Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Proteome Res ; 13(12): 5837-47, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25337893

ABSTRACT

Targeted measurements of low abundance proteins in complex mixtures are in high demand in many areas, not the least in clinical applications measuring biomarkers. We here present the novel platform AFFIRM (AFFInity sRM) that utilizes the power of antibody fragments (scFv) to efficiently enrich for target proteins from a complex background and the exquisite specificity of SRM-MS based detection. To demonstrate the ability of AFFIRM, three target proteins of interest were measured in a serum background in single-plexed and multiplexed experiments in a concentration range of 5-1000 ng/mL. Linear responses were demonstrated down to low ng/mL concentrations with high reproducibility. The platform allows for high throughput measurements in 96-well format, and all steps are amendable to automation and scale-up. We believe the use of recombinant antibody technology in combination with SRM MS analysis provides a powerful way to reach sensitivity, specificity, and reproducibility as well as the opportunity to build resources for fast on-demand implementation of novel assays.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Proteome/metabolism , Proteomics/methods , Single-Chain Antibodies/metabolism , Amino Acid Sequence , Antibody Affinity/immunology , BRCA1 Protein/blood , BRCA1 Protein/immunology , BRCA1 Protein/metabolism , Humans , Keratin-19/blood , Keratin-19/immunology , Keratin-19/metabolism , Mucin-1/blood , Mucin-1/immunology , Mucin-1/metabolism , Peptides/blood , Peptides/immunology , Peptides/metabolism , Proteome/immunology , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Reproducibility of Results , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
2.
J Immunother Cancer ; 10(11)2022 11.
Article in English | MEDLINE | ID: mdl-36323431

ABSTRACT

BACKGROUND: Indications with poor T-cell infiltration or deficiencies in T-cell priming and associated unresponsiveness to established immunotherapies represent an unmet medical need in oncology. CD40-targeting therapies designed to enhance antigen presentation, generate new tumor-specific T cells, and activate tumor-infiltrating myeloid cells to remodel the tumor microenvironment, represent a promising opportunity to meet this need. In this study, we present the first in vivo data supporting a role for tumor-associated antigen (TAA)-mediated uptake and cross-presentation of tumor antigens to enhance tumor-specific T-cell priming using CD40×TAA bispecific antibodies, a concept we named Neo-X-Prime. METHODS: Bispecific antibodies targeting CD40 and either of two cell-surface expressed TAA, carcinoembryonic antigen-related cell adhesion molecule 5 (CEA) or epithelial cell adhesion molecule (EpCAM), were developed in a tetravalent format. TAA-conditional CD40 agonism, activation of tumor-infiltrating immune cells, antitumor efficacy and the role of delivery of tumor-derived material such as extracellular vesicles, tumor debris and exosomes by the CD40×TAA bispecific antibodies were demonstrated in vitro using primary human and murine cells and in vivo using human CD40 transgenic mice with different tumor models. RESULTS: The results showed that the CD40×TAA bispecific antibodies induced TAA-conditional CD40 activation both in vitro and in vivo. Further, it was demonstrated in vitro that they induced clustering of tumor debris and CD40-expressing cells in a dose-dependent manner and superior T-cell priming when added to dendritic cells (DC), ovalbumin (OVA)-specific T cells and OVA-containing tumor debris or exosomes. The antitumor activity of the Neo-X-Prime bispecific antibodies was demonstrated to be significantly superior to the monospecific CD40 antibody, and the resulting T-cell dependent antitumor immunity was directed to tumor antigens other than the TAA used for targeting (EpCAM). CONCLUSIONS: The data presented herein support the hypothesis that CD40×TAA bispecific antibodies can engage tumor-derived vesicles containing tumor neoantigens to myeloid cells such as DCs resulting in an improved DC-mediated cross-priming of tumor-specific CD8+ T cells. Thus, this principle may offer therapeutics strategies to enhance tumor-specific T-cell immunity and associated clinical benefit in indications characterized by poor T-cell infiltration or deficiencies in T-cell priming.


Subject(s)
Antibodies, Bispecific , Cross-Priming , Humans , Mice , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , CD8-Positive T-Lymphocytes , Epithelial Cell Adhesion Molecule/metabolism , Dendritic Cells , CD40 Antigens/metabolism , Antigens, Neoplasm
3.
Nat Commun ; 7: 13322, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27827359

ABSTRACT

Small cell lung cancer (SCLC) is characterized by prevalent circulating tumour cells (CTCs), early metastasis and poor prognosis. We show that SCLC patients (37/38) have rare CTC subpopulations co-expressing vascular endothelial-cadherin (VE-cadherin) and cytokeratins consistent with vasculogenic mimicry (VM), a process whereby tumour cells form 'endothelial-like' vessels. Single-cell genomic analysis reveals characteristic SCLC genomic changes in both VE-cadherin-positive and -negative CTCs. Higher levels of VM are associated with worse overall survival in 41 limited-stage patients' biopsies (P<0.025). VM vessels are also observed in 9/10 CTC patient-derived explants (CDX), where molecular analysis of fractionated VE-cadherin-positive cells uncovered copy-number alterations and mutated TP53, confirming human tumour origin. VE-cadherin is required for VM in NCI-H446 SCLC xenografts, where VM decreases tumour latency and, despite increased cisplatin intra-tumour delivery, decreases cisplatin efficacy. The functional significance of VM in SCLC suggests VM regulation may provide new targets for therapeutic intervention.


Subject(s)
DNA Copy Number Variations , Lung Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neovascularization, Pathologic/pathology , Small Cell Lung Carcinoma/pathology , Animals , Antigens, CD/metabolism , Biopsy , Cadherins/metabolism , Cell Line, Tumor , Cohort Studies , Female , Humans , Keratins/metabolism , Lung/pathology , Lung Neoplasms/blood supply , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Male , Mice , Middle Aged , Mutation , Neovascularization, Pathologic/genetics , Single-Cell Analysis , Small Cell Lung Carcinoma/blood supply , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/mortality , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
4.
J Immunol Methods ; 376(1-2): 69-78, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22154743

ABSTRACT

Cytomegalovirus (CMV) causes severe sequelae in congenitally infected newborns and may cause life-threatening disease in immuno-deficient patients. Recent findings demonstrate the possibility to alleviate the disease by infusing intravenous immunoglobulin G (IgG) preparations, indicating that antibodies are an effective therapeutic option. Modern molecular methodologies, like phage display, allow for the development of specific antibodies targeting virtually any antigen, including those of CMV. However, such methodologies do not in general result in products that by themselves mediate biological activity. To facilitate a semi-high-throughput approach for functional screening in future efforts to develop efficacious antibodies against CMV, we have integrated two different approaches to circumvent potential bottlenecks in such efforts. Firstly, we explored an approach that permits easy transfer of antibody fragment encoding genes from commonly used phage display vectors into vectors for the production of divalent immunoglobulins. Secondly, we demonstrate that such proteins can be applied in a novel reporter-based neutralization assay to establish a proof-of-concept workflow for the generation of neutralizing antibodies against CMV. We validated our approach by showing that divalent antibodies raised against the antigenic domain (AD)-2 region of gB effectively neutralized three different CMV strains (AD169, Towne and TB40/E), whereas two antibodies against the AD-1 region of gB displayed minor neutralizing capabilities. In conclusion, the methods investigated in this proof-of-concept study enables for a semi-high-throughput workflow in the screening and investigation of biological active antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Peptide Library , Single-Chain Antibodies/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , Cloning, Molecular/methods , Cytomegalovirus Infections/prevention & control , DNA, Viral/chemistry , DNA, Viral/genetics , Humans , Neutralization Tests , Recombinant Proteins/genetics , Recombinant Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL