Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genet Med ; 26(3): 101050, 2024 03.
Article in English | MEDLINE | ID: mdl-38126281

ABSTRACT

PURPOSE: Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS. METHODS: We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation. RESULTS: We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders. CONCLUSION: We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS.


Subject(s)
Abnormalities, Multiple , Autism Spectrum Disorder , Bone Diseases, Developmental , Craniofacial Abnormalities , Deafness , Intellectual Disability , Neurodevelopmental Disorders , Humans , DNA Methylation/genetics , Autism Spectrum Disorder/genetics , Ubiquitin-Specific Peptidase 7/genetics , Epigenomics , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , Biomarkers
2.
Clin Genet ; 105(5): 499-509, 2024 05.
Article in English | MEDLINE | ID: mdl-38221796

ABSTRACT

Hao-Fountain syndrome (HAFOUS, OMIM: #616863) is a neurodevelopmental disorder caused by pathogenic variants in the gene USP7 coding for USP7, a protein involved in several crucial cellular homeostatic mechanisms and the recently described MUST complex. The phenotype of HAFOUS is insufficiently understood, yet there is a great need to better understand the spectrum of disease, genotype-phenotype correlations, and disease trajectories. We now present a larger cohort of 32 additional individuals and provide further clinical information about six previously reported individuals. A questionnaire-based study was performed to characterize the phenotype of Hao-Fountain syndrome more clearly, to highlight new traits, and to better distinguish the disease from related neurodevelopmental disorders. In addition to confirming previously described features, we report hyperphagia and increased body weight in a subset of individuals. HAFOUS patients present an increased rate of birth complications, congenital anomalies, and abnormal pain thresholds. Speech impairment emerges as a potential hallmark of Hao-Fountain syndrome. Cognitive testing reports reveal borderline intellectual functioning on average, although some individuals score in the range of intellectual disability. Finally, we created a syndrome-specific severity score. This score neither indicates a sex- nor age-specific difference of clinical severity, yet highlights a more severe outcome when amino acid changes colocalize to the catalytic domain of the USP7 protein.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Craniofacial Abnormalities , Deafness , Intellectual Disability , Neurodevelopmental Disorders , Humans , Ubiquitin-Specific Peptidase 7/genetics , Intellectual Disability/genetics , Intellectual Disability/complications , Abnormalities, Multiple/genetics , Craniofacial Abnormalities/genetics , Neurodevelopmental Disorders/genetics , Phenotype
3.
Am J Med Genet A ; 188(9): 2627-2636, 2022 09.
Article in English | MEDLINE | ID: mdl-35789103

ABSTRACT

We present the phenotypes of seven previously unreported patients with Marbach-Schaaf neurodevelopmental syndrome, all carrying the same recurrent heterozygous missense variant c.1003C>T (p.Arg335Trp) in PRKAR1B. Clinical features of this cohort include global developmental delay and reduced sensitivity to pain, as well as behavioral anomalies. Only one of the seven patients reported here was formally diagnosed with autism spectrum disorder (ASD), while ASD-like features were described in others, overall indicating a lower prevalence of ASD in Marbach-Schaaf neurodevelopmental syndrome than previously assumed. The clinical spectrum of the current cohort is similar to that reported in the initial publication, delineating a complex developmental disorder with behavioral and neurologic features. PRKAR1B encodes the regulatory subunit R1ß of the protein kinase A complex (PKA), and is expressed in the adult and embryonal central nervous system in humans. PKA is crucial to a plethora of cellular signaling pathways, and its composition of different regulatory and catalytic subunits is cell-type specific. We discuss potential molecular disease mechanisms underlying the patients' phenotypes with respect to the different known functions of PKA in neurons, and the phenotypes of existing R1ß-deficient animal models.


Subject(s)
Autism Spectrum Disorder , Neurodevelopmental Disorders , Adult , Animals , Autism Spectrum Disorder/genetics , Cohort Studies , Humans , Neurodevelopmental Disorders/genetics , Phenotype , Syndrome
4.
J Pathol ; 255(3): 270-284, 2021 11.
Article in English | MEDLINE | ID: mdl-34309874

ABSTRACT

Activation of the mechanistic target of rapamycin (mTOR) pathway is frequently found in cancer, but mTOR inhibitors have thus far failed to demonstrate significant antiproliferative efficacy in the majority of cancer types. Besides cancer cell-intrinsic resistance mechanisms, it is conceivable that mTOR inhibitors impact on non-malignant host cells in a manner that ultimately supports resistance of cancer cells. Against this background, we sought to analyze the functional consequences of mTOR inhibition in hepatocytes for the growth of metastatic colon cancer. To this end, we established liver epithelial cell (LEC)-specific knockout (KO) of mTOR (mTORLEC ) mice. We used these mice to characterize the growth of colorectal liver metastases with or without partial hepatectomy to model different clinical settings. Although the LEC-specific loss of mTOR remained without effect on metastasis growth in intact liver, partial liver resection resulted in the formation of larger metastases in mTORLEC mice compared with wildtype controls. This was accompanied by significantly enhanced inflammatory activity in LEC-specific mTOR KO livers after partial liver resection. Analysis of NF-ĸB target gene expression and immunohistochemistry of p65 displayed a significant activation of NF-ĸB in mTORLEC mice, suggesting a functional importance of this pathway for the observed inflammatory phenotype. Taken together, we show an unexpected acceleration of liver metastases upon deletion of mTOR in LECs. Our results support the notion that non-malignant host cells can contribute to resistance against mTOR inhibitors and encourage testing whether anti-inflammatory drugs are able to improve the efficacy of mTOR inhibitors for cancer therapy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Colonic Neoplasms/pathology , Hepatocytes/metabolism , Liver Neoplasms/secondary , TOR Serine-Threonine Kinases/metabolism , Animals , Liver Neoplasms/metabolism , Mice , Mice, Knockout , Neoplasm Metastasis/pathology
5.
Clin Genet ; 100(3): 298-307, 2021 09.
Article in English | MEDLINE | ID: mdl-34013972

ABSTRACT

Short stature is a common phenotype in children with Schaaf-Yang syndrome (SYS). Prader-Willi syndrome (PWS) and SYS share several phenotypic features including short stature, muscular hypotonia and developmental delay/intellectual disability. Evidence exists that similar to PWS, growth hormone (GH) deficiency may also be a feature of SYS. Recombinant human GH (rhGH) therapy has been approved for PWS, but the effects of rhGH therapy in individuals with SYS have not yet been documented. This retrospective, questionnaire-based study analyzes the prevalence of rhGH therapy in children with SYS, the effects of rhGH therapy on anthropometric measures, and parental perception of the treatment. Twenty-six individuals with SYS were sent a clinical questionnaire and a request for growth charts. We found a significant increase in height z-score (p* = 0.04) as well as a significant decrease in body mass index 6 months after rhGH therapy initiation (p* = 0.04). Furthermore, height z-scores of the treated group (mean z-score = -1.00) were significantly higher than those of the untreated group (mean z-score = -3.36, p = 0.01) at time of enrollment. All parents reported an increase in muscle strength and endurance, and several families noted beneficial effects such as improved cognition and motor development.


Subject(s)
Abnormalities, Multiple/drug therapy , Body Size/drug effects , Growth Disorders/drug therapy , Human Growth Hormone/therapeutic use , Abnormalities, Multiple/genetics , Adolescent , Body Composition/drug effects , Child , Child, Preschool , Drug Utilization Review , Female , Human Growth Hormone/adverse effects , Humans , Infant , Infant, Newborn , Male , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , Retrospective Studies , Surveys and Questionnaires , Syndrome
6.
Radiographics ; 41(1): 8-31, 2021.
Article in English | MEDLINE | ID: mdl-33337967

ABSTRACT

Acute chest pain is a common reason for visits to the emergency department. It is important to distinguish among the various causes of acute chest pain, because treatment and prognosis are substantially different among the various conditions. It is critical to exclude acute coronary syndrome (ACS), which is a major cause of hospitalization, death, and health care costs worldwide. Myocardial ischemia is defined as potential myocyte death secondary to an imbalance between oxygen supply and demand due to obstruction of an epicardial coronary artery. Unobstructed coronary artery disease can have cardiac causes (eg, myocarditis, myocardial infarction with nonobstructed coronary arteries, and Takotsubo cardiomyopathy), and noncardiac diseases can manifest with acute chest pain and increased serum cardiac biomarker levels. In the emergency department, cardiac MRI may aid in the identification of patients with non-ST-segment elevation myocardial infarction or unstable angina or ACS with unobstructed coronary artery disease, if the patient's clinical history is known to be atypical. Also, cardiac MRI is excellent for risk stratification of patients for adverse left ventricular remodeling or major adverse cardiac events. Cardiac MRI should be performed early in the course of the disease (<2 weeks after onset of symptoms). Steady-state free-precession T2-weighted MRI with late gadolinium enhancement is the mainstay of the cardiac MRI protocol. Further sequences can be used to analyze the different pathophysiologic subjacent mechanisms of the disease, such as microvascular obstruction or intramyocardial hemorrhage. Finally, cardiac MRI may provide several prognostic biomarkers that help in follow-up of these patients. Online supplemental material is available for this article. ©RSNA, 2020.


Subject(s)
Contrast Media , Myocardial Infarction , Chest Pain/diagnostic imaging , Chest Pain/etiology , Gadolinium , Humans , Magnetic Resonance Imaging
7.
J Clin Microbiol ; 52(8): 3053-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24850345

ABSTRACT

Amplification of hepatitis C virus (HCV) RNA from blood detected occult HCV infections in 30.9% of 210 HCV-seronegative dialysis patients with abnormal liver enzyme levels that had evaded standard HCV testing practices. Isolated HCV core-specific antibody detection identified three additional anti-HCV screening-negative patients lacking HCV RNA amplification in blood who were considered potentially infectious. Together, these findings may affect management of the dialysis setting.


Subject(s)
Hepatitis C Antibodies/blood , Hepatitis C/diagnosis , Peptide Fragments/immunology , RNA, Viral/blood , Renal Dialysis/adverse effects , Viral Core Proteins/immunology , Adult , Aged , Aged, 80 and over , Enzymes/blood , Female , Hepatitis C/virology , Humans , Liver Function Tests , Male , Middle Aged
8.
medRxiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-37503210

ABSTRACT

Dysmorphologists sometimes encounter challenges in recognizing disorders due to phenotypic variability influenced by factors such as age and ethnicity. Moreover, the performance of Next Generation Phenotyping Tools such as GestaltMatcher is dependent on the diversity of the training set. Therefore, we developed GestaltMatcher Database (GMDB) - a global reference for the phenotypic variability of rare diseases that complies with the FAIR-principles. We curated dysmorphic patient images and metadata from 2,224 publications, transforming GMDB into an online dynamic case report journal. To encourage clinicians worldwide to contribute, each case can receive a Digital Object Identifier (DOI), making it a citable micro-publication. This resulted in a collection of 2,312 unpublished images, partly with longitudinal data. We have compiled a collection of 10,189 frontal images from 7,695 patients representing 683 disorders. The web interface enables gene- and phenotype-centered queries for registered users (https://db.gestaltmatcher.org/). Despite the predominant European ancestry of most patients (59%), our global collaborations have facilitated the inclusion of data from frequently underrepresented ethnicities, with 17% Asian, 4% African, and 6% with other ethnic backgrounds. The analysis has revealed a significant enhancement in GestaltMatcher performance across all ethnic groups, incorporating non-European ethnicities, showcasing a remarkable increase in Top-1-Accuracy by 31.56% and Top-5-Accuracy by 12.64%. Importantly, this improvement was achieved without altering the performance metrics for European patients. GMDB addresses dysmorphology challenges by representing phenotypic variability and including underrepresented groups, enhancing global diagnostic rates and serving as a vital clinician reference database.

9.
Res Sq ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38903062

ABSTRACT

The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher Database (GMDB) as a reference dataset for medical images of patients with rare genetic disorders from around the world. We collected 10,980 frontal facial images - more than a quarter previously unpublished - from 8,346 patients, representing 581 rare disorders. Although the predominant ancestry is still European (67%), data from underrepresented populations have been increased considerably via global collaborations (19% Asian and 7% African). This includes previously unpublished reports for more than 40% of the African patients. The NGP analysis on this diverse dataset revealed characteristic performance differences depending on the composition of training and test sets corresponding to genetic relatedness. For clinical use of NGP, incorporating non-European patients resulted in a profound enhancement of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. Importantly, this improvement in delineating the correct disorder from a facial portrait was achieved without decreasing the performance on European patients. By design, GMDB complies with the FAIR principles by rendering the curated medical data findable, accessible, interoperable, and reusable. This means GMDB can also serve as data for training and benchmarking. In summary, our study on facial dysmorphism on a global sample revealed a considerable cross ancestral phenotypic variability confounding NGP that should be counteracted by international efforts for increasing data diversity. GMDB will serve as a vital reference database for clinicians and a transparent training set for advancing NGP technology.

10.
BMJ Open ; 14(6): e080746, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834317

ABSTRACT

INTRODUCTION: Autism is a common neurodevelopmental condition with a complex genetic aetiology that includes contributions from monogenic and polygenic factors. Many autistic people have unmet healthcare needs that could be served by genomics-informed research and clinical trials. The primary aim of the European Autism GEnomics Registry (EAGER) is to establish a registry of participants with a diagnosis of autism or an associated rare genetic condition who have undergone whole-genome sequencing. The registry can facilitate recruitment for future clinical trials and research studies, based on genetic, clinical and phenotypic profiles, as well as participant preferences. The secondary aim of EAGER is to investigate the association between mental and physical health characteristics and participants' genetic profiles. METHODS AND ANALYSIS: EAGER is a European multisite cohort study and registry and is part of the AIMS-2-TRIALS consortium. EAGER was developed with input from the AIMS-2-TRIALS Autism Representatives and representatives from the rare genetic conditions community. 1500 participants with a diagnosis of autism or an associated rare genetic condition will be recruited at 13 sites across 8 countries. Participants will be given a blood or saliva sample for whole-genome sequencing and answer a series of online questionnaires. Participants may also consent to the study to access pre-existing clinical data. Participants will be added to the EAGER registry and data will be shared externally through established AIMS-2-TRIALS mechanisms. ETHICS AND DISSEMINATION: To date, EAGER has received full ethical approval for 11 out of the 13 sites in the UK (REC 23/SC/0022), Germany (S-375/2023), Portugal (CE-085/2023), Spain (HCB/2023/0038, PIC-164-22), Sweden (Dnr 2023-06737-01), Ireland (230907) and Italy (CET_62/2023, CEL-IRCCS OASI/24-01-2024/EM01, EM 2024-13/1032 EAGER). Findings will be disseminated via scientific publications and conferences but also beyond to participants and the wider community (eg, the AIMS-2-TRIALS website, stakeholder meetings, newsletters).


Subject(s)
Autistic Disorder , Genomics , Registries , Whole Genome Sequencing , Humans , Europe , Autistic Disorder/genetics , Cohort Studies , Multicenter Studies as Topic , Research Design , Child , Male
11.
Amino Acids ; 44(2): 361-71, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22722543

ABSTRACT

Maillard reaction contributes to the chemical modification and cross-linking of proteins. This process plays a significant role in the aging process and determination of animal longevity. Oxidative conditions promote the Maillard reaction. Mitochondria are the primary site of oxidants due to the reactive molecular species production. Mitochondrial proteome cysteine residues are targets of oxidative attack due to their specific chemistry and localization. Their chemical, non-enzymatic modification leads to dysfunctional proteins, which entail cellular senescence and organismal aging. Previous studies have consistently shown that caloric and methionine restrictions, nutritional interventions that increase longevity, decrease the rate of mitochondrial oxidant production and the physiological steady-state levels of markers of oxidative damage to macromolecules. In this scenario, we have detected S-(carboxymethyl)-cysteine (CMC) as a new irreversible chemical modification in mitochondrial proteins. CMC content in mitochondrial proteins significantly correlated with that of the lysine-derived analog N (ε)-(carboxymethyl)-lysine. The concentration of CMC is, however, one order of magnitude lower compared with CML likely due in part to the lower content of cysteine with respect to lysine of the mitochondrial proteome. CMC concentrations decreases in liver mitochondrial proteins of rats subjected to 8.5 and 25 % caloric restriction, as well as in 40 and 80 % methionine restriction. This is associated with a concomitant and significant increase in the protein content of sulfhydryl groups. Data presented here evidence that CMC, a marker of Cys-AGE formation, could be candidate as a biomarker of mitochondrial damage during aging.


Subject(s)
Carbocysteine/metabolism , Liver/metabolism , Methionine/metabolism , Mitochondrial Proteins/metabolism , Animals , Caloric Restriction , Carbocysteine/chemistry , Liver/chemistry , Male , Methionine/analysis , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Molecular Structure , Oxidative Stress , Rats , Rats, Wistar
12.
Eur Respir J ; 40(6): 1502-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22496314

ABSTRACT

Changes in the indications for tracheostomy in children have led to the progressively greater involvement of the paediatric pulmonologist in the care of these patients. The aim of this study was to review the current profile of tracheostomised children in Spain. We undertook a longitudinal, multicentre study over 2 yrs (2008 and 2009) of all patients aged between 1 day and 18 yrs who had a tracheostomy. The study, involving 18 Spanish hospitals, included 249 patients, of whom 150 (60.2%) were <1 yr of age. The main indications for the procedure were prolonged ventilation (n=156, 62.6%), acquired subglottic stenosis (n=34, 13.6%), congenital or acquired craniofacial anomalies (n=25, 10%) and congenital airway anomalies (n=24, 9.6%). The most frequent underlying disorders were neurological diseases (n=126, 50.6%) and respiratory diseases (n=98, 39.3%). Over the 2-yr study period, 92 (36.9%) children required ventilatory support, and decannulation was achieved in 59 (23.7%). Complications arose in 117 patients (46.9%). Mortality attributed to the underlying condition was 12.5% and that related directly to the tracheostomy was 3.2%. Respiratory complexity of tracheostomised children necessitates prolonged, multidisciplinary follow-up, which can often extend to adulthood.


Subject(s)
Tracheostomy/methods , Adolescent , Child , Child, Preschool , Female , Hospitals, Pediatric , Humans , Infant , Infant, Newborn , Longitudinal Studies , Male , Pediatrics/methods , Respiration, Artificial , Spain , Time Factors
13.
Front Cell Dev Biol ; 10: 1020609, 2022.
Article in English | MEDLINE | ID: mdl-36726590

ABSTRACT

In 2016 and 2018, Chung, Jansen and others described a new syndrome caused by haploinsufficiency of PHIP (pleckstrin homology domain interacting protein, OMIM *612,870) and mainly characterized by developmental delay (DD), learning difficulties/intellectual disability (ID), behavioral abnormalities, facial dysmorphism and obesity (CHUJANS, OMIM #617991). So far, PHIP alterations appear to be a rare cause of DD/ID. "Omics" technologies such as exome sequencing or array analyses have led to the identification of distinct types of alterations of PHIP, including, truncating variants, missense substitutions, splice variants and large deletions encompassing portions of the gene or the entire gene as well as adjacent genomic regions. We collected clinical and genetic data of 23 individuals with PHIP-associated Chung-Jansen syndrome (CHUJANS) from all over Europe. Follow-up investigations (e.g. Sanger sequencing, qPCR or Fluorescence-in-situ-Hybridization) and segregation analysis showed either de novo occurrence or inheritance from an also (mildly) affected parent. In accordance with previously described patients, almost all individuals reported here show developmental delay (22/23), learning disability or ID (22/23), behavioral abnormalities (20/23), weight problems (13/23) and characteristic craniofacial features (i.e. large ears/earlobes, prominent eyebrows, anteverted nares and long philtrum (23/23)). To further investigate the facial gestalt of individuals with CHUJANS, we performed facial analysis using the GestaltMatcher approach. By this, we could establish that PHIP patients are indistinguishable based on the type of PHIP alteration (e.g. missense, loss-of-function, splice site) but show a significant difference to the average face of healthy individuals as well as to individuals with Prader-Willi syndrome (PWS, OMIM #176270) or with a CUL4B-alteration (Intellectual developmental disorder, X-linked, syndromic, Cabezas type, OMIM #300354). Our findings expand the mutational and clinical spectrum of CHUJANS. We discuss the molecular and clinical features in comparison to the published individuals. The fact that some variants were inherited from a mildly affected parent further illustrates the variability of the associated phenotype and outlines the importance of a thorough clinical evaluation combined with genetic analyses for accurate diagnosis and counselling.

14.
J Bioenerg Biomembr ; 41(3): 309-21, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19633937

ABSTRACT

Methionine restriction without energy restriction increases, like caloric restriction, maximum longevity in rodents. Previous studies have shown that methionine restriction strongly decreases mitochondrial reactive oxygen species (ROS) production and oxidative damage to mitochondrial DNA, lowers membrane unsaturation, and decreases five different markers of protein oxidation in rat heart and liver mitochondria. It is unknown whether methionine supplementation in the diet can induce opposite changes, which is also interesting because excessive dietary methionine is hepatotoxic and induces cardiovascular alterations. Because the detailed mechanisms of methionine-related hepatotoxicity and cardiovascular toxicity are poorly understood and today many Western human populations consume levels of dietary protein (and thus, methionine) 2-3.3 fold higher than the average adult requirement, in the present experiment we analyze the effect of a methionine supplemented diet on mitochondrial ROS production and oxidative damage in the rat liver and heart mitochondria. In this investigation male Wistar rats were fed either a L-methionine-supplemented (2.5 g/100 g) diet without changing any other dietary components or a control (0.86 g/100 g) diet for 7 weeks. It was found that methionine supplementation increased mitochondrial ROS generation and percent free radical leak in rat liver mitochondria but not in rat heart. In agreement with these data oxidative damage to mitochondrial DNA increased only in rat liver, but no changes were observed in five different markers of protein oxidation in both organs. The content of mitochondrial respiratory chain complexes and AIF (apoptosis inducing factor) did not change after the dietary supplementation while fatty acid unsaturation decreased. Methionine, S-AdenosylMethionine and S-AdenosylHomocysteine concentration increased in both organs in the supplemented group. These results show that methionine supplementation in the diet specifically increases mitochondrial ROS production and mitochondrial DNA oxidative damage in rat liver mitochondria offering a plausible mechanism for its hepatotoxicity.


Subject(s)
DNA Damage/drug effects , Methionine/pharmacology , Mitochondria, Heart/metabolism , Mitochondria, Liver/metabolism , Reactive Oxygen Species/metabolism , Animals , Apoptosis Inducing Factor/metabolism , Blotting, Western , Dietary Supplements , Gas Chromatography-Mass Spectrometry , Hydrogen Peroxide/metabolism , Male , Mitochondria, Heart/drug effects , Mitochondria, Liver/drug effects , Oxygen Consumption/physiology , Rats , Rats, Wistar
15.
Biogerontology ; 10(5): 579-92, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19039676

ABSTRACT

Previous studies have shown that the decrease in mitochondrial reactive oxygen species (mitROS) generation and oxidative damage to mitochondrial DNA (mtDNA) that occurs during life extending dietary restriction also occurs during protein or methionine restriction, whereas it does not take place during carbohydrate or lipid restriction. In order to study the possible effects of other amino acids, in this investigation all the dietary amino acids, except methionine, were restricted by 40% in male Wistar rats (RESTAAS group). After 6-7 weeks, experimental parameters were measured in the liver. Amino acid restriction did not change the levels of the methionine metabolites S-adenosylmethionine and S-adenosylhomocysteine, mitochondrial oxygen consumption and ROS generation, oxidative damage to mtDNA, amounts of the respiratory complexes I-IV, and the mitochondrial biogenesis factors PGC-1alpha and NRF-2. On the other hand, adenylate energy charge, mitochondrial protein oxidation, lipooxidation and glycooxidation, the degree of mitochondrial fatty acid unsaturation, and the amount of the apoptosis inducing factor (AIF) were decreased in the RESTAAS group. Amino acid restriction also increased SIRT1 protein. These results, together with previous ones, strongly suggest that the decrease in mitROS generation and oxidative damage to mtDNA that occurs during dietary restriction is due to restriction of a single aminoacid: methionine. They also show for the first time that restriction of dietary amino acids different from methionine decreases mitochondrial protein oxidative modification and AIF, and increases SIRT1, in rat liver.


Subject(s)
Amino Acids/administration & dosage , Apoptosis Inducing Factor/metabolism , Diet , Liver/metabolism , Mitochondria, Liver/metabolism , Oxidative Stress , Sirtuins/metabolism , Amino Acids/metabolism , Animals , Apoptosis Inducing Factor/genetics , Caloric Restriction , Dietary Proteins/metabolism , Fatty Acids/analysis , Liver/cytology , Male , Rats , Rats, Wistar , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/metabolism , Sirtuin 1 , Sirtuins/genetics
16.
Rev Esp Geriatr Gerontol ; 44(4): 194-9, 2009.
Article in Spanish | MEDLINE | ID: mdl-19577342

ABSTRACT

INTRODUCTION: Protein or methionine restriction in the diet is known to decrease reactive oxygen species (ROS) production and mitochondrial oxidative stress and to increase maximum longevity in rodents, which could explain how these changes also take place in dietary restriction. However, it is not known whether restriction of other amino acids is also involved. To clarify this question, we studied the effect of restricting all the amino acids, except methionine, of the semi-purified diet, AIN 93G, in Wistar rats. MATERIAL AND METHODS: Seven-week old male Wistar rats (n=16) were randomly divided into two groups: a control group and a group with 40% restriction of dietary amino acids except methionine. After 7 weeks of dietary treatment, the animals were sacrificed and their livers were extracted to isolate mitochondria immediately and measure ROS production and oxygen consumption; these data allowed the percentage of free radical leak to be calculated. Oxidative damage to mitochondrial DNA was calculated as 8-oxo-7,8-dihydro-2'-deoxyguanosine by HPLC-EC. RESULTS: At the end of the experimental period, a decrease in kidney weight was observed, but the weight of the liver, heart and brain was unchanged. ROS production in isolated liver mitochondria was unchanged with complex I (pyruvate/malate or glutamate/malate) or complex II (succinate) linked substrates. Maximum rates of ROS production significantly decreased with glutamate/malate+rotenone but not with pyruvate/malate+rotenone or with succinate. There were no changes in oxygen consumption with any substrate either in state 4 (resting) or in state 3 (phosphorylating). In agreement with the ROS production results, there were no differences between groups in oxidative damage to mitochondrial DNA. CONCLUSIONS: Taken together with previous results concerning methionine restriction, the results obtained in the present study clearly show that the decrease in ingestion of only one molecule, methionine, causes the decrease in ROS production and oxidative damage to mitochondrial DNA that is observed in dietary restriction in relation to the decrease in the rate of aging.


Subject(s)
Amino Acids/administration & dosage , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Amino Acids/pharmacology , Animals , Male , Methionine/administration & dosage , Methionine/pharmacology , Rats , Rats, Wistar
17.
Int J Neonatal Screen ; 5(3): 32, 2019 Sep.
Article in English | MEDLINE | ID: mdl-33072991

ABSTRACT

Identifying newborns at risk for cystic fibrosis (CF) by newborn screening (NBS) using dried blood spot (DBS) specimens provides an opportunity for presymptomatic detection. All NBS strategies for CF begin with measuring immunoreactive trypsinogen (IRT). Pancreatitis-associated protein (PAP) has been suggested as second-tier testing. The main objective of this study was to evaluate the analytical performance of an IRT/PAP/IRT strategy versus the current IRT/IRT strategy over a two-year pilot study including 68,502 newborns. The design of the study, carried out in a prospective and parallel manner, allowed us to compare four different CF-NBS protocols after performing a post hoc analysis. The best PAP cutoff point and the potential sources of PAP false positive results in our non-CF newborn population were also studied. 14 CF newborns were detected, resulting in an overall CF prevalence of 1/4, 893 newborns. The IRT/IRT algorithm detected all CF cases, but the IRT/PAP/IRT algorithm failed to detect one case of CF. The IRT/PAP/IRT with an IRT-dependent safety net protocol was a good alternative to improve sensitivity to 100%. The IRT × PAP/IRT strategy clearly performed better, with a sensitivity of 100% and a positive predictive value (PPV) of 39%. Our calculated optimal cutoffs were 2.31 µg/L for PAP and 167.4 µg2/L2 for IRT × PAP. PAP levels were higher in females and newborns with low birth weight. PAP false positive results were found mainly in newborns with conditions such as prematurity, sepsis, and hypoxic-ischemic encephalopathy.

18.
Nat Commun ; 10(1): 2030, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31048689

ABSTRACT

Acquired resistance to MEK1/2 inhibitors (MEKi) arises through amplification of BRAFV600E or KRASG13D to reinstate ERK1/2 signalling. Here we show that BRAFV600E amplification and MEKi resistance are reversible following drug withdrawal. Cells with BRAFV600E amplification are addicted to MEKi to maintain a precise level of ERK1/2 signalling that is optimal for cell proliferation and survival, and tumour growth in vivo. Robust ERK1/2 activation following MEKi withdrawal drives a p57KIP2-dependent G1 cell cycle arrest and senescence or expression of NOXA and cell death, selecting against those cells with amplified BRAFV600E. p57KIP2 expression is required for loss of BRAFV600E amplification and reversal of MEKi resistance. Thus, BRAFV600E amplification confers a selective disadvantage during drug withdrawal, validating intermittent dosing to forestall resistance. In contrast, resistance driven by KRASG13D amplification is not reversible; rather ERK1/2 hyperactivation drives ZEB1-dependent epithelial-to-mesenchymal transition and chemoresistance, arguing strongly against the use of drug holidays in cases of KRASG13D amplification.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/genetics , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Female , Gene Amplification/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Male , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasms/genetics , Protein Kinase Inhibitors/therapeutic use , Withholding Treatment , Zinc Finger E-box-Binding Homeobox 1/metabolism
19.
Rejuvenation Res ; 11(3): 621-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18593280

ABSTRACT

It is known that dietary restriction (DR) increases maximum longevity in rodents, but the mechanisms involved remain unknown. Among the possible mechanisms, several lines of evidence support the idea that decreases in mitochondrial oxidative stress and in insulin signaling are involved but it is not known if they are interconnected. It has been reported that when C57BL/6 mice are maintained on an every other day (EOD) feeding their overall food intake is only slightly decreased and plasma insulin-like growth factor (IGF)-1 is even somewhat increased. In spite of this, their maximum longevity is increased, analogously to what occurs in classic DR. Thus, this model dissociates the increase in longevity from the decrease in IGF-1 observed in classic DR. Based on these facts, we have studied the effect of EOD DR on the rate of mitochondrial reactive oxygen species (ROS) production, oxygen consumption, and the percent free radical leak (FRL) of well-coupled liver mitochondria, the marker of mtDNA oxidative damage 8-oxo-7,8-dihydro-2'deoxyguanosine (8-oxodG), the content of complexes I to IV of the respiratory chain, the apoptosis inducing factor (AIF), PGC1-alpha, UCP2, five different markers of oxidative damage to proteins and the full fatty acid composition on C57BL/6 mice liver. It was found that EOD DR decreased ROS production in complex I but not in complex III without changes in oxygen consumption. As a result, FRL was decreased in complex I. Oxidative damage to mtDNA (8-oxodG) and protein oxidation, glycoxidation and lipoxidation were also lower in the EOD restricted group in comparison with the control one while the degree of fatty acid unsaturation was held constant. The EOD group also showed decreases in AIF, PGC1-alpha, and UCP2. These results support the possibility that EOD DR increases maximum life span at least in part through decreases in mitochondrial oxidative stress which are independent from insulin/IGF-1-like signaling.


Subject(s)
Caloric Restriction , Free Radicals/metabolism , Mitochondria, Liver/metabolism , Oxidative Stress , Animals , Male , Mice , Mice, Inbred C57BL , Oxygen Consumption
20.
FASEB J ; 20(8): 1064-73, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16770005

ABSTRACT

Previous studies have consistently shown that caloric restriction (CR) decreases mitochondrial reactive oxygen species (ROS) (mitROS) generation and oxidative damage to mtDNA and mitochondrial proteins, and increases maximum longevity, although the mechanisms responsible for this are unknown. We recently found that protein restriction (PR) also produces these changes independent of energy restriction. Various facts link methionine to aging, and methionine restriction (MetR) without energy restriction increases, like CR, maximum longevity. We have thus hypothesized that MetR is responsible for the decrease in mitROS generation and oxidative stress in PR and CR. In this investigation we subjected male rats to exactly the same dietary protocol of MetR that is known to increase their longevity. We have found, for the first time, that MetR profoundly decreases mitROS production, decreases oxidative damage to mtDNA, lowers membrane unsaturation, and decreases all five markers of protein oxidation measured in rat heart and liver mitochondria. The concentration of complexes I and IV also decreases in MetR. The decrease in mitROS generation occurs in complexes I and III in liver and in complex I in heart mitochondria, and is due to an increase in efficiency of the respiratory chain in avoiding electron leak to oxygen. These changes are strikingly similar to those observed in CR and PR, suggesting that the decrease in methionine ingestion is responsible for the decrease in mitochondrial ROS production and oxidative stress, and possibly part of the decrease in aging rate, occurring during caloric restriction.


Subject(s)
DNA, Mitochondrial/metabolism , Methionine/physiology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Animals , Caloric Restriction , DNA Damage , Fatty Acids/analysis , Hydrogen Peroxide/metabolism , Male , Mitochondria, Heart/chemistry , Mitochondria, Heart/metabolism , Mitochondria, Liver/chemistry , Mitochondria, Liver/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL