Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Publication year range
1.
FASEB J ; 37(8): e23096, 2023 08.
Article in English | MEDLINE | ID: mdl-37477964

ABSTRACT

Cardiovascular disease (CVD) is closely associated with obesity through risk factors such as dyslipidemia and chronic low-grade inflammation, which may be affected by diet. Dietary fats have been extensively studied in relation to CVD risk, however these studies have not always yielded consistent results, most likely due to lack in control of experimental conditions and confounding factors. Here we studied the effects of different plant and animal fats on dyslipidemia, inflammation, and atherosclerosis. Ldlr-/-.Leiden mice were fed isocaloric energy-dense diets with translational macronutrient composition for 28 weeks. The diets were identical apart from the type of fat they contained: either (1) a mixture of olive and rapeseed oil, (2) sunflower oil, (3) pork fat, (4) beef fat, or (5) milk fat. The fatty acid composition of the diets was determined and effects on circulating lipid and inflammatory risk factors and atherosclerosis were examined, complemented by adipose tissue histology and liver transcriptomics. While visceral fat mass, adipocyte size, and adipose tissue inflammation were not differentially affected by the diets, atherosclerotic lesion load and severity was more pronounced with increasing dietary saturated fatty acid content and decreasing monounsaturated and polyunsaturated fatty acid content, and hence most pronounced with beef and milk fat. These differential effects were accompanied by increases in pro-atherogenic plasma lipids/lipoproteins (e.g., triglycerides, apolipoprotein B), activation of pro-atherogenic cytokine/chemokine signaling pathways in liver, and with circulating pro-atherogenic mediators of inflammation altogether providing a rationale for the differential effects of plant and animal fats.


Subject(s)
Atherosclerosis , Dyslipidemias , Cattle , Animals , Mice , Dietary Fats/adverse effects , Atherosclerosis/etiology , Atherosclerosis/prevention & control , Fatty Acids , Obesity/complications , Obesity/chemically induced , Inflammation/etiology , Dyslipidemias/chemically induced
2.
J Appl Microbiol ; 135(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38439668

ABSTRACT

AIMS: Enterocins K1 and EJ97 have specific antimicrobial activity against Enterococcus faecium and Enterococcus faecalis, respectively. The aim of this study was to investigate the utility of these enterocins for in vivo treatment of systemic enterococcal infections. METHODS AND RESULTS: The antimicrobial effect in blood was analysed and compared against the effect in saline. Colony forming unit counts revealed that the enterocins killed all the bacteria within 1 hour. Additionally, the bactericidal effect against E. faecalis was more rapid in blood, indicating a possible synergy between EntEJ97 and blood. Importantly, no enterocin resistant mutants emerged in these experiments. Injecting the enterocins intraperitoneally in an in vivo mouse model and using fluorescence and minimum inhibitory concentration determination to estimate concentrations of the peptides in plasma, indicate that the enterocins exist in circulation in therapeutic concentrations. Alanine aminotransferase detection, and haemolysis analysis indicates that there is no detectable liver damage or haemolytic effect after injection. CONCLUSIONS: The study revealed that EntK1 and EntEJ97 are able to kill all bacteria ex vivo in the presence of blood. In vivo experiments determine that the enterocins exist in circulation in therapeutic concentrations without causing liver damage or haemolysis. Future experiments should test these peptides for treatment of infection in a relevant in vivo model.


Subject(s)
Bacterial Infections , Bacteriocins , Enterococcus faecium , Vancomycin-Resistant Enterococci , Animals , Mice , Bacteriocins/pharmacology , Hemolysis , Feasibility Studies , Anti-Bacterial Agents/pharmacology , Peptides/pharmacology , Microbial Sensitivity Tests
3.
Int J Vitam Nutr Res ; 93(1): 29-41, 2023 Feb.
Article in English | MEDLINE | ID: mdl-33928787

ABSTRACT

Background: Vitamin A is essential for a wide range of life processes throughout embryogenesis to adult life. With the aim of developing an in vivo model to monitor retinoic acid receptor (RAR) transactivation real-time in intact animals, we generated transgenic mice carrying a luciferase (luc) reporter gene under the control of retinoic acid response elements (RAREs) consisting of three copies of a direct repeat with five spacing nucleotides (DR5). Methods: Transgenic mice carrying a RARE dependent luciferase reporter flanked with insulator sequence were generated by pronuclear injection. RARE dependent luciferase activity was detected by in vivo imaging or in tissue extracts following manipulations with RAR/retinoid X receptor (RXR) agonists, RAR antagonists or in vitamin A deficient mice. Results: We found a strong induction of luciferase activity in a time and dose dependent manner by retinoic acid as well as RAR agonists, but not by the RXR agonist (using n=4-6 per group; 94 mice). In addition, luciferase activity was strongly reduced in vitamin A-deficient mice (n=6-9; 30 mice). These observations confirm that luciferase activity was controlled by RAR activation in the RARE-luc mouse. Luciferase activity was detectable in various organs, with high activity especially in brain and testis, indicating strong retinoid signalling in these tissues. Conclusion: The RARE-luc transgenic mice, which enabled real-time in vivo assessment of RAR activation, will be useful in understanding the normal physiology of vitamin A, the role of retinoid signalling in pathologies as well as to evaluate pharmacological ligands for RARs.


Subject(s)
Receptors, Retinoic Acid , Vitamin A , Male , Mice , Animals , Transcriptional Activation , Mice, Transgenic , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Tretinoin/pharmacology , Retinoids/pharmacology , Retinoid X Receptors/genetics , Luciferases/genetics
4.
Int Wound J ; 20(1): 120-130, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35633295

ABSTRACT

The study aimed to evaluate the antibacterial efficacy of Lugol's solution 5% and Gentian violet 1% against methicillin-resistant Staphylococcus aureus (MRSA) biofilm in vivo. The bactericidal efficacy for treatment of MRSA-biofilm skin wound infection was tested in a murine model. Luciferase-tagged S. aureus Xen31, a MRSA-strain derived from S. aureus ATCC-3359130, was used for infection. Wounds were made in the skin of mice and infected with MRSA. The mice were treated with Lugol's solution and Gentian violet. Application of the antimicrobial agents started 24 hours post infection and was repeated daily for five-days. The antimicrobial effect on the biofilm bacteria was evaluated by measuring bioluminescence from MRSA daily for seven-days. Lugol's solution and Gentian violet showed a significant reduction in luminescent signals from the first assessment day to all subsequent days (P < .001). Lugol's solution and Gentian violet effectively eradicated MRSA in biofilm in vivo and could be alternatives or in addition to topical antibiotics when MRSA-biofilm wound infection is suspected.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Skin Diseases, Infectious , Soft Tissue Injuries , Wound Infection , Animals , Mice , Gentian Violet/therapeutic use , Staphylococcus aureus , Anti-Bacterial Agents/therapeutic use , Wound Infection/drug therapy , Soft Tissue Injuries/drug therapy , Biofilms
5.
J Nutr ; 152(3): 758-769, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34865102

ABSTRACT

BACKGROUND: A Western diet (WD) is associated with increased inflammation in the large intestine, which is often ascribed to the high dietary fat content. Intestinal inflammation in rodents can be induced by oral administration of dextran sodium sulfate (DSS). However, most studies investigating effects of WD and DSS have not used appropriate low-fat diets (LFDs) as control. OBJECTIVES: To compare the effects of a WD with those of an LFD on colon health in a DSS-induced low-grade colonic inflammation mouse model. METHODS: Six-week-old male C57BL/6JRj mice were fed an LFD (fat = 10.3% energy, n = 24) or a WD (fat = 41.2% energy, n = 24) for 15 wk [Experiment 1 (Exp.1)]. Half the mice on each diet (n = 12) then received 1% DSS in water for 6 d with the remainder (n = 12 in each diet) administered water. Disease activity, proinflammatory genes, inflammatory biomarkers, and fecal microbiota (16S rRNA) were assessed (Exp.1). Follow-up experiments (Exp.2 and Exp.3) were performed to investigate whether fat source (milk or lard; Exp.2) affected outcomes and whether a shift from LFD to WD 1 d prior to 1% DSS exposure caused an immediate effect on DSS-induced inflammation (Exp.3). RESULTS: In Exp.1, 1% DSS treatment significantly increased disease score in the LFD group compared with the WD group (2.7 compared with 0.8; P < 0.001). Higher concentrations of fecal lipocalin (11-fold; P < 0.001), proinflammatory gene expression (≤82-fold), and Proteobacteria were observed in LFD-fed mice compared with the WD group. The 2 fat sources in WDs (Exp.2) revealed the same low inflammation in WD+DSS mice compared with LFD+DSS mice. Finally, the switch from LFD to WD just before DSS exposure resulted in reduced colonic inflammation (Exp.3). CONCLUSIONS: Herein, WDs (with milk or lard) protected mice against DSS-induced colonic inflammation compared with LFD-fed mice. Whether fat intake induces protective mechanisms against DSS-mediated inflammation or inhibits establishment of the DSS-induced colitis model is unclear.


Subject(s)
Colitis , Diet, Western , Animals , Colitis/chemically induced , Colitis/metabolism , Colitis/prevention & control , Colon/metabolism , Dextran Sulfate/pharmacology , Diet, High-Fat/adverse effects , Diet, Western/adverse effects , Disease Models, Animal , Inflammation/chemically induced , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/metabolism , Water/metabolism
6.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Article in English | MEDLINE | ID: mdl-32958719

ABSTRACT

The emergence of antibiotic-resistant pathogens has caused a serious worldwide problem in infection treatment in recent years. One of the pathogens is methicillin-resistant Staphylococcus aureus (MRSA), which is a major cause of skin and soft tissue infections. Alternative strategies and novel sources of antimicrobials to solve antibiotic resistance problems are urgently needed. In this study, we explored the potential of two broad-spectrum bacteriocins, garvicin KS and micrococcin P1, in skin infection treatments. The two bacteriocins acted synergistically with each other and with penicillin G in killing MRSA in vitro The MICs of the antimicrobials in the three-component mixture were 40 ng/ml for micrococcin P1 and 2 µg/ml for garvicin KS and penicillin G, which were 62, 16, and at least 1,250 times lower than their MICs when assessed individually. To assess its therapeutic potential further, we challenged the three-component formulation in a murine skin infection model with the multidrug-resistant luciferase-tagged MRSA Xen31, a strain derived from the clinical isolate S. aureus ATCC 33591. Using the tagged-luciferase activity as a reporter for the presence of Xen31 in wounds, we demonstrated that the three-component formulation was efficient in eradicating the pathogen from treated wounds. Furthermore, compared to Fucidin cream, which is an antibiotic commonly used in skin infection treatments, our formulation was also superior in terms of preventing resistance development.


Subject(s)
Bacteriocins , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteriocins/pharmacology , Disease Models, Animal , Mice , Staphylococcal Infections/drug therapy , Staphylococcus aureus
7.
Appl Environ Microbiol ; 83(2)2017 01 15.
Article in English | MEDLINE | ID: mdl-27815271

ABSTRACT

Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery. IMPORTANCE: This work presents the development of Lactobacillus plantarum as a candidate mucosal vaccine against tuberculosis. Tuberculosis remains one of the top infectious diseases worldwide, and the only available vaccine, bacille Calmette-Guérin (BCG), fails to protect adults and adolescents. Direct antigen delivery to mucosal sites is a promising strategy in tuberculosis vaccine development, and lactic acid bacteria potentially provide easy, safe, and low-cost delivery vehicles for mucosal immunization. We have engineered L. plantarum strains to produce a Mycobacterium tuberculosis fusion antigen and to anchor this antigen to the bacterial cell wall or to the cell membrane. The recombinant strains elicited proliferative antigen-specific T-cell responses in white blood cells from tuberculosis-positive humans and induced specific immune responses after nasal and oral administrations in mice.


Subject(s)
Antigens, Bacterial/immunology , Lactobacillus plantarum/immunology , Tuberculosis Vaccines/immunology , Animals , Female , Immunity, Mucosal/immunology , Immunoglobulin A/immunology , Mice , Mice, Inbred C57BL
8.
Am J Physiol Heart Circ Physiol ; 309(3): H434-49, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26055793

ABSTRACT

Cardiac mitochondrial dysfunction has been implicated in heart failure of diverse etiologies. Generalized mitochondrial disease also leads to cardiomyopathy with various clinical manifestations. Impaired mitochondrial homeostasis may over time, such as in the aging heart, lead to cardiac dysfunction. Mitochondrial DNA (mtDNA), close to the electron transport chain and unprotected by histones, may be a primary pathogenetic site, but this is not known. Here, we test the hypothesis that cumulative damage of cardiomyocyte mtDNA leads to cardiomyopathy and heart failure. Transgenic mice with Tet-on inducible, cardiomyocyte-specific expression of a mutant uracil-DNA glycosylase 1 (mutUNG1) were generated. The mutUNG1 is known to remove thymine in addition to uracil from the mitochondrial genome, generating apyrimidinic sites, which obstruct mtDNA function. Following induction of mutUNG1 in cardiac myocytes by administering doxycycline, the mice developed hypertrophic cardiomyopathy, leading to congestive heart failure and premature death after ∼2 mo. The heart showed reduced mtDNA replication, severely diminished mtDNA transcription, and suppressed mitochondrial respiration with increased Pgc-1α, mitochondrial mass, and antioxidative defense enzymes, and finally failing mitochondrial fission/fusion dynamics and deteriorating myocardial contractility as the mechanism of heart failure. The approach provides a model with induced cardiac-restricted mtDNA damage for investigation of mtDNA-based heart disease.


Subject(s)
DNA Damage , DNA, Mitochondrial/metabolism , Heart Failure/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Dynamics , Animals , Heart Failure/genetics , Mice , Myocardial Contraction , Myocytes, Cardiac/metabolism , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Transcription Factors/genetics , Transcription Factors/metabolism , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism
9.
Nutr Cancer ; 67(2): 305-15, 2015.
Article in English | MEDLINE | ID: mdl-25664890

ABSTRACT

Tomatoes may protect against prostate cancer development, possibly through targeting signaling pathways such as nuclear factor-κB (NF-κB). We investigated whether tomato paste could modulate NF-κB activity and cancer-related gene expression in human derived prostate cancer cells (PC3) and PC3 xenografts. PC3-cells were stably transduced with an NF-κB-luciferase construct, and treated with tomato extracts or vehicle control. Nude mice bearing PC3 xenografts were fed a Western-like diet with or without 10% tomato paste for 6.5 wk. The tomato diet significantly inhibited TNFα stimulated NF-κB activity in cultured PC3 cells, and modulated the expression of genes associated with inflammation, apoptosis, and cancer progression. Accumulation of lycopene occurred in liver, xenografts, and serum of mice fed tomato diet. Tomato paste in the diet did not affect tumor size in mice; however, there was a trend toward inhibition of NF-κB activity in the xenografts. The effect of tomato on gene expression was most prominent in the xenograft microenvironment, where among others NFKB2, STAT3, and STAT6 showed higher expression levels after tomato treatment. Our findings support biological activity of tomatoes in cancer-related inflammation.


Subject(s)
NF-kappa B/drug effects , Plant Extracts/pharmacology , Prostatic Neoplasms/metabolism , RNA, Messenger/drug effects , Solanum lycopersicum/chemistry , Animals , Carotenoids/analysis , Carotenoids/metabolism , Carotenoids/pharmacology , Cell Line, Tumor , Gene Expression , Gene Expression Profiling , Heterografts/drug effects , Humans , Lycopene , Male , Mice , Mice, Nude , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidation-Reduction , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Messenger/metabolism , STAT3 Transcription Factor/drug effects , STAT6 Transcription Factor/drug effects , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Necrosis Factor-alpha/pharmacology
10.
Front Nutr ; 11: 1376493, 2024.
Article in English | MEDLINE | ID: mdl-39077160

ABSTRACT

Introduction: Lipopolysaccharides (LPS) present in the intestine are suggested to enter the bloodstream after consumption of high-fat diets and cause systemic inflammation and metabolic dysregulation through a process named "metabolic endotoxemia." This study aimed to determine the role of orally administered LPS to mice in the early stage of chronic low-grade inflammation induced by diet. Methods: We supplemented the drinking water with E. coli derived LPS to mice fed either high-fat Western-style diet (WSD) or standard chow (SC) for 7 weeks (n = 16-17). Body weight was recorded weekly. Systemic inflammatory status was assessed by in vivo imaging of NF-κB activity at different time points, and glucose dysregulation was assessed by insulin sensitivity test and glucose tolerance test near the end of the study. Systemic LPS exposure was estimated indirectly via quantification of LPS-binding protein (LBP) and antibodies against LPS in plasma, and directly using an LPS-sensitive cell reporter assay. Results and discussion: Our results demonstrate that weight development and glucose regulation are not affected by LPS. We observed a transient LPS dependent upregulation of NF-κB activity in the liver region in both diet groups, a response that disappeared within the first week of LPS administration and remained low during the rest of the study. However, WSD fed mice had overall a higher NF-κB activity compared to SC fed mice at all time points independent of LPS administration. Our findings indicate that orally administered LPS has limited to no impact on systemic inflammation and metabolic dysregulation in mice fed a high-fat western diet and we question the capability of intestinally derived LPS to initiate systemic inflammation through a healthy and uncompromised intestine, even when exposed to a high-fat diet.

11.
mSphere ; 9(2): e0065423, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38286428

ABSTRACT

Specific pathogen-free (SPF) laboratory mice dominate preclinical studies for immunology and vaccinology. Unfortunately, SPF mice often fail to accurately model human responses to vaccination and other immunological perturbations. Several groups have taken different approaches to introduce additional microbial experience to SPF mice to better model human immune experience. How these different models compare is unknown. Here, we directly compare three models: housing SPF mice in a microbe-rich barn-like environment (feralizing), adding wild-caught mice to the barn-like environment (fer-cohoused), or cohousing SPF mice with pet store mice in a barrier facility (pet-cohoused); the two latter representing different murine sources of microbial transmission. Pet-cohousing mice resulted in the greatest microbial exposure. Feralizing alone did not result in the transmission of any pathogens tested, while fer-cohousing resulted in the transmission of several picornaviruses. Murine astrovirus 2, the most common pathogen from pet store mice, was absent from the other two model systems. Previously, we had shown that pet-cohousing reduced the antibody response to vaccination compared with SPF mice. This was not recapitulated in either the feralized or fer-cohoused mice. These data indicate that not all dirty mouse models are equivalent in either microbial experience or immune responses to vaccination. These disparities suggest that more cross model comparisons are needed but also represent opportunities to uncover microbe combination-specific phenotypes and develop more refined experimental models. Given the breadth of microbes encountered by humans across the globe, multiple model systems may be needed to accurately recapitulate heterogenous human immune responses.IMPORTANCEAnimal models are an essential tool for evaluating clinical interventions. Unfortunately, they can often fail to accurately predict outcomes when translated into humans. This failure is due in part to a lack of natural infections experienced by most laboratory animals. To improve the mouse model, we and others have exposed laboratory mice to microbes they would experience in the wild. Although these models have been growing in popularity, these different models have not been specifically compared. Here, we directly compare how three different models of microbial experience impact the immune response to influenza vaccination. We find that these models are not the same and that the degree of microbial exposure affects the magnitude of the response to vaccination. These results provide an opportunity for the field to continue comparing and contrasting these systems to determine which models best recapitulate different aspects of the human condition.


Subject(s)
Immunity , Vaccination , Animals , Mice , Humans , Disease Models, Animal , Specific Pathogen-Free Organisms
12.
Food Nutr Res ; 672023.
Article in English | MEDLINE | ID: mdl-37920675

ABSTRACT

Dietary fiber is a term crudely defined as carbohydrates (CHOs) that escape digestion and uptake in the small intestine. Lignin, which is not a CHO, is also a part of the dietary fiber definition. Dietary fibers come in different sizes and forms, with a variety of combinations of monomeric units. Health authorities worldwide have for many years recommended a diet rich in dietary fibers based on consistent findings that dietary fibers are associated with reduced incidences of major non-communicable diseases, including obesity, type 2 diabetes, cardiovascular disease, and colorectal cancer. Most fibers come from common edible foods from the plant kingdom, but fibers are also found in food additives, supplements, and breast milk. The recommended intake in Nordic Nutrition Recommendations 2012 (NNR2012) is 25 g/d for women and 35 g/d for men, whereas the actual intake is significantly lower, ranging from 16 g/d to 22 g/d in women and 18 g/d to 26 g/d in men. New studies since NNR2012 confirm the current view that dietary fiber is beneficial for health, advocating intakes of at least 25 g/day.

13.
Food Funct ; 14(2): 621-638, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36562448

ABSTRACT

Carotenoids are the most abundant lipophilic secondary plant metabolites and their dietary intake has been related to a large number of potential health benefits relevant for humans, including even reduced total mortality. An important feature is their potential to impact oxidative stress and inflammatory pathways, by interacting with transcription factors. For example, they may act as precursors of bioactive derivatives activating nuclear hormone receptor mediated signalling. These bioactive derivatives, originating e.g. from ß-carotene, i.e. retinoids / vitamin A, can activate the nuclear hormone receptors RARs (retinoic acid receptors). Due to new analytical insights, various novel metabolic pathways were recently outlined to be mediated via distinct nuclear hormone receptor activating pathways that were predicted and further confirmed. In this article, we describe old and novel metabolic pathways from various carotenoids towards novel ligands of alternative nuclear hormone receptors. However, to fully elucidate these pathways, a larger array of techniques and tools, starting from organic synthesis, lipidomics, reporter models, classical in vitro and in vivo models and further omics-approaches and their statistical evaluation are needed to comprehensively and conclusively study this topic. Thus, we further describe state-of-the-art techniques from A to Ω elucidating carotenoid biological mediated activities and describe in detail required materials and methods needed - in practical protocol form - for the various steps of carotenoid investigations.


Subject(s)
Carotenoids , Retinoids , Humans , Retinoids/metabolism , Carotenoids/metabolism , Receptors, Retinoic Acid/metabolism , Vitamin A , Chemistry Techniques, Synthetic
14.
Sci Rep ; 13(1): 13701, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37607995

ABSTRACT

To close the gap between ultra-hygienic research mouse models and the much more environmentally exposed conditions of humans, we have established a system where laboratory mice are raised under a full set of environmental factors present in a naturalistic, farmyard-type habitat-a process we have called feralization. In previous studies we have shown that feralized (Fer) mice were protected against colorectal cancer when compared to conventionally reared laboratory mice (Lab). However, the protective mechanisms remain to be elucidated. Disruption of the protective intestinal barrier is an acknowledged player in colorectal carcinogenesis, and in the current study we assessed colonic mucosal barrier properties in healthy, feralized C57BL/6JRj male mice. While we found no effect of feralization on mucus layer properties, higher expression of genes encoding the mucus components Fcgbp and Clca1 still suggested mucus enforcement due to feralization. Genes encoding other proteins known to be involved in bacterial defense (Itln1, Ang1, Retnlb) and inflammatory mechanisms (Zbp1, Gsdmc2) were also higher expressed in feralized mice, further suggesting that the Fer mice have an altered intestinal mucosal barrier. These findings demonstrate that microbial experience conferred by housing in a farmyard-type environment alters the intestinal barrier properties in mice possibly leading to a more robust protection against disease. Future studies to unravel regulatory roles of feralization on intestinal barrier should aim to conduct proteomic analyses and in vivo performance of the feralized mice intestinal barrier.


Subject(s)
Animals, Laboratory , Colon , Farms , Housing, Animal , Intestinal Mucosa , Laboratories , Animals , Female , Male , Mice , Animals, Laboratory/microbiology , Animals, Laboratory/physiology , Colon/microbiology , Colon/physiology , Gastrointestinal Microbiome , Gene Expression Regulation , Ileum/microbiology , Ileum/physiology , Intestinal Mucosa/anatomy & histology , Intestinal Mucosa/growth & development , Intestinal Mucosa/microbiology , Intestinal Mucosa/physiology , Mice, Inbred C57BL
15.
Front Nutr ; 10: 1336477, 2023.
Article in English | MEDLINE | ID: mdl-38288061

ABSTRACT

Introduction: Avian eggshell membrane (ESM) is a complex extracellular matrix comprising collagens, glycoproteins, proteoglycans, and hyaluronic acid. We have previously demonstrated that ESM possesses anti-inflammatory properties in vitro and regulates wound healing processes in vivo. The present study aimed to investigate if oral intake of micronized ESM could attenuate skeletal muscle aging associated with beneficial alterations in gut microbiota profile and reduced inflammation. Methods: Elderly male C57BL/6 mice were fed an AIN93G diet supplemented with 0, 0.1, 1, or 8% ESM. Young mice were used as reference. The digestibility of ESM was investigated using the static in vitro digestion model INFOGEST for older people and adults, and the gut microbiota profile was analyzed in mice. In addition, we performed a small-scale pre-clinical human study with healthy home-dwelling elderly (>70 years) who received capsules with a placebo or 500 mg ESM every day for 4 weeks and studied the effect on circulating inflammatory markers. Results and discussion: Intake of ESM in elderly mice impacted and attenuated several well-known hallmarks of aging, such as a reduction in the number of skeletal muscle fibers, the appearance of centronucleated fibers, a decrease in type IIa/IIx fiber type proportion, reduced gene expression of satellite cell markers Sdc3 and Pax7 and increased gene expression of the muscle atrophy marker Fbxo32. Similarly, a transition toward the phenotypic characteristics of young mice was observed for several proteins involved in cellular processes and metabolism. The digestibility of ESM was poor, especially for the elderly condition. Furthermore, our experiments showed that mice fed with 8% ESM had increased gut microbiota diversity and altered microbiota composition compared with the other groups. ESM in the diet also lowered the expression of the inflammation marker TNFA in mice and in vitro in THP-1 macrophages. In the human study, intake of ESM capsules significantly reduced the inflammatory marker CRP. Altogether, our results suggest that ESM, a natural extracellular biomaterial, may be attractive as a nutraceutical candidate with a possible effect on skeletal muscle aging possibly through its immunomodulating effect or gut microbiota.

16.
Am J Respir Cell Mol Biol ; 47(3): 288-97, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22538866

ABSTRACT

Disease exacerbations and muscle wasting comprise negative prognostic factors of chronic obstructive pulmonary disease (COPD). Transient systemic inflammation and malnutrition have been implicated in skeletal muscle wasting after acute exacerbations of COPD. However, the interactions between systemic inflammation and malnutrition in their contributions to muscle atrophy, as well as the molecular basis underlying the transition of systemic inflammation to muscle atrophy, remain unresolved. Pulmonary inflammation was induced in mice by an intratracheal instillation of LPS to model acute disease exacerbation. Systemic inflammation, nutritional intake, and body and muscle weights were determined. Muscle inflammatory signaling and atrophy signaling were examined, and the effect of the muscle-specific inactivation of NF-κB on muscle atrophy was assessed in genetically modified mice. The intratracheal LPS instillation was followed by markedly elevated circulating cytokine concentrations and NF-κB activation in extrapulmonary tissues, including skeletal muscle. The administration of intratracheal LPS increased the expression of muscle E3 ubiquitin ligases, which govern muscle proteolysis, in particular MuRF1, and caused a rapid loss of muscle mass. Reduced food intake only partly accounted for the observed muscle atrophy, and did not activate NF-κB in muscle. Rather, plasma transfer experiments revealed the presence of NF-κB-signaling and atrophy-signaling properties in the circulation of intratracheal LPS-treated mice. The genetic inhibition of muscle NF-κB activity suppressed intratracheal LPS-induced MuRF1 expression and resulted in a significant sparing of muscle tissue. Systemic inflammation and malnutrition contribute to the muscle wasting induced by acute pulmonary inflammation via distinct mechanisms, and muscle NF-κB activation is required for the transition from inflammatory to muscle atrophy signaling.


Subject(s)
Muscle, Skeletal/pathology , Muscular Atrophy , NF-kappa B/metabolism , Pneumonia/pathology , Animals , Gene Expression , Lipopolysaccharides/administration & dosage , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Pneumonia/metabolism , Signal Transduction
17.
Dermatology ; 225(4): 304-11, 2012.
Article in English | MEDLINE | ID: mdl-23296452

ABSTRACT

Retinoid-X receptor (RXR)- and retinoic acid receptor (RAR)-mediated signaling is induced by retinoic acids (RA), which are involved in the regulation of skin permeability, differentiation and immune response. Dysregulation of retinoid signaling is present in various skin disorders. Topically and systemically administered synthetic RAR or RXR agonists might influence retinoid-mediated signaling in the skin of RARE reporter animals and gene expression analysis for retinoid, skin homeostasis and skin inflammation marker genes and local retinoid concentrations. Mice were treated orally and topically with synthetic ligands and bioimaging, QRT-PCR and retinoid analysis were performed. Topical application of the synthetic RAR ligand AM580 significantly enhanced retinoid signaling in skin while topical application of the RXR ligand LG268 did not influence retinoic acid receptor response elements (RARE)-mediated signaling. Systemic treatments with LG268 decreased the expression of genes involved in skin homeostasis, RA synthesis and skin RA concentrations, while it increased various markers for skin inflammation and RA degradation, which corresponds to decreased skin RARE signaling. We conclude from these observations that increased systemic concentrations of an RXR -ligand may be one reason for reduced retinoid signaling, -reduced all-trans RA levels in the skin, reduced epidermal homeostasis and increased skin inflammation marker expression with potential relevance for various skin disorders, like atopic dermatitis.


Subject(s)
Benzoates/pharmacology , Retinoid X Receptors/metabolism , Signal Transduction/drug effects , Skin Diseases/metabolism , Skin/drug effects , Tetrahydronaphthalenes/pharmacology , Tretinoin/metabolism , Administration, Oral , Administration, Topical , Animals , Chromatography, High Pressure Liquid , Female , Ligands , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal , Organic Chemicals/pharmacology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptors, Retinoic Acid/metabolism , Response Elements/genetics , Skin/metabolism , Tandem Mass Spectrometry , Vitamin A/administration & dosage
18.
Free Radic Biol Med ; 188: 298-311, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35752373

ABSTRACT

The enzyme NADPH oxidase 1 (NOX1) is a major producer of superoxide which together with other reactive oxygen and nitrogen species (ROS/RNS) are implicated in maintaining a healthy epithelial barrier in the gut. While previous studies have indicated NOX1's involvement in microbial modulation in the small intestine, less is known about the effects of NOX1-dependent ROS/RNS formation in the colon. We investigated the role of NOX1 in the colon of NOX1 knockout (KO) and wild type (WT) mice, under mild and subclinical low-grade colon inflammation induced by 1% dextran sulfate sodium (DSS). Ex vivo imaging of ROS/RNS in the colon revealed that absence of NOX1 strongly decreased ROS/RNS production, particularly during DSS treatment. Furthermore, while absence of NOX1 did not affect disease activity, some markers of inflammation (mRNA: Tnfa, Il6, Ptgs2; protein: lipocalin 2) in the colonic mucosa tended to be higher in NOX1 KO than in WT mice following DSS treatment. Lack of NOX1 also extensively modulated the bacterial community in the colon (16S rRNA gene sequencing), where NOX1 KO mice were characterized mainly by lower α-diversity (richness and evenness), higher abundance of Firmicutes, Akkermansia, and Oscillibacter, and lower abundance of Bacteroidetes and Alistipes. Together, our data suggest that NOX1 is pivotal for colonic ROS/RNS production in mice both during steady-state (i.e., no DSS treatment) and during 1% DSS-induced low-grade inflammation and for modulation of the colonic microbiota, with potential beneficial consequences for intestinal health.


Subject(s)
Colitis , Microbiota , NADPH Oxidase 1 , Animals , Colitis/chemically induced , Colitis/genetics , Colitis/metabolism , Colon/microbiology , Dextran Sulfate/toxicity , Inflammation , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 1/genetics , NADPH Oxidase 1/metabolism , NADPH Oxidases/genetics , RNA, Ribosomal, 16S/genetics , Reactive Oxygen Species/pharmacology
19.
Antibiotics (Basel) ; 11(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36551348

ABSTRACT

The rise of antibiotic-resistant bacteria is among the biggest challenges in human and veterinary medicine. One of the major factors that contributes to resistance is use of frontline clinical antibiotics in veterinary practices. To avoid this problem, searching for antimicrobials aimed at veterinary applications is becoming especially important. Thiopeptide micrococcin P1 and leaderless peptide EntEJ97s are two different bacteriocins that are very active against many gram-positive bacteria; however, sensitive bacteria can rapidly develop resistance towards those bacteriocins. To overcome this problem, we searched for synergy between those bacteriocins and conventional antibiotics against methicillin-resistant Staphylococcus pseudintermedius (MRSP): a common pathogen in animal skin infections. The two bacteriocins acted synergistically with each other and with penicillin G against MRSP clinical isolates in both planktonic and biofilm assays; they also prevented resistance development. The therapeutic potential was further validated in a murine skin infection model that showed that a combination of micrococcin P1, EntEJ97s and penicillin G reduced cell-forming units of MRSP by 2-log10 CFU/g. Taken together, our data show that a combination of bacteriocins with conventional antibiotics can not only prevent resistance development but also pave the way to revitalize some old, less useful antibiotics, such as penicillin, which by itself has no effect on methicillin-resistant pathogens.

20.
PLoS One ; 17(8): e0272288, 2022.
Article in English | MEDLINE | ID: mdl-35939489

ABSTRACT

Rodent studies have shown that legumes can reduce chemical induced colonic inflammation, but the role of faba bean fractions for colon health has not been described. We have investigated the role of protein and fiber fractions of faba beans for colonic health and microbiota composition in a low-grade inflammation mice-model when incorporated in a Western diet (WD). The diet of sixty C57BL/6JRj male mice was standardized to a WD (41% fat, 43% carbohydrates) before were randomly assigned to four groups (n = 12) receiving either 1) WD with 30% of the protein replaced with faba-bean proteins, 2) WD with 7% of the fiber replaced with faba-bean fibers, 3) WD with protein and fiber fractions or 4) plain WD (n = 24). Low-grade inflammation was induced by 1% dextran sodium sulfate (DSS) given to mice for the last six days of the trial. Half (n = 12) in group 4) were given only water (controls). Prior to DSS, body weight, energy intake, glucose and insulin tolerance assays were performed. Inflammatory status in the colon was assessed by biomarkers of inflammation and qRT-PCR analyses of inflammatory related genes. Fecal microbiota composition was assessed by 16S rRNA gene sequencing. 1% DSS treatment increased levels in fecal lipocalin-2 and induced disease activity index score, but the presence of faba bean fractions in WD did not influence these indicators nor the expression level of inflammatory associated genes. However, the mice that had faba-bean proteins had a lower amount of Proteobacteria compared the group on plain WD. The Actinobacteria abundance was also lower in the group that had fiber fraction from faba-beans. Overall, outcomes indicated that in a low-grade inflammation model, replacement of protein and or fiber in a WD with faba bean fractions had marginal effects on inflammatory parameters and colonic microbiota.


Subject(s)
Diet, Western , Vicia faba , Animals , Dextran Sulfate/toxicity , Diet, Western/adverse effects , Dietary Fiber , Inflammation/chemically induced , Male , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL