative gut bacteria. Evolutionary metrics suggest that Akkemansia species evolved differently, and even some conserved genes suffered different evolutionary pressures among clades. These results suggest a complex evolutionary landscape of the genus and indicate that mucin degradation could be an essential feature in Akkermansia evolution as a symbiotic species.

6.
Front Microbiol ; 14: 1226166, 2023.
Article in English | MEDLINE | ID: mdl-37538845

ABSTRACT

Porphyromonas gingivalis is an oral human pathogen associated with the onset and progression of periodontitis, a chronic immune-inflammatory disease characterized by the destruction of the teeth-supporting tissue. P. gingivalis belongs to the genus Porphyromonas, which is characterized by being composed of Gram-negative, asaccharolytic, non-spore-forming, non-motile, obligatory anaerobic species, inhabiting niches such as the oral cavity, urogenital tract, gastrointestinal tract and infected wound from different mammals including humans. Among the Porphyromonas genus, P. gingivalis stands out for its specificity in colonizing the human oral cavity and its keystone pathogen role in periodontitis pathogenesis. To understand the evolutionary process behind P. gingivalis in the context of the Pophyoromonas genus, in this study, we performed a comparative genomics study with publicly available Porphyromonas genomes, focused on four main objectives: (A) to confirm the phylogenetic position of P. gingivalis in the Porphyromonas genus by phylogenomic analysis; (B) the definition and comparison of the pangenomes of P. gingivalis and its relative P. gulae; and (C) the evaluation of the gene family gain/loss events during the divergence of P. gingivalis and P. gulae; (D) the evaluation of the evolutionary pressure (represented by the calculation of Tajima-D values and dN/dS ratios) comparing gene families of P. gingivalis and P. gulae. Our analysis found 84 high-quality assemblies representing P. gingivalis and 14 P. gulae strains (from a total of 233 Porphyromonas genomes). Phylogenomic analysis confirmed that P. gingivalis and P. gulae are highly related lineages, close to P. loveana. Both organisms harbored open pangenomes, with a strong core-to-accessory ratio for housekeeping genes and a negative ratio for unknown function genes. Our analyses also characterized the gene set differentiating P. gulae from P. gingivalis, mainly associated with unknown functions. Relevant virulence factors, such as the FimA, Mfa1, and the hemagglutinins, are conserved in P. gulae, P. gingivalis, and P. loveana, suggesting that the origin of those factors occurred previous to the P. gulae - P. gingivalis divergence. These results suggest an unexpected evolutionary relationship between the P. gulae - P. gingivalis duo and P. loveana, showing more clues about the origin of the role of those organisms in periodontitis.

7.
Microorganisms ; 11(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37512807

ABSTRACT

BACKGROUND: The respiratory microbiome is dynamic, varying between anatomical niches, and it is affected by various host and environmental factors, one of which is lifestyle. Few studies have characterized the upper respiratory tract microbiome profile according to lifestyle. We explored the association between lifestyles and microbiota profiles in the upper respiratory tract of healthy adults. METHODS: We analyzed nasal samples from 110 healthy adults who were living in Santiago, Chile, using 16S ribosomal RNA gene-sequencing methods. Volunteers completed a structured questionnaire about lifestyle. RESULTS: The composition and abundance of taxonomic groups varied across lifestyle attributes. Additionally, multivariate models suggested that alpha diversity varied in the function of physical activity, nutritional status, smoking, and the interaction between nutritional status and smoking, although the significant impact of those variables varied between women and men. Although physical activity and nutritional status were significantly associated with all indexes of alpha diversity among women, the diversity of microbiota among men was associated with smoking and the interaction between nutritional status and smoking. CONCLUSIONS: The alpha diversity of nasal microbiota is associated with lifestyle attributes, but these associations depend on sex and nutritional status. Our results suggest that future studies of the airway microbiome may provide a better resolution if data are stratified for differences in sex and nutritional status.

8.
Front Cell Infect Microbiol ; 12: 964710, 2022.
Article in English | MEDLINE | ID: mdl-35967863

ABSTRACT

The mammalian gut microbiota comprises a variety of commensals including potential probiotics and pathobionts, influencing the host itself. Members of the microbiota can intervene with host physiology by several mechanisms, including the secretion of a relatively well-reported set of metabolic products. Another microbiota influence mechanism is the use of secreted proteins (i.e., the secretome), impacting both the host and other community members. While widely reported and studied in pathogens, this mechanism remains understood to a lesser extent in commensals, and this knowledge is increasing in recent years. In the following minireview, we assess the current literature covering different studies, concerning the functions of secretable proteins from members of the gut microbiota (including commensals, pathobionts, and probiotics). Their effect on host physiology and health, and how these effects can be harnessed by postbiotic products, are also discussed.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Probiotics , Animals , Host Microbial Interactions , Mammals
9.
Chaos ; 21(1): 013126, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21456840

ABSTRACT

Most complex technological networks are defined in such a way that their global properties are manifested at a dynamical level. An example of this is when internal dynamical processes are constrained to predefined pathways, without the possibility of alternate routes. For instance, large corporation software networks, where several flow processes take place, are typically routed along specific paths. In this work, we propose a model to describe the global characteristics of this kind of processes, where the dynamics depends on the state of the nodes, represented by two possibilities: responsive or blocked. We present numerical simulations that show rich global behavior with unexpected emerging properties. In particular, we show that two different regimes appear as a function of the total network load. Each regime is characterized by developing either a unimodal or a bimodal distribution for the density of responsive nodes, directly related to global efficiency. We provide a detailed explanation for the main characteristics of our results as well as an analysis of the implications for real technological systems.

10.
Front Microbiol ; 12: 660920, 2021.
Article in English | MEDLINE | ID: mdl-33981291

ABSTRACT

Blautia, a genus established in 2008, is a relevantly abundant taxonomic group present in the microbiome of human and other mammalian gastrointestinal (GI) tracts. Several described (or proposed) Blautia species are available at this date. However, despite the increasing level of knowledge about Blautia, its diversity is still poorly understood. The increasing availability of Blautia genomic sequences in the public databases opens the possibility to study this genus from a genomic perspective. Here we report the pangenome analysis and the phylogenomic study of 225 Blautia genomes available in RefSeq. We found 33 different potential species at the genomic level, 17 of them previously undescribed; we also confirmed by genomic standards the status of 4 previously proposed new Blautia species. Comparative genomic analyses suggest that the Blautia pangenome is open, with a relatively small core genome (∼ 700-800 gene families). Utilizing a set of representative genomes, we performed a gene family gain/loss model for the genus, showing that despite terminal nodes suffered more massive gene gain events than internal nodes (i.e., predicted ancestors), some ancestors were predicted to have gained an important number of gene families, some of them associated with the possible acquisition of metabolic abilities. Gene loss events remained lower than gain events in most cases. General aspects regarding pangenome composition and gene gain/loss events are discussed, as well as the proposition of changes in the taxonomic assignment of B. coccoides TY and the proposition of a new species, "B. pseudococcoides.".

11.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33414350

ABSTRACT

Here, we report the genomic sequences of five severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains obtained from nasopharyngeal samples from five tested coronavirus disease 2019 (COVID-19)-infected patients from the Lambayeque region in Peru during early April 2020.

12.
Microbiol Resour Announc ; 9(19)2020 May 07.
Article in English | MEDLINE | ID: mdl-32381603

ABSTRACT

Here, we report the draft sequence of Blautia luti strain DSM 14534T, originally isolated from human feces. This draft contains 74 contigs, comprising 3,718,760 bp with a G+C content of 42.87%. The annotated draft contains 3,338 coding sequences (CDSs) and 110 RNA genes.

13.
PLoS One ; 14(5): e0215945, 2019.
Article in English | MEDLINE | ID: mdl-31042762

ABSTRACT

The composition of the vaginal microbiome, including both the presence of pathogens involved in sexually transmitted infections (STI) as well as commensal microbiota, has been shown to have important associations for a woman's reproductive and general health. Currently, healthcare providers cannot offer comprehensive vaginal microbiome screening, but are limited to the detection of individual pathogens, such as high-risk human papillomavirus (hrHPV), the predominant cause of cervical cancer. There is no single test on the market that combines HPV, STI, and microbiome screening. Here, we describe a novel inclusive vaginal health assay that combines self-sampling with sequencing-based HPV detection and genotyping, vaginal microbiome analysis, and STI-associated pathogen detection. The assay includes genotyping and detection of 14 hrHPV types, 5 low-risk HPV types (lrHPV), as well as the relative abundance of 31 bacterial taxa of clinical importance, including Lactobacillus, Sneathia, Gardnerella, and 3 pathogens involved in STI, with high sensitivity, specificity, and reproducibility. For each of these taxa, reference ranges were determined in a group of 50 self-reported healthy women. The HPV sequencing portion of the test was evaluated against the digene High-Risk HPV HC2 DNA test. For hrHPV genotyping, agreement was 95.3% with a kappa of 0.804 (601 samples); after removal of samples in which the digene hrHPV probe showed cross-reactivity with lrHPV types, the sensitivity and specificity of the hrHPV genotyping assay were 94.5% and 96.6%, respectively, with a kappa of 0.841. For lrHPV genotyping, agreement was 93.9% with a kappa of 0.788 (148 samples), while sensitivity and specificity were 100% and 92.9%, respectively. This novel assay could be used to complement conventional cervical cancer screening, because its self-sampling format can expand access among women who would otherwise not participate, and because of its additional information about the composition of the vaginal microbiome and the presence of pathogens.


Subject(s)
Microbiota , Papillomaviridae/genetics , Papillomavirus Infections/diagnosis , Sexually Transmitted Diseases/diagnosis , Vagina/virology , Adolescent , Adult , Capsid Proteins/genetics , DNA, Viral/genetics , DNA, Viral/isolation & purification , Female , Gardnerella/genetics , Gardnerella/isolation & purification , Genotype , Humans , Lactobacillus/genetics , Lactobacillus/isolation & purification , Limit of Detection , Middle Aged , Oncogene Proteins, Viral/genetics , Papillomaviridae/isolation & purification , Papillomavirus Infections/virology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Reproducibility of Results , Sensitivity and Specificity , Sexually Transmitted Diseases/virology , Vagina/microbiology , Young Adult
14.
Front Public Health ; 6: 77, 2018.
Article in English | MEDLINE | ID: mdl-29686981

ABSTRACT

In most industrialized countries, screening programs for cervical cancer have shifted from cytology (Pap smear or ThinPrep) alone on clinician-obtained samples to the addition of screening for human papillomavirus (HPV), its main causative agent. For HPV testing, self-sampling instead of clinician-sampling has proven to be equally accurate, in particular for assays that use nucleic acid amplification techniques. In addition, HPV testing of self-collected samples in combination with a follow-up Pap smear in case of a positive result is more effective in detecting precancerous lesions than a Pap smear alone. Self-sampling for HPV testing has already been adopted by some countries, while others have started trials to evaluate its incorporation into national cervical cancer screening programs. Self-sampling may result in more individuals willing to participate in cervical cancer screening, because it removes many of the barriers that prevent women, especially those in low socioeconomic and minority populations, from participating in regular screening programs. Several studies have shown that the majority of women who have been underscreened but who tested HPV-positive in a self-obtained sample will visit a clinic for follow-up diagnosis and management. In addition, a self-collected sample can also be used for vaginal microbiome analysis, which can provide additional information about HPV infection persistence as well as vaginal health in general.

15.
Front Microbiol ; 7: 1822, 2016.
Article in English | MEDLINE | ID: mdl-27917155

ABSTRACT

Rubrerythrins (RBRs) are non-heme di-iron proteins belonging to the ferritin-like superfamily. They are involved in oxidative stress defense as peroxide scavengers in a wide range of organisms. The vast majority of RBRs, including classical forms of this protein, contain a C-terminal rubredoxin-like domain involved in electron transport that is used during catalysis in anaerobic conditions. Rubredoxin is an ancient and large protein family of short length (<100 residues) that contains a Fe-S center involved in electron transfer. However, functional forms of the enzyme lacking the rubredoxin-like domain have been reported (e.g., sulerythrin and ferriperoxin). In this study, phylogenomic evidence is presented that suggests that a complete lineage of rubrerythrins, lacking the rubredoxin-like domain, arose in an ancient microaerobic and (hyper)thermophilic environments in the ancestors of the Archaea Thermoproteales and Sulfolobales. This lineage (termed the "aerobic-type" lineage) subsequently evolved to become adapted to environments with progressively lower temperatures and higher oxygen concentrations via the acquisition of two co-localized genes, termed DUF3501 and RFO, encoding a conserved protein of unknown function and a predicted Fe-S oxidoreductase, respectively. Proposed Horizontal Gene Transfer events from these archaeal ancestors to Bacteria expanded the opportunities for further evolution of this RBR including adaption to lower temperatures. The second lineage (termed the cyanobacterial lineage) is proposed to have evolved in cyanobacterial ancestors, maybe in direct response to the production of oxygen via oxygenic photosynthesis during the Great Oxygen Event (GOE). It is hypothesized that both lineages of RBR emerged in a largely anaerobic world with "whiffs" of oxygen and that their subsequent independent evolutionary trajectories allowed microorganisms to transition from this anaerobic world to an aerobic one.

16.
PLoS One ; 7(9): e44576, 2012.
Article in English | MEDLINE | ID: mdl-22970253

ABSTRACT

Thiol/disulfide systems are involved in the maintenance of the redox status of proteins and other molecules that contain thiol/disulfide groups. Leptospirillum ferriphilum DSM14647, an acidophilic bacterium that uses Fe(2+) as electron donor, and withstands very high concentrations of iron and other redox active metals, is a good model to study how acidophiles preserve the thiol/disulfide balance. We studied the composition of thiol/disulfide systems and their role in the oxidative stress response in this extremophile bacterium. Bioinformatic analysis using genomic data and enzymatic assays using protein extracts from cells grown under oxidative stress revealed that the major thiol/disulfide system from L. ferriphilum are a cytoplasmic thioredoxin system (composed by thioredoxins Trx and thioredoxin reductase TR), periplasmic thiol oxidation system (DsbA/DsbB) and a c-type cytochrome maturation system (DsbD/DsbE). Upon exposure of L. ferriphilum to reactive oxygen species (ROS)-generating compounds, transcriptional activation of the genes encoding Trxs and the TR enzyme, which results in an increase of the corresponding activity, was observed. Altogether these data suggest that the thioredoxin-based thiol/disulfide system plays an important role in redox protection of L. ferriphilum favoring the survival of this microorganism under extreme environmental oxidative conditions.


Subject(s)
Bacteria/metabolism , Disulfides/metabolism , Iron/metabolism , Sulfhydryl Compounds/metabolism , Bacteria/genetics , Base Sequence , DNA Primers , Genes, Bacterial , Glutathione Reductase/metabolism , Insulin/metabolism , Oxidation-Reduction , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL