Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Infect Dis ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441336

ABSTRACT

We previously described a novel Plasmodium vivax invasion mechanism into human reticulocytes via the PvRBP2a-CD98 receptor-ligand pair. We assessed the PvRBP2a epitopes involved in CD98 binding and recognised by antibodies from infected patients using linear epitope mapping. We identified two epitope clusters mediating PvRBP2a-CD98 interaction. One cluster named cluster B (PvRBP2a431-448, TAALKEKGKLLANLYNKL) was the target of antibody responses in P. vivax-infected humans. Peptides from each cluster were able to prevent live parasite invasion of human reticulocytes. These results provide new insights for development of a malaria blood stage vaccine against P. vivax.

2.
J Biol Chem ; 298(8): 102231, 2022 08.
Article in English | MEDLINE | ID: mdl-35798143

ABSTRACT

The Ras-GTPase activating protein SH3 domain-binding protein 1 (G3BP1) plays a critical role in the formation of classical and antiviral stress granules in stressed and virus-infected eukaryotic cells, respectively. While G3BP1 is known to be phosphorylated at serine residues which could affect stress granule assembly, whether G3BP1 is phosphorylated at tyrosine residues and how this posttranslational modification might affect its functions is less clear. Here, we show using immunoprecipitation and immunoblotting studies with 4G10 antibody that G3BP1 is tyrosine-phosphorylated when cells are stimulated with the synthetic double-stranded RNA analog polyinosinic:polycytidylic acid to mimic viral infection. We further demonstrate via co-immunoprecipitation and inhibitor studies that Bruton's tyrosine kinase (BTK) binds and phosphorylates G3BP1. The nuclear transport factor 2-like domain of G3BP1 was previously shown to be critical for its self-association to form stress granules. Our mass spectrometry, mutational and biochemical cross-linking analyses indicate that the tyrosine-40 residue in this domain is phosphorylated by BTK and critical for G3BP1 oligomerization. Furthermore, as visualized via confocal microscopy, pretreatment of cells with the BTK inhibitor LFM-A13 or genetic deletion of the btk gene or mutation of G3BP1-Y40 residue to alanine or phenylalanine all significantly attenuated the formation of antiviral stress granule aggregates upon polyinosinic:polycytidylic acid treatment. Taken together, our data indicate that BTK phosphorylation of G3BP1 induces G3BP1 oligomerization and facilitates the condensation of ribonucleoprotein complexes into macromolecular aggregates.


Subject(s)
DNA Helicases , RNA Helicases , RNA-Binding Proteins , Stress Granules , Agammaglobulinaemia Tyrosine Kinase/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Phosphorylation , Poly I-C , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Multimerization , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Tyrosine
3.
J Med Virol ; 95(5): e28774, 2023 05.
Article in English | MEDLINE | ID: mdl-37212320

ABSTRACT

Long-term complications from coronavirus disease 2019 (COVID-19) are concerning, as survivors can develop subclinical multiorgan dysfunction. It is unknown if such complications are due to prolonged inflammation, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination may reduce sequela. We conducted a prospective longitudinal study on hospitalized patients over 24 months. Clinical symptoms were collected by self-reporting during follow-up, along with blood samples for quantification of inflammatory markers and immune cell frequencies. All patients were given one dose of mRNA vaccine at 12-16 months. Their immune profiles at 12 and 24 months were compared. Approximately 37% and 39% of our patients reported post-COVID-19 symptoms at 12 and 24 months, respectively. The proportion of symptomatic patients with more than one symptom decreased from 69% at 12 months to 56% at 24 months. Longitudinal cytokine profiling revealed a cluster of individuals with persistently high inflammatory cytokine levels 12 months after infection. Patients with prolonged inflammation showed elevated terminally differentiated memory T cells in their blood; 54% had symptoms at 12 months. The majority of inflammatory markers and dysregulated immune cells in vaccinated patients recovered to a healthy baseline at 24 months, even though symptoms persisted. Post-COVID-19 symptoms can linger for 2 years after the initial infection and are associated with prolonged inflammation. Prolonged inflammation in hospitalized patients resolves after 2 years. We define a set of analytes associated with persistent inflammation and presence of symptoms, which could be useful biomarkers for identifying and monitoring high-risk survivors.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Longitudinal Studies , Prospective Studies , Inflammation , Cytokines
4.
Curr Top Microbiol Immunol ; 435: 33-53, 2022.
Article in English | MEDLINE | ID: mdl-30888547

ABSTRACT

Since its re-emergence in 2006, Chikungunya has been a major health concern in endemic areas. Transmitted by Aedes mosquitoes to mammalian hosts, Chikungunya leads to persistent debilitating symptoms in a high proportion of symptomatic human cases. In this review, we present several tools on the mosquito vector side as well as on the mammalian side that have been used to advance research on Chikungunya transmission and immunopathogenesis. These tools lead to key understandings of viral replication in both hosts, and innate and adaptive responses mediating virus clearance and pathology in mammals. This comprehension of viral mechanisms has allowed the development of promising treatment avenues in animal models that will need to be further explored. However, research efforts need to continue in order to develop better and unbiased tools to assess antiviral and treatment strategies as well as further understand immune mechanisms at play in human pathologies.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Animals , Chikungunya virus/genetics , Humans , Mosquito Vectors , Virus Replication
5.
J Clin Immunol ; 42(2): 214-229, 2022 02.
Article in English | MEDLINE | ID: mdl-34716845

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that have become dominant as the pandemic progresses bear the ORF8 mutation together with multiple spike mutations. A 382-nucleotide deletion (Δ382) in the ORF7b and ORF8 regions has been associated with milder disease phenotype and less systemic inflammation in COVID-19 patients. However, its impact on host immunity against SARS-CoV-2 remains undefined. Here, RNA-sequencing was performed to elucidate whole blood transcriptomic profiles and identify contrasting immune signatures between patients infected with either wildtype or Δ382 SARS-CoV-2 variant. Interestingly, the immune landscape of Δ382 SARS-CoV-2 infected patients featured an increased adaptive immune response, evidenced by enrichment of genes related to T cell functionality, a more robust SARS-CoV-2-specific T cell immunity, as well as a more rapid antibody response. At the molecular level, eukaryotic initiation factor 2 signaling was found to be upregulated in patients bearing Δ382, and its associated genes were correlated with systemic levels of T cell-associated and pro-inflammatory cytokines. This study provides more in-depth insight into the host-pathogen interactions of ORF8 with great promise as a therapeutic target to combat SARS-CoV-2 infection.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Cytokines/immunology , Host-Pathogen Interactions/immunology , Humans , Inflammation/immunology , Mutation/immunology , Pandemics/prevention & control , T-Lymphocytes/immunology
6.
BMC Genomics ; 20(1): 664, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31429704

ABSTRACT

BACKGROUND: Mosquitoes are colonized by a large but mostly uncharacterized natural virome of RNA viruses, and the composition and distribution of the natural RNA virome may influence the biology and immunity of Anopheles malaria vector populations. RESULTS: Anopheles mosquitoes were sampled in malaria endemic forest village sites in Senegal and Cambodia, including Anopheles funestus, Anopheles gambiae group sp., and Anopheles coustani in Senegal, and Anopheles hyrcanus group sp., Anopheles maculatus group sp., and Anopheles dirus in Cambodia. The most frequent mosquito species sampled at both study sites are human malaria vectors. Small and long RNA sequences were depleted of mosquito host sequences, de novo assembled and clustered to yield non-redundant contigs longer than 500 nucleotides. Analysis of the assemblies by sequence similarity to known virus families yielded 115 novel virus sequences, and evidence supports a functional status for at least 86 of the novel viral contigs. Important monophyletic virus clades in the Bunyavirales and Mononegavirales orders were found in these Anopheles from Africa and Asia. The remaining non-host RNA assemblies that were unclassified by sequence similarity to known viruses were clustered by small RNA profiles, and 39 high-quality independent contigs strongly matched a pattern of classic RNAi processing of viral replication intermediates, suggesting they are entirely undescribed viruses. One thousand five hundred sixty-six additional high-quality unclassified contigs matched a pattern consistent with Piwi-interacting RNAs (piRNAs), suggesting that strand-biased piRNAs are generated from the natural virome in Anopheles. To functionally query piRNA effect, we analyzed piRNA expression in Anopheles coluzzii after infection with O'nyong nyong virus (family Togaviridae), and identified two piRNAs that appear to display specifically altered abundance upon arbovirus infection. CONCLUSIONS: Anopheles vectors of human malaria in Africa and Asia are ubiquitously colonized by RNA viruses, some of which are monophyletic but clearly diverged from other arthropod viruses. The interplay between small RNA pathways, immunity, and the virome may represent part of the homeostatic mechanism maintaining virome members in a commensal or nonpathogenic state, and could potentially influence vector competence.


Subject(s)
Anopheles/virology , Forests , Mosquito Vectors/virology , RNA Viruses/physiology , Animals , Anopheles/genetics , Cambodia , Gene Expression Regulation , Mosquito Vectors/genetics , RNA, Small Interfering/genetics , Senegal
7.
BMC Genomics ; 20(1): 698, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488060

ABSTRACT

Following the publication of this article [1], the authors reported that the original shading in columns 3 and 4 of Table 3, which indicated the presence or absence of viruses in each library, had been removed during typesetting.

8.
FASEB J ; 32(7): 3792-3802, 2018 07.
Article in English | MEDLINE | ID: mdl-29481310

ABSTRACT

Bile acids (BAs) are surfactant molecules that regulate the intestinal absorption of lipids. Thus, the modulation of BAs represents a potential therapy for nonalcoholic fatty liver disease (NAFLD), which is characterized by hepatic accumulation of fat and is a major cause of liver disease worldwide. Cyp8b1 is a critical modulator of the hydrophobicity index of the BA pool. As a therapeutic proof of concept, we aimed to determine the impact of Cyp8b1 inhibition in vivo on BA pool composition and as protection against NAFLD. Inhibition of Cyp8b1 expression in mice led to a remodeling of the BA pool, which altered its signaling properties and decreased intestinal fat absorption. In a model of cholesterol-induced NAFLD, Cyp8b1 knockdown significantly decreased steatosis and hepatic lipid content, which has been associated with an increase in fecal lipid and BA excretion. Moreover, inhibition of Cyp8b1 not only decreased hepatic lipid accumulation, but also resulted in the clearance of previously accumulated hepatic cholesterol, which led to a regression in hepatic steatosis. Taken together, our data demonstrate that Cyp8b1 inhibition is a viable therapeutic target of crucial interest for metabolic diseases, such as NAFLD.-Chevre, R., Trigueros-Motos, L., Castaño, D., Chua, T., Corlianò, M., Patankar, J. V., Sng, L., Sim, L., Juin, T. L., Carissimo, G., Ng, L. F. P., Yi, C. N. J., Eliathamby, C. C., Groen, A. K., Hayden, M. R., Singaraja, R. R. Therapeutic modulation of the bile acid pool by Cyp8b1 knockdown protects against nonalcoholic fatty liver disease in mice.


Subject(s)
Bile Acids and Salts/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Steroid 12-alpha-Hydroxylase/genetics , Animals , Female , HEK293 Cells , Humans , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/therapy , RNAi Therapeutics , Steroid 12-alpha-Hydroxylase/metabolism
9.
BMC Genomics ; 19(1): 526, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29986645

ABSTRACT

BACKGROUND: Anopheles mosquitoes are efficient vectors of human malaria, but it is unknown why they do not transmit viruses as well as Aedes and Culex mosquitoes. The only arbovirus known to be consistently transmitted by Anopheles mosquitoes is O'nyong nyong virus (ONNV, genus Alphavirus, family Togaviridae). The interaction of Anopheles mosquitoes with RNA viruses has been relatively unexamined. RESULTS: We transcriptionally profiled the African malaria vector, Anopheles coluzzii, infected with ONNV. Mosquitoes were fed on an infectious bloodmeal and were analyzed by Illumina RNAseq at 3 days post-bloodmeal during the primary virus infection of the midgut epithelium, before systemic dissemination. Virus infection triggers transcriptional regulation of just 30 host candidate genes. Most of the regulated candidate genes are novel, without known function. Of the known genes, a significant cluster includes candidates with predicted involvement in carbohydrate metabolism. Two candidate genes encoding leucine-rich repeat immune (LRIM) factors point to possible involvement of immune protein complexes in the mosquito antiviral response. The primary ONNV infection by bloodmeal shares little transcriptional response in common with ONNV infection by intrathoracic injection, nor with midgut infection by the malaria parasites, Plasmodium falciparum or P. berghei. Profiling of A. coluzzii microRNA (miRNA) identified 118 known miRNAs and 182 potential novel miRNA candidates, with just one miRNA regulated by ONNV infection. This miRNA was not regulated by other previously reported treatments, and may be virus specific. Coexpression analysis of miRNA abundance and messenger RNA expression revealed discrete clusters of genes regulated by Imd and JAK/STAT, immune signaling pathways that are protective against ONNV in the primary infection. CONCLUSIONS: ONNV infection of the A. coluzzii midgut triggers a remarkably limited gene regulation program of mostly novel candidate genes, which likely includes host genes deployed for antiviral defense, as well as genes manipulated by the virus to facilitate infection. Functional dissection of the ONNV-response candidate genes is expected to generate novel insight into the mechanisms of virus-vector interaction.


Subject(s)
Anopheles/genetics , Arboviruses/pathogenicity , Intestinal Mucosa/metabolism , Transcriptome , Animals , Anopheles/metabolism , Anopheles/virology , Host-Pathogen Interactions/genetics , Immunity, Innate/genetics , Intestinal Mucosa/virology , MicroRNAs/chemistry , MicroRNAs/genetics , MicroRNAs/metabolism , Principal Component Analysis , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Sequence Analysis, RNA
10.
Proc Natl Acad Sci U S A ; 112(2): E176-85, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25548172

ABSTRACT

Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o'nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens.


Subject(s)
Anopheles/immunology , Anopheles/virology , Arboviruses/immunology , Arboviruses/pathogenicity , Alphavirus Infections/immunology , Alphavirus Infections/transmission , Animals , Anopheles/genetics , Arbovirus Infections/immunology , Arbovirus Infections/transmission , Arboviruses/genetics , Digestive System/immunology , Digestive System/microbiology , Digestive System/virology , Female , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Insect Vectors/genetics , Insect Vectors/immunology , Insect Vectors/virology , Janus Kinases/immunology , Microbiota , O'nyong-nyong Virus/genetics , O'nyong-nyong Virus/immunology , O'nyong-nyong Virus/pathogenicity , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , RNA Interference , RNA, Small Interfering/genetics , STAT Transcription Factors/immunology , Signal Transduction/immunology
12.
Virulence ; 15(1): 2355201, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38797948

ABSTRACT

O'nyong-nyong virus (ONNV) is a neglected mosquito-borne alphavirus belonging to the Togaviridae family. ONNV is known to be responsible for sporadic outbreaks of acute febrile disease and polyarthralgia in Africa. As climate change increases the geographical range of known and potential new vectors, recent data indicate a possibility for ONNV to spread outside of the African continent and grow into a greater public health concern. In this review, we summarise the current knowledge on ONNV epidemiology, host-pathogen interactions, vector-virus responses, and insights into possible avenues to control risk of further epidemics. In this review, the limited ONNV literature is compared and correlated to other findings on mainly Old World alphaviruses. We highlight and discuss studies that investigate viral and host factors that determine viral-vector specificity, along with important mechanisms that determine severity and disease outcome of ONNV infection.


Subject(s)
Host-Pathogen Interactions , O'nyong-nyong Virus , Humans , Animals , Virulence , O'nyong-nyong Virus/pathogenicity , O'nyong-nyong Virus/genetics , Alphavirus Infections/epidemiology , Alphavirus Infections/virology , Mosquito Vectors/virology , Africa/epidemiology , Pandemics
13.
EMBO Mol Med ; 16(3): 641-663, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332201

ABSTRACT

Communications between immune cells are essential to ensure appropriate coordination of their activities. Here, we observed the infiltration of activated macrophages into the joint-footpads of chikungunya virus (CHIKV)-infected animals. Large numbers of CD64+MHCII+ and CD64+MHCII- macrophages were present in the joint-footpad, preceded by the recruitment of their CD11b+Ly6C+ inflammatory monocyte precursors. Recruitment and differentiation of these myeloid subsets were dependent on CD4+ T cells and GM-CSF. Transcriptomic and gene ontology analyses of CD64+MHCII+ and CD64+MHCII- macrophages revealed 89 differentially expressed genes, including genes involved in T cell proliferation and differentiation pathways. Depletion of phagocytes, including CD64+MHCII+ macrophages, from CHIKV-infected mice reduced disease pathology, demonstrating that these cells play a pro-inflammatory role in CHIKV infection. Together, these results highlight the synergistic dynamics of immune cell crosstalk in driving CHIKV immunopathogenesis. This study provides new insights in the disease mechanism and offers opportunities for development of novel anti-CHIKV therapeutics.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Mice , T-Lymphocytes/metabolism , Chikungunya virus/genetics , Macrophages , CD4-Positive T-Lymphocytes
14.
J Invest Dermatol ; 143(6): 1031-1041.e8, 2023 06.
Article in English | MEDLINE | ID: mdl-36566875

ABSTRACT

Zika virus (ZIKV) became a public health concern when it re-emerged in 2015 owing to its ability to cause congenital deformities in the fetus and neurological complications in adults. Despite extensive data on protection, the interplay of protective and pathogenic adaptive immune responses toward ZIKV infection remains poorly understood. In this study, using a T-cell‒deficient mouse model that retains persistent ZIKV viral titers in the blood and organs, we show that the adoptive transfer of CD8+ T cells led to a significant reduction in viral load. This mouse model reveals that ZIKV can induce grossly visible auricular dermatitis and blepharitis, mediated by ZIKV-specific CD8+ T cells. Single-cell RNA sequencing of these causative CD8+ T cells from the ears shows an overactivated and elevated cytotoxic signature in mice with severe symptoms. Our results strongly suggest a role for CD8+ T-cell‒associated pathologies after ZIKV infection in CD4+ T-cell‒immunodeficient patients.


Subject(s)
Blepharitis , Dermatitis , Zika Virus Infection , Zika Virus , Mice , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Disease Models, Animal
15.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: mdl-35039441

ABSTRACT

O'nyongnyong virus (ONNV) is a re-emerging alphavirus previously known to be transmitted by main malaria vectors, thus suggesting the possibility of coinfections with arboviruses in co-endemic areas. However, the pathological outcomes of such infections remain unknown. Using murine coinfection models, we demonstrated that a preexisting blood-stage Plasmodium infection suppresses ONNV-induced pathologies. We further showed that suppression of viremia and virus dissemination are dependent on Plasmodium-induced IFNγ and are associated with reduced infection of CD45- cells at the site of virus inoculation. We further proved that treatment with IFNγ or plasma samples from Plasmodium vivax-infected patients containing IFNγ are able to restrict ONNV infection in human fibroblast, synoviocyte, skeletal muscle, and endothelial cell lines. Mechanistically, the role of IFNγ in restricting ONNV infection was confirmed in in vitro infection assays through the generation of an IFNγ receptor 1 α chain (IFNγR1)-deficient cell line.


Subject(s)
Alphavirus Infections , Coinfection , Malaria , O'nyong-nyong Virus/pathogenicity , Animals , Cell Line , Coinfection/parasitology , Coinfection/virology , Disease Models, Animal , Host-Pathogen Interactions , Mice , Microbial Interactions
16.
Nat Commun ; 13(1): 4615, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941158

ABSTRACT

Understanding the impact of age on vaccinations is essential for the design and delivery of vaccines against SARS-CoV-2. Here, we present findings from a comprehensive analysis of multiple compartments of the memory immune response in 312 individuals vaccinated with the BNT162b2 SARS-CoV-2 mRNA vaccine. Two vaccine doses induce high antibody and T cell responses in most individuals. However, antibody recognition of the Spike protein of the Delta and Omicron variants is less efficient than that of the ancestral Wuhan strain. Age-stratified analyses identify a group of low antibody responders where individuals ≥60 years are overrepresented. Waning of the antibody and cellular responses is observed in 30% of the vaccinees after 6 months. However, age does not influence the waning of these responses. Taken together, while individuals ≥60 years old take longer to acquire vaccine-induced immunity, they develop more sustained acquired immunity at 6 months post-vaccination. A third dose strongly boosts the low antibody responses in the older individuals against the ancestral Wuhan strain, Delta and Omicron variants.


Subject(s)
COVID-19 , Viral Vaccines , Aged , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Middle Aged , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
17.
Elife ; 102021 03 23.
Article in English | MEDLINE | ID: mdl-33752798

ABSTRACT

Numerous reports of vascular events after an initial recovery from COVID-19 form our impetus to investigate the impact of COVID-19 on vascular health of recovered patients. We found elevated levels of circulating endothelial cells (CECs), a biomarker of vascular injury, in COVID-19 convalescents compared to healthy controls. In particular, those with pre-existing conditions (e.g., hypertension, diabetes) had more pronounced endothelial activation hallmarks than non-COVID-19 patients with matched cardiovascular risk. Several proinflammatory and activated T lymphocyte-associated cytokines sustained from acute infection to recovery phase, which correlated positively with CEC measures, implicating cytokine-driven endothelial dysfunction. Notably, we found higher frequency of effector T cells in our COVID-19 convalescents compared to healthy controls. The activation markers detected on CECs mapped to counter receptors found primarily on cytotoxic CD8+ T cells, raising the possibility of cytotoxic effector cells targeting activated endothelial cells. Clinical trials in preventive therapy for post-COVID-19 vascular complications may be needed.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/etiology , Endothelium, Vascular/pathology , Lymphocyte Activation , Adult , Aged , COVID-19/immunology , COVID-19/pathology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/pathology , Cytokines/immunology , Endothelial Cells/immunology , Endothelial Cells/pathology , Endothelium, Vascular/immunology , Female , Humans , Male , Middle Aged , Risk Factors
18.
Nat Microbiol ; 6(8): 991-999, 2021 08.
Article in English | MEDLINE | ID: mdl-34294905

ABSTRACT

More than one-third of the world's population is exposed to Plasmodium vivax malaria, mainly in Asia1. P. vivax preferentially invades reticulocytes (immature red blood cells)2-4. Previous work has identified 11 parasite proteins involved in reticulocyte invasion, including erythrocyte binding protein 2 (ref. 5) and the reticulocyte-binding proteins (PvRBPs)6-10. PvRBP2b binds to the transferrin receptor CD71 (ref. 11), which is selectively expressed on immature reticulocytes12. Here, we identified CD98 heavy chain (CD98), a heteromeric amino acid transporter from the SLC3 family (also known as SLCA2), as a reticulocyte-specific receptor for the PvRBP2a parasite ligand using mass spectrometry, flow cytometry, biochemical and parasite invasion assays. We characterized the expression level of CD98 at the surface of immature reticulocytes (CD71+) and identified an interaction between CD98 and PvRBP2a expressed at the merozoite surface. Our results identify CD98 as an additional host membrane protein, besides CD71, that is directly associated with P. vivax reticulocyte tropism. These findings highlight the potential of using PvRBP2a as a vaccine target against P. vivax malaria.


Subject(s)
Erythrocytes/parasitology , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Malaria, Vivax/metabolism , Plasmodium vivax/metabolism , Antigens, CD , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Erythrocytes/metabolism , Fusion Regulatory Protein 1, Heavy Chain/genetics , Host-Parasite Interactions , Humans , Malaria, Vivax/blood , Malaria, Vivax/genetics , Plasmodium vivax/genetics , Protein Binding , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Transferrin , Reticulocytes/metabolism , Reticulocytes/parasitology
19.
EMBO Mol Med ; 13(6): e14045, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33961735

ABSTRACT

The immune responses and mechanisms limiting symptom progression in asymptomatic cases of SARS-CoV-2 infection remain unclear. We comprehensively characterized transcriptomic profiles, cytokine responses, neutralization capacity of antibodies, and cellular immune phenotypes of asymptomatic patients with acute SARS-CoV-2 infection to identify potential protective mechanisms. Compared to symptomatic patients, asymptomatic patients had higher counts of mature neutrophils and lower proportion of CD169+ expressing monocytes in the peripheral blood. Systemic levels of pro-inflammatory cytokines were also lower in asymptomatic patients, accompanied by milder pro-inflammatory gene signatures. Mechanistically, a more robust systemic Th2 cell signature with a higher level of virus-specific Th17 cells and a weaker yet sufficient neutralizing antibody profile against SARS-CoV-2 was observed in asymptomatic patients. In addition, asymptomatic COVID-19 patients had higher systemic levels of growth factors that are associated with cellular repair. Together, the data suggest that asymptomatic patients mount less pro-inflammatory and more protective immune responses against SARS-CoV-2 indicative of disease tolerance. Insights from this study highlight key immune pathways that could serve as therapeutic targets to prevent disease progression in COVID-19.


Subject(s)
COVID-19/pathology , Carrier State/immunology , Biomarkers/metabolism , Brain-Derived Neurotrophic Factor/metabolism , COVID-19/immunology , COVID-19/virology , Carrier State/pathology , Carrier State/virology , Cytokines/metabolism , Humans , Monocytes/cytology , Monocytes/immunology , Monocytes/metabolism , Neutrophils/cytology , Neutrophils/immunology , Neutrophils/metabolism , SARS-CoV-2/isolation & purification , Th17 Cells/cytology , Th17 Cells/immunology , Th17 Cells/metabolism , Transcriptome , Up-Regulation , Vascular Endothelial Growth Factor D/metabolism
20.
Clin Transl Immunology ; 10(2): e1241, 2021.
Article in English | MEDLINE | ID: mdl-33628442

ABSTRACT

OBJECTIVES: The emergence of a SARS-CoV-2 variant with a point mutation in the spike (S) protein, D614G, has taken precedence over the original Wuhan isolate by May 2020. With an increased infection and transmission rate, it is imperative to determine whether antibodies induced against the D614 isolate may cross-neutralise against the G614 variant. METHODS: Antibody profiling against the SARS-CoV-2 S protein of the D614 variant by flow cytometry and assessment of neutralising antibody titres using pseudotyped lentiviruses expressing the SARS-CoV-2 S protein of either the D614 or G614 variant tagged with a luciferase reporter were performed on plasma samples from COVID-19 patients with known D614G status (n = 44 infected with D614, n = 6 infected with G614, n = 7 containing all other clades: O, S, L, V, G, GH or GR). RESULTS: Profiling of the anti-SARS-CoV-2 humoral immunity reveals similar neutralisation profiles against both S protein variants, albeit waning neutralising antibody capacity at the later phase of infection. Of clinical importance, patients infected with either the D614 or G614 clade elicited a similar degree of neutralisation against both pseudoviruses, suggesting that the D614G mutation does not impact the neutralisation capacity of the elicited antibodies. CONCLUSIONS: Cross-reactivity occurs at the functional level of the humoral response on both the S protein variants, which suggests that existing serological assays will be able to detect both D614 and G614 clades of SARS-CoV-2. More importantly, there should be negligible impact towards the efficacy of antibody-based therapies and vaccines that are currently being developed.

SELECTION OF CITATIONS
SEARCH DETAIL