Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Publication year range
1.
Plant J ; 116(2): 347-359, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37433681

ABSTRACT

Developmental transitions, occurring throughout the life cycle of plants, require precise regulation of metabolic processes to generate the energy and resources necessary for the committed growth processes. In parallel, the establishment of new cells, tissues, and even organs, alongside their differentiation provoke profound changes in metabolism. It is increasingly being recognized that there is a certain degree of feedback regulation between the components and products of metabolic pathways and developmental regulators. The generation of large-scale metabolomics datasets during developmental transitions, in combination with molecular genetic approaches has helped to further our knowledge on the functional importance of metabolic regulation of development. In this perspective article, we provide insights into studies that elucidate interactions between metabolism and development at the temporal and spatial scales. We additionally discuss how this influences cell growth-related processes. We also highlight how metabolic intermediates function as signaling molecules to direct plant development in response to changing internal and external conditions.

2.
Plant J ; 105(4): 907-923, 2021 02.
Article in English | MEDLINE | ID: mdl-33179365

ABSTRACT

Tocochromanols constitute the different forms of vitamin E (VTE), essential components of the human diet, and display a high membrane protectant activity. By combining interval mapping and genome-wide association studies (GWAS), we unveiled the genetic determinants of tocochromanol accumulation in tomato (Solanum lycopersicum) fruits. To enhance the nutritional value of this highly consumed vegetable, we dissected the natural intraspecific variability of tocochromanols in tomato fruits and genetically engineered their biosynthetic pathway. These analyses allowed the identification of a total of 25 quantitative trait loci interspersed across the genome pinpointing the chorismate-tyrosine pathway as a regulatory hub controlling the supply of the aromatic head group for tocochromanol biosynthesis. To validate the link between the chorismate-tyrosine pathway and VTE, we engineered tomato plants to bypass the pathway at the arogenate branch point. Transgenic tomatoes showed moderate increments in tocopherols (up to approximately 20%) and a massive accumulation of tocotrienols (up to approximately 3400%). Gene expression analyses of these plants reveal a trade-off between VTE and natural variation in chorismate metabolism explained by transcriptional reprogramming of specific structural genes of the pathway. By restoring the accumulation of alpha-tocotrienols (α-t3) in fruits, the plants produced here are of high pharmacological and nutritional interest.


Subject(s)
Chorismic Acid/metabolism , Solanum lycopersicum/metabolism , Vitamin E/analysis , Chromosome Mapping , Fruit/chemistry , Fruit/metabolism , Genes, Plant/genetics , Genetic Engineering , Genetic Loci , Genetic Variation , Genome-Wide Association Study , Solanum lycopersicum/chemistry , Solanum lycopersicum/genetics , Metabolic Networks and Pathways/genetics , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Tyrosine/metabolism , Vitamin E/metabolism
3.
Plant Mol Biol ; 109(6): 761-780, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35524936

ABSTRACT

Drought is one of the main environmental stresses that negatively impacts vegetative and reproductive yield. Water deficit responses are determined by the duration and intensity of the stress, which, together with plant genotype, will define the chances of plant survival. The metabolic adjustments in response to water deficit are complex and involve gene expression modulation regulated by DNA-binding proteins and epigenetic modifications. This last mechanism may also regulate the activity of transposable elements, which in turn impact the expression of nearby loci. Setaria italica plants submitted to five water deficit regimes were analyzed through a phenotypical approach, including growth, physiological, RNA-seq and sRNA-seq analyses. The results showed a progressive reduction in yield as a function of water deficit intensity associated with signaling pathway modulation and metabolic adjustments. We identified a group of loci that were consistently associated with drought responses, some of which were related to water deficit perception, signaling and regulation. Finally, an analysis of the transcriptome and sRNAome allowed us to identify genes putatively regulated by TE- and sRNA-related mechanisms and an intriguing positive correlation between transcript levels and sRNA accumulation in gene body regions. These findings shed light on the processes that allow S. italica to overcome drought and survive under water restrictive conditions.


Subject(s)
RNA, Small Untranslated , Setaria Plant , Adaptation, Physiological/genetics , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , RNA, Small Untranslated/metabolism , Setaria Plant/genetics , Stress, Physiological/genetics , Water/metabolism
4.
Plant Physiol ; 183(3): 869-882, 2020 07.
Article in English | MEDLINE | ID: mdl-32409479

ABSTRACT

Changes in environmental temperature influence many aspects of plant metabolism; however, the underlying regulatory mechanisms remain poorly understood. In addition to their role in light perception, phytochromes (PHYs) have been recently recognized as temperature sensors affecting plant growth. In particular, in Arabidopsis (Arabidopsis thaliana), high temperature reversibly inactivates PHYB, reducing photomorphogenesis-dependent responses. Here, we show the role of phytochrome-dependent temperature perception in modulating the accumulation of isoprenoid-derived compounds in tomato (Solanum lycopersicum) leaves and fruits. The growth of tomato plants under contrasting temperature regimes revealed that high temperatures resulted in coordinated up-regulation of chlorophyll catabolic genes, impairment of chloroplast biogenesis, and reduction of carotenoid synthesis in leaves in a PHYB1B2-dependent manner. Furthermore, by assessing a triple phyAB1B2 mutant and fruit-specific PHYA- or PHYB2-silenced plants, we demonstrated that biosynthesis of the major tomato fruit carotenoid, lycopene, is sensitive to fruit-localized PHY-dependent temperature perception. The collected data provide compelling evidence concerning the impact of PHY-mediated temperature perception on plastid metabolism in both leaves and fruit, specifically on the accumulation of isoprenoid-derived compounds.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Hot Temperature , Phytochrome/metabolism , Plastids/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Terpenes/metabolism , Gene Expression Regulation, Plant , Genes, Plant
5.
J Exp Bot ; 72(18): 6490-6509, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34100923

ABSTRACT

The transcription factor ASR1 (ABA, STRESS, RIPENING 1) plays multiple roles in plant responses to abiotic stresses as well as being involved in the regulation of central metabolism in several plant species. However, despite the high expression of ASR1 in tomato fruits, large scale analyses to uncover its function in fruits are still lacking. In order to study its function in the context of fruit ripening, we performed a multiomics analysis of ASR1-antisense transgenic tomato fruits at the transcriptome and metabolome levels. Our results indicate that ASR1 is involved in several pathways implicated in the fruit ripening process, including cell wall, amino acid, and carotenoid metabolism, as well as abiotic stress pathways. Moreover, we found that ASR1-antisense fruits are more susceptible to the infection by the necrotrophic fungus Botrytis cinerea. Given that ASR1 could be regulated by fruit ripening regulators such as FRUITFULL1/FRUITFULL2 (FUL1/FUL2), NON-RIPENING (NOR), and COLORLESS NON-RIPENING (CNR), we positioned it in the regulatory cascade of red ripe tomato fruits. These data extend the known range of functions of ASR1 as an important auxiliary regulator of tomato fruit ripening.


Subject(s)
Plant Proteins , Solanum lycopersicum , Transcription Factors , Botrytis , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
J Exp Bot ; 72(4): 1181-1197, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33097930

ABSTRACT

Brassinosteroids (BRs) are steroid hormones that play key roles in plant development and defense. Our goal is to harness the extensive knowledge of the Arabidopsis BR signaling network to improve productivity in crop species. This first requires identifying components of the conserved network and their function in the target species. Here, we investigated the function of SlBIM1a, the closest tomato homolog of AtBIM1, which is highly expressed in fruit. SlBIM1a-overexpressing lines displayed severe plant and fruit dwarfism, and histological characterization of different transgenic lines revealed that SlBIM1a expression negatively correlated with fruit pericarp cell size, resulting in fruit size modifications. These growth phenotypes were in contrast to those found in Arabidopsis, and this was confirmed by the reciprocal ectopic expression of SlBIM1a/b in Arabidopsis and of AtBIM1 in tomato. These results determined that BIM1 function depends more on the recipient species than on its primary sequence. Yeast two-hybrid interaction studies and transcriptomic analyses of SlBIM1a-overexpressing fruit further suggested that SlBIM1a acts through its interaction with SlBZH1 to govern the transcriptional regulation of growth-related BR target genes. Together, these results suggest that SlBIM1a is a negative regulator of pericarp cell expansion, possibly at the crossroads with auxin and light signaling.


Subject(s)
Brassinosteroids , Solanum lycopersicum , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Transcription Factors/metabolism
7.
J Exp Bot ; 72(7): 2525-2543, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33367755

ABSTRACT

Sucrose metabolism is important for most plants, both as the main source of carbon and via signaling mechanisms that have been proposed for this molecule. A cleaving enzyme, invertase (INV) channels sucrose into sink metabolism. Although acid soluble and insoluble invertases have been largely investigated, studies on the role of neutral invertases (A/N-INV) have lagged behind. Here, we identified a tomato A/N-INV encoding gene (NI6) co-localizing with a previously reported quantitative trait locus (QTL) largely affecting primary carbon metabolism in tomato. Of the eight A/N-INV genes identified in the tomato genome, NI6 mRNA is present in all organs, but its expression was higher in sink tissues (mainly roots and fruits). A NI6-GFP fusion protein localized to the cytosol of mesophyll cells. Tomato NI6-silenced plants showed impaired growth phenotype, delayed flowering and a dramatic reduction in fruit set. Global gene expression and metabolite profile analyses of these plants revealed that NI6 is not only essential for sugar metabolism, but also plays a signaling role in stress adaptation. We also identified major hubs, whose expression patterns were greatly affected by NI6 silencing; these hubs were within the signaling cascade that coordinates carbohydrate metabolism with growth and development in tomato.


Subject(s)
Fruit/physiology , Solanum lycopersicum , beta-Fructofuranosidase , Cytosol , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Sucrose , beta-Fructofuranosidase/genetics
8.
Bioinformatics ; 35(11): 1931-1939, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30357313

ABSTRACT

MOTIVATION: Heterogeneous and voluminous data sources are common in modern datasets, particularly in systems biology studies. For instance, in multi-holistic approaches in the fruit biology field, data sources can include a mix of measurements such as morpho-agronomic traits, different kinds of molecules (nucleic acids and metabolites) and consumer preferences. These sources not only have different types of data (quantitative and qualitative), but also large amounts of variables with possibly non-linear relationships among them. An integrative analysis is usually hard to conduct, since it requires several manual standardization steps, with a direct and critical impact on the results obtained. These are important issues in clustering applications, which highlight the need of new methods for uncovering complex relationships in such diverse repositories. RESULTS: We designed a new method named Clustermatch to easily and efficiently perform data-mining tasks on large and highly heterogeneous datasets. Our approach can derive a similarity measure between any quantitative or qualitative variables by looking on how they influence on the clustering of the biological materials under study. Comparisons with other methods in both simulated and real datasets show that Clustermatch is better suited for finding meaningful relationships in complex datasets. AVAILABILITY AND IMPLEMENTATION: Files can be downloaded from https://sourceforge.net/projects/sourcesinc/files/clustermatch/ and https://bitbucket.org/sinc-lab/clustermatch/. In addition, a web-demo is available at http://sinc.unl.edu.ar/web-demo/clustermatch/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Data Mining , Cluster Analysis , Reference Standards
9.
Planta ; 250(6): 1927-1940, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31529400

ABSTRACT

MAIN CONCLUSION: Andean tomatoes differed from the wild ancestor in the metabolic composition and the expression of genes related with mitochondrial functions, and environmental stresses, making them potentially suitable for breeding programmes. Traditional landraces or "criollo" tomatoes (Solanum lycopersicum L.) from Andean areas of Argentina, selected for their fruit quality, were analysed in this study. We explored the metabolome and transcriptome of the ripe fruit in nine landrace accessions representing the seven genetic groups and compared them to the mature fruit of the wild progenitor Solanum pimpinellifolium. The content of branched- (isoleucine and valine) and aromatic (phenylalanine and tryptophan) amino acids, citrate and sugars were significantly different in the fruit of several "criollo" tomatoes compared to S. pimpinellifolium. The transcriptomic profile of the ripe fruit showed several genes significantly and highly regulated in all varieties compared to S. pimpinellifolium, like genes encoding histones and mitochondrial proteins. Additionally, network analysis including transcripts and metabolites identified major hubs with the largest number of connections such as constitutive photomorphogenic protein 1 (a RING finger-type ubiquitin E3 ligase), five Zn finger transcription factors, ascorbate peroxidase, acetolactate synthase, and sucrose non-fermenting 1 kinase. Co-expression analysis of these genes revealed a potential function in acquiring tomato fruit quality during domestication.


Subject(s)
Fruit/metabolism , Solanum lycopersicum/metabolism , Gene Expression Profiling , Genes, Plant/genetics , Solanum lycopersicum/genetics , Magnetic Resonance Spectroscopy , Metabolomics , Oligonucleotide Array Sequence Analysis , RNA, Plant/genetics
10.
Metabolomics ; 15(4): 46, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30874962

ABSTRACT

INTRODUCTION: To date, most studies of natural variation and metabolite quantitative trait loci (mQTL) in tomato have focused on fruit metabolism, leaving aside the identification of genomic regions involved in the regulation of leaf metabolism. OBJECTIVE: This study was conducted to identify leaf mQTL in tomato and to assess the association of leaf metabolites and physiological traits with the metabolite levels from other tissues. METHODS: The analysis of components of leaf metabolism was performed by phenotypying 76 tomato ILs with chromosome segments of the wild species Solanum pennellii in the genetic background of a cultivated tomato (S. lycopersicum) variety M82. The plants were cultivated in two different environments in independent years and samples were harvested from mature leaves of non-flowering plants at the middle of the light period. The non-targeted metabolite profiling was obtained by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). With the data set obtained in this study and already published metabolomics data from seed and fruit, we performed QTL mapping, heritability and correlation analyses. RESULTS: Changes in metabolite contents were evident in the ILs that are potentially important with respect to stress responses and plant physiology. By analyzing the obtained data, we identified 42 positive and 76 negative mQTL involved in carbon and nitrogen metabolism. CONCLUSIONS: Overall, these findings allowed the identification of S. lycopersicum genome regions involved in the regulation of leaf primary carbon and nitrogen metabolism, as well as the association of leaf metabolites with metabolites from seeds and fruits.


Subject(s)
Plant Leaves/genetics , Quantitative Trait Loci/genetics , Solanum lycopersicum/genetics , Chromosome Mapping/methods , Fruit/genetics , Gas Chromatography-Mass Spectrometry/methods , Solanum lycopersicum/metabolism , Metabolome/genetics , Metabolomics/methods , Phenotype , Plant Leaves/chemistry , Plant Leaves/metabolism , Seeds/genetics
11.
Mycorrhiza ; 29(5): 459-473, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31410554

ABSTRACT

Modern breeding programs have reduced genetic variability and might have caused a reduction in plant colonization by arbuscular mycorrhizal fungi (AM). In our previous studies, mycorrhizal colonization was affected in improved soybean genotypes, mainly arbuscule formation. Despite substantial knowledge of the symbiosis-related changes of the transcriptome and proteome, only sparse clues regarding metabolite alterations are available. Here, we evaluated metabolite changes between improved (I-1) and unimproved (UI-4) soybean genotypes and also compare their metabolic responses after AM root colonization. Soybean genotypes inoculated or not with AM were grown in a chamber under controlled light and temperature conditions. At 20 days after inoculation, we evaluated soluble metabolites of each genotype and treatment measured by GC-MS. In this analysis, when comparing non-AM roots between genotypes, I-1 had a lower amount of 31 and higher amount of only 4 metabolites than the UI-4 genotype. When comparing AM roots, I-1 had a lower amount of 36 and higher amount of 4 metabolites than UI-4 (different to those found altered in non-AM treated plants). Lastly, comparing the AM vs non-AM treatments, I-1 had increased levels of three and reduced levels of 24 metabolites, while UI-4 only had levels of 12 metabolites reduced by the effect of mycorrhizas. We found the major changes in sugars, polyols, amino acids, and carboxylic acids. In a targeted analysis, we found lower levels of isoflavonoids and alpha-tocopherol and higher levels of malondialdehyde in the I-1 genotype that can affect soybean-AM symbiosis. Our studies have the potential to support improving soybean with a greater capacity to be colonized and responsive to AM interaction.


Subject(s)
Genotype , Glycine max/metabolism , Mycorrhizae/metabolism , Symbiosis/physiology , Plant Roots/metabolism , Plant Roots/microbiology , Glycine max/genetics , Glycine max/microbiology
12.
Plant Cell Physiol ; 59(11): 2188-2203, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30239816

ABSTRACT

Tocopherols are non-polar compounds synthesized in the plastids, which function as major antioxidants of the plant cells and are essential in the human diet. Both the intermediates and final products of the tocopherol biosynthetic pathway must cross plastid membranes to reach their sites of action. So far, no protein with tocopherol binding activity has been reported in plants. Here, we demonstrated that the tomato SlTBP protein is targeted to chloroplasts and able to bind α-tocopherol. SlTBP-knockdown tomato plants exhibited reduced levels of tocopherol in both leaves and fruits. Several tocopherol deficiency phenotypes were apparent in the transgenic lines, such as alterations in photosynthetic parameters, dramatic distortion of thylakoid membranes and significant variations in the lipid profile. These results, along with the altered expression of genes related to photosynthesis, and tetrapyrrole, lipid, isoprenoid, inositol/phosphoinositide and redox metabolism, suggest that SlTBP may act in conducting tocopherol (or its biosynthetic intermediates) between the plastid compartments and/or at the interface between chloroplast and endoplasmic reticulum membranes, affecting interorganellar lipid metabolism.


Subject(s)
Carrier Proteins/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , alpha-Tocopherol/metabolism , Chloroplasts/metabolism , Endoplasmic Reticulum/metabolism , Gene Knockdown Techniques , Lipid Metabolism , Solanum lycopersicum/genetics , Phylogeny , Plant Proteins/genetics , Plastids/metabolism
13.
Plant Cell Environ ; 41(2): 327-341, 2018 02.
Article in English | MEDLINE | ID: mdl-29044606

ABSTRACT

To identify genomic regions involved in the regulation of fundamental physiological processes such as photosynthesis and respiration, a population of Solanum pennellii introgression lines was analyzed. We determined phenotypes for physiological, metabolic, and growth related traits, including gas exchange and chlorophyll fluorescence parameters. Data analysis allowed the identification of 208 physiological and metabolic quantitative trait loci with 33 of these being associated to smaller intervals of the genomic regions, termed BINs. Eight BINs were identified that were associated with higher assimilation rates than the recurrent parent M82. Two and 10 genomic regions were related to shoot and root dry matter accumulation, respectively. Nine genomic regions were associated with starch levels, whereas 12 BINs were associated with the levels of other metabolites. Additionally, a comprehensive and detailed annotation of the genomic regions spanning these quantitative trait loci allowed us to identify 87 candidate genes that putatively control the investigated traits. We confirmed 8 of these at the level of variance in gene expression. Taken together, our results allowed the identification of candidate genes that most likely regulate photosynthesis, primary metabolism, and plant growth and as such provide new avenues for crop improvement.


Subject(s)
Photosynthesis/genetics , Solanum lycopersicum/genetics , Chlorophyll/metabolism , Genes, Plant/genetics , Genes, Plant/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Real-Time Polymerase Chain Reaction
14.
Metabolomics ; 14(11): 148, 2018 11 03.
Article in English | MEDLINE | ID: mdl-30830402

ABSTRACT

BACKGROUND: Until recently, plant metabolomics have provided a deep understanding on the metabolic regulation in individual plants as experimental units. The application of these techniques to agricultural systems subjected to more complex interactions is a step towards the implementation of translational metabolomics in crop breeding. AIM OF REVIEW: We present here a review paper discussing advances in the knowledge reached in the last years derived from the application of metabolomic techniques that evolved from biomarker discovery to improve crop yield and quality. KEY SCIENTIFIC CONCEPTS OF REVIEW: Translational metabolomics applied to crop breeding programs.


Subject(s)
Crop Production/methods , Metabolomics/methods , Plant Breeding/methods
15.
Metabolomics ; 14(5): 57, 2018 03 31.
Article in English | MEDLINE | ID: mdl-30830349

ABSTRACT

INTRODUCTION: The process of tomato (Solanum lycopersicum) breeding has affected negatively the fruit organoleptic properties and this is evident when comparing modern cultivars with heirloom varieties. Flavor of tomato fruit is determined by a complex combination of volatile and nonvolatile metabolites that is not yet understood. OBJECTIVES: The aim of this work was to provide an alternative approach to exploring the relationship between tomato odour/taste and volatile organic compounds (VOCs). METHODS: VOC composition and organoleptic properties of seven Andean tomato landraces along with an edible wild species (Solanum pimpinellifolium) and four commercial varieties were characterized. Six hedonic traits were analyzed by a semitrained sensory panel to describe the organoleptic properties. Ninety-four VOCs were analyzed by headspace solid phase microextraction/gas chromatography-mass spectrometry (HS/SPME/GC-MS). The relationship between sensory data and VOCs was explored using an Artificial Neural Networks model (Kohonen Self Organizing Maps, omeSOM). RESULTS AND CONCLUSION: The results showed a strong preference by panelists for tomatoes of landraces than for commercial varieties and wild species. The predictive analysis by omeSOM showed 15 VOCs significantly associated to the typical and atypical tomato odour and taste. Moreover, omeSOM was used to predict the relationship of VOC ratios with sensory data. A total of 108 VOC ratios out of 8837 VOC ratios were predicted to be contributing to the typical and atypical tomato odour and taste. The metabolic origin of these flavor-associated VOCs and the metabolic point or target for breeding strategies were discussed.


Subject(s)
Solanum lycopersicum/chemistry , Solanum lycopersicum/metabolism , Volatile Organic Compounds/analysis , Adult , Colombia , Female , Flavoring Agents/analysis , Fruit/chemistry , Gas Chromatography-Mass Spectrometry/methods , Humans , Solanum lycopersicum/physiology , Male , Middle Aged , Neural Networks, Computer , Odorants , Plant Breeding , Principal Component Analysis/methods , Solid Phase Microextraction/methods , Taste/physiology , Volatile Organic Compounds/metabolism
16.
Proc Natl Acad Sci U S A ; 112(11): E1392-400, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25646482

ABSTRACT

Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: "What regulates flux through this pathway in vivo?" Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when (13)C-glucose, (13)C-malate, or (13)C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function.


Subject(s)
Citric Acid Cycle , Mitochondria/metabolism , Thioredoxins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Carbon Isotopes , Citrates/metabolism , Genes, Plant , Genetic Complementation Test , Metabolomics , Models, Biological , Mutation/genetics , Plant Leaves/enzymology , Plant Roots/genetics , Plant Roots/metabolism , Plastids/metabolism , Reproducibility of Results , Seeds/growth & development , Seeds/metabolism
17.
J Sci Food Agric ; 98(11): 4128-4134, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29393974

ABSTRACT

BACKGROUND: The fruits of most commercial tomato cultivars (Solanum lycopersicum L.) are deficient in flavour. In contrast, traditional 'criollo' tomato varieties are appreciated for fruit of excellent organoleptic quality. Small farmers from the Andean valleys in Argentina have maintained their own tomato varieties, which were selected mainly for flavour. This work aims to correlate the chemical composition of the fruit with the sensory attributes of eight heirloom tomato varieties. The long-term goal is to identify potential candidate genes capable of altering the chemicals involved in flavour. RESULTS: A sensory analysis was conducted and the metabolomics of fruit were determined. The data revealed that defined tomato aroma and sourness correlated with citrate and several volatile organic compounds (VOC), such as α-terpineol, p-menth-1-en-9-al, linalool and 3,6-dimethyl-2,3,3a,4,5,7a-hexahydrobenzofuran (DMHEX), a novel volatile recently identified in tomato. Two sensory attributes - sweetness and a not-acidic taste - correlated with the characteristic tomato taste, and also with fructose, glucose, and two VOCs, benzaldehyde, and 2-methyl-2-octen-4-one. CONCLUSIONS: These data provide new evidence of the complex chemical combination that induced the flavour and aroma of the good-tasting 'criollo' tomato fruit. That is, the compounds that correlated with defined tomato aroma and acidic taste did not correlate with sweetness, or with characteristic tomato taste. © 2018 Society of Chemical Industry.


Subject(s)
Solanum lycopersicum/chemistry , Adult , Argentina , Carotenoids/chemistry , Carotenoids/metabolism , Female , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Fruit/chemistry , Fruit/classification , Fruit/economics , Fruit/metabolism , Humans , Solanum lycopersicum/classification , Solanum lycopersicum/economics , Solanum lycopersicum/metabolism , Male , Metabolome , Middle Aged , Odorants/analysis , Taste , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Young Adult
18.
Phytopathology ; 107(4): 474-482, 2017 04.
Article in English | MEDLINE | ID: mdl-27841959

ABSTRACT

Significant efforts are being made to minimize aflatoxin contamination in peanut seeds and one possible strategy is to understand and exploit the mechanisms of plant defense against fungal infection. In this study we have identified and characterized, at biochemical and molecular levels, plant protease inhibitors (PPIs) produced in peanut seeds of the resistant PI 337394 and the susceptible Forman cultivar during Aspergillus parasiticus colonization. With chromatographic methods and 2D-electrophoresis-mass spectrometry we have isolated and identified four variants of Bowman-Birk trypsin inhibitor (BBTI) and a novel Kunitz-type protease inhibitor (KPI) produced in response to A. parasiticus colonization. KPI was detected only in the resistant cultivar, while BBTI was produced in the resistant cultivar in a higher concentration than susceptible cultivar and with different isoforms. The kinetic expression of KPI and BBTI genes along with trypsin inhibitory activity was analyzed in both cultivars during infection. In the susceptible cultivar an early PPI activity response was associated with BBTI occurrence. Meanwhile, in the resistant cultivar a later response with a larger increase in PPI activity was associated with BBTI and KPI occurrence. The biological significance of PPI in seed defense against fungal infection was analyzed and linked to inhibitory properties on enzymes released by the fungus during infection, and to the antifungal effect of KPI.


Subject(s)
Arachis/genetics , Aspergillus/metabolism , Plant Diseases/immunology , Protease Inhibitors/metabolism , Aflatoxins/metabolism , Arachis/immunology , Arachis/microbiology , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Protease Inhibitors/isolation & purification , Seeds/genetics , Seeds/immunology , Seeds/microbiology
19.
J Food Sci Technol ; 54(6): 1729-1741, 2017 May.
Article in English | MEDLINE | ID: mdl-28559632

ABSTRACT

Commercialization of agricultural products, including seeds and its derived products, represents an important economic source for developing countries. Natural colorants obtained from the seeds of achiote plant (annatto) have been used since pre-Hispanic times. Also, production of this crop has been important for Mayan cuisine. Annual world production of achiote seeds is approximately 14,500 tons (dry weight). Two thirds of the production is commercialized as dried seeds and the rest as colorant. Latin America produces 60% of the total world production, followed by Africa (27%) and Asia (12%). The main producers in Latin America are Peru, Brazil and Mexico. The purpose of the present paper is to review the most recent literature on Bixa orellana L. focusing on bixin, norbixin, tocotrienols and tocopherols biosynthesis, use and industrial applications of annatto extracts, as well as its nutraceutical potential and its benefits for human health.

20.
J Exp Bot ; 67(14): 4091-103, 2016 07.
Article in English | MEDLINE | ID: mdl-27194734

ABSTRACT

Improving carbon fixation in order to enhance crop yield is a major goal in plant sciences. By quantitative trait locus (QTL) mapping, it has been demonstrated that a vacuolar invertase (vac-Inv) plays a key role in determining the radical length in Arabidopsis. In this model, variation in vac-Inv activity was detected in a near isogenic line (NIL) population derived from a cross between two divergent accessions: Landsberg erecta (Ler) and Cape Verde Island (CVI), with the CVI allele conferring both higher Inv activity and longer radicles. The aim of the current work is to understand the mechanism(s) underlying this QTL by analyzing structural and functional differences of vac-Inv from both accessions. Relative transcript abundance analyzed by quantitative real-time PCR (qRT-PCR) showed similar expression patterns in both accessions; however, DNA sequence analyses revealed several polymorphisms that lead to changes in the corresponding protein sequence. Moreover, activity assays revealed higher vac-Inv activity in genotypes carrying the CVI allele than in those carrying the Ler allele. Analyses of purified recombinant proteins showed a similar K m for both alleles and a slightly higher V max for that of Ler. Treatment of plant extracts with foaming to release possible interacting Inv inhibitory protein(s) led to a large increase in activity for the Ler allele, but no changes for genotypes carrying the CVI allele. qRT-PCR analyses of two vac-Inv inhibitors in seedlings from parental and NIL genotypes revealed different expression patterns. Taken together, these results demonstrate that the vac-Inv QTL affects root biomass accumulation and also carbon partitioning through a differential regulation of vac-Inv inhibitors at the mRNA level.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/growth & development , beta-Fructofuranosidase/physiology , Alleles , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/physiology , Protein Conformation , Quantitative Trait Loci/genetics , Quantitative Trait Loci/physiology , Real-Time Polymerase Chain Reaction , Seedlings/growth & development , Sequence Analysis, DNA , Vacuoles/enzymology , Vacuoles/physiology , beta-Fructofuranosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL