ABSTRACT
Trans-acting siRNA form through a refined RNAi mechanism in plants. miRNA-guided cleavage triggers entry of precursor transcripts into an RNA-DEPENDENT RNA POLYMERASE6 pathway, and sets the register for phased tasiRNA formation by DICER-LIKE4. Here, we show that miR390-ARGONAUTE7 complexes function in distinct cleavage or noncleavage modes at two target sites in TAS3a transcripts. The AGO7 cleavage, but not the noncleavage, function could be provided by AGO1, the dominant miRNA-associated AGO, but only when AGO1 was guided to a modified target site through an alternate miRNA. AGO7 was highly selective for interaction with miR390, and miR390 in turn was excluded from association with AGO1 due entirely to an incompatible 5' adenosine. Analysis of AGO1, AGO2, and AGO7 revealed a potent 5' nucleotide discrimination function for some, although not all, ARGONAUTEs. miR390 and AGO7, therefore, evolved as a highly specific miRNA guide/effector protein pair to function at two distinct tasiRNA biogenesis steps.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , MicroRNAs/metabolism , RNA, Small Interfering/metabolism , Arabidopsis/genetics , Base Sequence , Oxidoreductases/genetics , Plants, Genetically Modified , RNA Interference , RNA, Plant , RNA-Dependent RNA Polymerase/metabolism , Ribonuclease III , Ribonucleases/metabolism , Seedlings/genetics , Seedlings/metabolism , Signal TransductionABSTRACT
RNA-based silencing functions as an important antiviral immunity mechanism in plants. Plant viruses evolved to encode viral suppressors of RNA silencing (VSRs) that interfere with the function of key components in the silencing pathway. As effectors in the RNA silencing pathway, ARGONAUTE (AGO) proteins are targeted by some VSRs, such as that encoded by Turnip crinkle virus (TCV). A VSR-deficient TCV mutant was used to identify AGO proteins with antiviral activities during infection. A quantitative phenotyping protocol using an image-based color trait analysis pipeline on the PlantCV platform, with temporal red, green, and blue imaging and a computational segmentation algorithm, was used to measure plant disease after TCV inoculation. This process captured and analyzed growth and leaf color of Arabidopsis (Arabidopsis thaliana) plants in response to virus infection over time. By combining this quantitative phenotypic data with molecular assays to detect local and systemic virus accumulation, AGO2, AGO3, and AGO7 were shown to play antiviral roles during TCV infection. In leaves, AGO2 and AGO7 functioned as prominent nonadditive, anti-TCV effectors, whereas AGO3 played a minor role. Other AGOs were required to protect inflorescence tissues against TCV. Overall, these results indicate that distinct AGO proteins have specialized, modular roles in antiviral defense across different tissues, and demonstrate the effectiveness of image-based phenotyping to quantify disease progression.
Subject(s)
Arabidopsis Proteins/immunology , Arabidopsis/immunology , Argonaute Proteins/immunology , Carmovirus/immunology , Image Processing, Computer-Assisted/methods , Arabidopsis/genetics , Arabidopsis/virology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Capsid Proteins/genetics , Capsid Proteins/immunology , Capsid Proteins/metabolism , Carmovirus/genetics , Carmovirus/physiology , Disease Resistance/genetics , Disease Resistance/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Mutation , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/virology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/virology , Protein Binding , RNA Interference/immunologyABSTRACT
Cassava brown streak disease (CBSD) is a major constraint on cassava yields in East and Central Africa and threatens production in West Africa. CBSD is caused by two species of positive-sense RNA viruses belonging to the family Potyviridae, genus Ipomovirus: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Diseases caused by the family Potyviridae require the interaction of viral genome-linked protein (VPg) and host eukaryotic translation initiation factor 4E (eIF4E) isoforms. Cassava encodes five eIF4E proteins: eIF4E, eIF(iso)4E-1, eIF(iso)4E-2, novel cap-binding protein-1 (nCBP-1), and nCBP-2. Protein-protein interaction experiments consistently found that VPg proteins associate with cassava nCBPs. CRISPR/Cas9-mediated genome editing was employed to generate ncbp-1, ncbp-2, and ncbp-1/ncbp-2 mutants in cassava cultivar 60444. Challenge with CBSV showed that ncbp-1/ncbp-2 mutants displayed delayed and attenuated CBSD aerial symptoms, as well as reduced severity and incidence of storage root necrosis. Suppressed disease symptoms were correlated with reduced virus titre in storage roots relative to wild-type controls. Our results demonstrate the ability to modify multiple genes simultaneously in cassava to achieve tolerance to CBSD. Future studies will investigate the contribution of remaining eIF4E isoforms on CBSD and translate this knowledge into an optimized strategy for protecting cassava from disease.
Subject(s)
Eukaryotic Initiation Factor-4E/genetics , Manihot/immunology , Nuclear Cap-Binding Protein Complex/metabolism , Plant Diseases/immunology , Potyviridae/immunology , CRISPR-Cas Systems , Eukaryotic Initiation Factor-4E/metabolism , Gene Editing , Host-Pathogen Interactions , Manihot/genetics , Manihot/virology , Nuclear Cap-Binding Protein Complex/genetics , Plant Diseases/prevention & control , Plant Diseases/virology , Plant Immunity , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Isoforms , Two-Hybrid System Techniques , Viral Proteins/genetics , Viral Proteins/metabolismABSTRACT
Even though the fungal kingdom contains more than 3 million species, little is known about the biological roles of RNA silencing in fungi. The Colletotrichum genus comprises fungal species that are pathogenic for a wide range of crop species worldwide. To investigate the role of RNA silencing in the ascomycete fungus Colletotrichum higginsianum, knock-out mutants affecting genes for three RNA-dependent RNA polymerase (RDR), two Dicer-like (DCL), and two Argonaute (AGO) proteins were generated by targeted gene replacement. No effects were observed on vegetative growth for any mutant strain when grown on complex or minimal media. However, Δdcl1, Δdcl1Δdcl2 double mutant, and Δago1 strains showed severe defects in conidiation and conidia morphology. Total RNA transcripts and small RNA populations were analyzed in parental and mutant strains. The greatest effects on both RNA populations was observed in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains, in which a previously uncharacterized dsRNA mycovirus [termed Colletotrichum higginsianum non-segmented dsRNA virus 1 (ChNRV1)] was derepressed. Phylogenetic analyses clearly showed a close relationship between ChNRV1 and members of the segmented Partitiviridae family, despite the non-segmented nature of the genome. Immunoprecipitation of small RNAs associated with AGO1 showed abundant loading of 5'U-containing viral siRNA. C. higginsianum parental and Δdcl1 mutant strains cured of ChNRV1 revealed that the conidiation and spore morphology defects were primarily caused by ChNRV1. Based on these results, RNA silencing involving ChDCL1 and ChAGO1 in C. higginsianum is proposed to function as an antiviral mechanism.
Subject(s)
Colletotrichum/genetics , Colletotrichum/immunology , Colletotrichum/virology , RNA Interference/physiology , RNA Viruses/physiology , Amino Acid Sequence , Chromatography, Liquid , Gene Knockout Techniques , Immunoblotting , Immunoprecipitation , Microscopy, Electron, Transmission , Phylogeny , Polymerase Chain Reaction , Tandem Mass SpectrometryABSTRACT
DNA methylation is important for the regulation of gene expression and the silencing of transposons in plants. Here we present genome-wide methylation patterns at single-base pair resolution for cassava (Manihot esculenta, cultivar TME 7), a crop with a substantial impact in the agriculture of subtropical and tropical regions. On average, DNA methylation levels were higher in all three DNA sequence contexts (CG, CHG, and CHH, where H equals A, T, or C) than those of the most well-studied model plant Arabidopsis thaliana. As in other plants, DNA methylation was found both on transposons and in the transcribed regions (bodies) of many genes. Consistent with these patterns, at least one cassava gene copy of all of the known components of Arabidopsis DNA methylation pathways was identified. Methylation of LTR transposons (GYPSY and COPIA) was found to be unusually high compared with other types of transposons, suggesting that the control of the activity of these two types of transposons may be especially important. Analysis of duplicated gene pairs resulting from whole-genome duplication showed that gene body DNA methylation and gene expression levels have coevolved over short evolutionary time scales, reinforcing the positive relationship between gene body methylation and high levels of gene expression. Duplicated genes with the most divergent gene body methylation and expression patterns were found to have distinct biological functions and may have been under natural or human selection for cassava traits.
Subject(s)
DNA Methylation , Gene Duplication , Manihot/geneticsABSTRACT
SUMMARY: The Plant Small RNA Maker Site (P-SAMS) is a web tool for the simple and automated design of artificial miRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs) for efficient and specific targeted gene silencing in plants. P-SAMS includes two applications, P-SAMS amiRNA Designer and P-SAMS syn-tasiRNA Designer. The navigation through both applications is wizard-assisted, and the job runtime is relatively short. Both applications output the sequence of designed small RNA(s), and the sequence of the two oligonucleotides required for cloning into 'B/c' compatible vectors. AVAILABILITY AND IMPLEMENTATION: The P-SAMS website is available at http://p-sams.carringtonlab.org. CONTACT: acarbonell@ibmcp.upv.es or nfahlgren@danforthcenter.org.
Subject(s)
Internet , MicroRNAs/genetics , Plants/genetics , RNA, Plant/genetics , RNA, Small Interfering/genetics , Software , Computational BiologyABSTRACT
In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense. A genetic analysis was used to identify and characterize the roles of AGO proteins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2 and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2 providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted for only a minor amount of the overall antiviral activity. By combining AGO protein immunoprecipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10, and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs broadly associated with wild-type HC-Pro during TuMV infection. These results support the hypothesis that suppression of antiviral silencing during TuMV infection, at least in part, occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules, and provide a molecular explanation for the silencing suppressor activity of HC-Pro.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/virology , Argonaute Proteins/metabolism , Plant Diseases/virology , Tymovirus/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Argonaute Proteins/genetics , Plant Diseases/genetics , Tymovirus/geneticsABSTRACT
Endogenous small RNAs (endo-siRNAs) interact with Argonaute (AGO) proteins to mediate sequence-specific regulation of diverse biological processes. Here, we combine deep-sequencing and genetic approaches to explore the biogenesis and function of endo-siRNAs in C. elegans. We describe conditional alleles of the Dicer-related helicase, drh-3, that abrogate both RNA interference and the biogenesis of endo-siRNAs, called 22G-RNAs. DRH-3 is a core component of RNA-dependent RNA polymerase (RdRP) complexes essential for several distinct 22G-RNA systems. We show that, in the germline, one system is dependent on worm-specific AGOs, including WAGO-1, which localizes to germline nuage structures called P granules. WAGO-1 silences certain genes, transposons, pseudogenes, and cryptic loci. Finally, we demonstrate that components of the nonsense-mediated decay pathway function in at least one WAGO-mediated surveillance pathway. These findings broaden our understanding of the biogenesis and diversity of 22G-RNAs and suggest additional regulatory functions for small RNAs.
Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Genome/genetics , Germ Cells/metabolism , RNA, Helminth/metabolism , RNA, Small Interfering/metabolism , Alleles , Amino Acid Sequence , Animals , Caenorhabditis elegans Proteins/chemistry , Models, Genetic , Molecular Sequence Data , Phylogeny , Protein Binding , Protein Structure, Tertiary , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Dependent RNA Polymerase/metabolism , Sequence Analysis, RNA , TemperatureABSTRACT
MicroRNAs and trans-acting siRNAs (ta-siRNAs) have important regulatory roles in development. Unlike other developmentally important regulatory molecules, small RNAs are not known to act as mobile signals during development. Here, we show that low-abundant, conserved ta-siRNAs, termed tasiR-ARFs, move intercellularly from their defined source of biogenesis on the upper (adaxial) side of leaves to the lower (abaxial) side to create a gradient of small RNAs that patterns the abaxial determinant AUXIN RESPONSE FACTOR3. Our observations have important ramifications for the function of small RNAs and suggest they can serve as mobile, instructive signals during development.
Subject(s)
Arabidopsis/physiology , Body Patterning , Plant Leaves/physiology , RNA, Small Interfering/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , MicroRNAs/metabolism , Plant Leaves/metabolism , Plant Shoots/metabolism , RNA, Plant/metabolism , Signal TransductionABSTRACT
Artificial microRNAs (amiRNAs) are used for selective gene silencing in plants. However, current methods to produce amiRNA constructs for silencing transcripts in monocot species are not suitable for simple, cost-effective and large-scale synthesis. Here, a series of expression vectors based on Oryza sativa MIR390 (OsMIR390) precursor was developed for high-throughput cloning and high expression of amiRNAs in monocots. Four different amiRNA sequences designed to target specifically endogenous genes and expressed from OsMIR390-based vectors were validated in transgenic Brachypodium distachyon plants. Surprisingly, amiRNAs accumulated to higher levels and were processed more accurately when expressed from chimeric OsMIR390-based precursors that include distal stem-loop sequences from Arabidopsis thaliana MIR390a (AtMIR390a). In all cases, transgenic plants displayed the predicted phenotypes induced by target gene repression, and accumulated high levels of amiRNAs and low levels of the corresponding target transcripts. Genome-wide transcriptome profiling combined with 5'-RLM-RACE analysis in transgenic plants confirmed that amiRNAs were highly specific.
Subject(s)
Brachypodium/genetics , Gene Silencing , MicroRNAs/genetics , Oryza/genetics , Arabidopsis/genetics , Cloning, Molecular , Genetic Vectors , Inverted Repeat Sequences , Plants, Genetically Modified/genetics , RNA PrecursorsABSTRACT
In metazoans, Piwi-related Argonaute proteins have been linked to germline maintenance, and to a class of germline-enriched small RNAs termed piRNAs. Here we show that an abundant class of 21 nucleotide small RNAs (21U-RNAs) are expressed in the C. elegans germline, interact with the C. elegans Piwi family member PRG-1, and depend on PRG-1 activity for their accumulation. The PRG-1 protein is expressed throughout development and localizes to nuage-like structures called P granules. Although 21U-RNA loci share a conserved upstream sequence motif, the mature 21U-RNAs are not conserved and, with few exceptions, fail to exhibit complementarity or evidence for direct regulation of other expressed sequences. Our findings demonstrate that 21U-RNAs are the piRNAs of C. elegans and link this class of small RNAs and their associated Piwi Argonaute to the maintenance of temperature-dependent fertility.
Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , RNA, Helminth/metabolism , RNA, Small Interfering/metabolism , Animals , Argonaute Proteins , Base Sequence , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Fertility , Gene Expression Regulation , Germ Cells/cytology , Germ Cells/metabolism , Models, Biological , Molecular Sequence Data , Mutation/genetics , Protein Binding , RNA-Induced Silencing Complex , Regulatory Sequences, Nucleic Acid/geneticsABSTRACT
In genetic hybrids, the silencing of nucleolar rRNA genes inherited from one progenitor is the epigenetic phenomenon known as nucleolar dominance. An RNAi knockdown screen identified the Arabidopsis de novo cytosine methyltransferase, DRM2, and the methylcytosine binding domain proteins, MBD6 and MBD10, as activities required for nucleolar dominance. MBD10 localizes throughout the nucleus, but MBD6 preferentially associates with silenced rRNA genes and does so in a DRM2-dependent manner. DRM2 methylation is thought to be guided by siRNAs whose biogenesis requires RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3). Consistent with this hypothesis, knockdown of DCL3 or RDR2 disrupts nucleolar dominance. Collectively, these results indicate that in addition to directing the silencing of retrotransposons and noncoding repeats, siRNAs specify de novo cytosine methylation patterns that are recognized by MBD6 and MBD10 in the large-scale silencing of rRNA gene loci.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Cell Nucleolus/genetics , Cytosine/metabolism , DNA Methylation , Gene Silencing , RNA, Small Interfering/metabolism , Arabidopsis/enzymology , Arabidopsis Proteins/chemistry , Base Pairing/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA, Intergenic , Heterochromatin/metabolism , Models, Biological , Nucleolus Organizer Region/genetics , Protein Binding , Protein Structure, Tertiary , Protein Transport , RNA Interference , RNA, Plant/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolismABSTRACT
The identification of viroid-derived small RNAs (vd-sRNAs) of 21 to 24 nucleotides (nt) in plants infected by viroids (infectious non-protein-coding RNAs of just 250 to 400 nt) supports their targeting by Dicer-like enzymes, the first host RNA-silencing barrier. However, whether viroids, like RNA viruses, are also targeted by the RNA-induced silencing complex (RISC) remains controversial. At the RISC core is one Argonaute (AGO) protein that, guided by endogenous or viral sRNAs, targets complementary RNAs. To examine whether AGO proteins also load vd-sRNAs, leaves of Nicotiana benthamiana infected by potato spindle tuber viroid (PSTVd) were agroinfiltrated with plasmids expressing epitope-tagged versions of AGO1, AGO2, AGO3, AGO4, AGO5, AGO6, AGO7, AGO9, and AGO10 from Arabidopsis thaliana. Immunoprecipitation analyses of the agroinfiltrated halos revealed that all AGOs except AGO6, AGO7, and AGO10 associated with vd-sRNAs: AGO1, AGO2, and AGO3 preferentially with those of 21 and 22 nt, while AGO4, AGO5, and AGO9 additionally bound those of 24 nt. Deep-sequencing analyses showed that sorting of vd-sRNAs into AGO1, AGO2, AGO4, and AGO5 depended essentially on their 5'-terminal nucleotides, with the profiles of the corresponding AGO-loaded vd-sRNAs adopting specific hot spot distributions along the viroid genome. Furthermore, agroexpression of AGO1, AGO2, AGO4, and AGO5 on PSTVd-infected tissue attenuated the level of the genomic RNAs, suggesting that they, or their precursors, are RISC targeted. In contrast to RNA viruses, PSTVd infection of N. benthamiana did not affect miR168-mediated regulation of the endogenous AGO1, which loaded vd-sRNAs with specificity similar to that of its A. thaliana counterpart. Importance: To contain invaders, particularly RNA viruses, plants have evolved an RNA-silencing mechanism relying on the generation by Dicer-like (DCL) enzymes of virus-derived small RNAs of 21 to 24 nucleotides (nt) that load and guide Argonaute (AGO) proteins to target and repress viral RNA. Viroids, despite their minimal genomes (non-protein-coding RNAs of only 250 to 400 nt), infect and incite disease in plants. The accumulation in these plants of 21- to 24-nt viroid-derived small RNAs (vd-sRNAs) supports the notion that DCLs also target viroids but does not clarify whether vd-sRNAs activate one or more AGOs. Here, we show that in leaves of Nicotiana benthamiana infected by potato spindle tuber viroid, the endogenous AGO1 and distinct AGOs from Arabidopsis thaliana that were overexpressed were associated with vd-sRNAs displaying the same properties (5'-terminal nucleotide and size) previously established for endogenous and viral small RNAs. Overexpression of AGO1, AGO2, AGO4, and AGO5 attenuated viroid accumulation, supporting their role in antiviroid defense.
Subject(s)
Argonaute Proteins/metabolism , Plant Viruses/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Solanum tuberosum/virology , Viroids/metabolism , Nicotiana/virologyABSTRACT
Artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs) are used for small RNA-based, specific gene silencing or knockdown in plants. Current methods to generate amiRNA or syn-tasiRNA constructs are not well adapted for cost-effective, large-scale production or for multiplexing to specifically suppress multiple targets. Here, we describe simple, fast, and cost-effective methods with high-throughput capability to generate amiRNA and multiplexed syn-tasiRNA constructs for efficient gene silencing in Arabidopsis (Arabidopsis thaliana) and other plant species. amiRNA or syn-tasiRNA inserts resulting from the annealing of two overlapping and partially complementary oligonucleotides are ligated directionally into a zero background BsaI/ccdB-based expression vector. BsaI/ccdB vectors for amiRNA or syn-tasiRNA cloning and expression contain a modified version of Arabidopsis MIR390a or TAS1c precursors, respectively, in which a fragment of the endogenous sequence was substituted by a ccdB cassette flanked by two BsaI sites. Several amiRNA and syn-tasiRNA sequences designed to target one or more endogenous genes were validated in transgenic plants that (1) exhibited the expected phenotypes predicted by loss of target gene function, (2) accumulated high levels of accurately processed amiRNAs or syn-tasiRNAs, and (3) had reduced levels of the corresponding target RNAs.
Subject(s)
Arabidopsis/genetics , Gene Silencing , MicroRNAs/genetics , RNA, Small Interfering/genetics , Base Sequence , Cloning, Molecular , Genetic Vectors , MicroRNAs/metabolism , Molecular Sequence Data , Plants, Genetically Modified , RNA, Plant/genetics , RNA, Small Interfering/metabolismABSTRACT
In RNA-directed silencing pathways, ternary complexes result from small RNA-guided ARGONAUTE (AGO) associating with target transcripts. Target transcripts are often silenced through direct cleavage (slicing), destabilization through slicer-independent turnover mechanisms, and translational repression. Here, wild-type and active-site defective forms of several Arabidopsis thaliana AGO proteins involved in posttranscriptional silencing were used to examine several AGO functions, including small RNA binding, interaction with target RNA, slicing or destabilization of target RNA, secondary small interfering RNA formation, and antiviral activity. Complementation analyses in ago mutant plants revealed that the catalytic residues of AGO1, AGO2, and AGO7 are required to restore the defects of Arabidopsis ago1-25, ago2-1, and zip-1 (AGO7-defective) mutants, respectively. AGO2 had slicer activity in transient assays but could not trigger secondary small interfering RNA biogenesis, and catalytically active AGO2 was necessary for local and systemic antiviral activity against Turnip mosaic virus. Slicer-defective AGOs associated with miRNAs and stabilized AGO-miRNA-target RNA ternary complexes in individual target coimmunoprecipitation assays. In genome-wide AGO-miRNA-target RNA coimmunoprecipitation experiments, slicer-defective AGO1-miRNA associated with target RNA more effectively than did wild-type AGO1-miRNA. These data not only reveal functional roles for AGO1, AGO2, and AGO7 slicer activity, but also indicate an approach to capture ternary complexes more efficiently for genome-wide analyses.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Argonaute Proteins/metabolism , RNA, Small Interfering/genetics , RNA-Binding Proteins/metabolism , Amino Acid Substitution , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Argonaute Proteins/genetics , Catalytic Domain , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Mutation , Phenotype , Plant Diseases/virology , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified , Potyvirus/physiology , Protein Stability , RNA Interference , RNA, Plant/genetics , RNA, Plant/metabolism , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , Sequence Analysis, RNA , TransgenesABSTRACT
Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at approximately 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for approximately 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
Subject(s)
Genome/genetics , Phytophthora infestans/genetics , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Algal Proteins/genetics , DNA Transposable Elements/genetics , DNA, Intergenic/genetics , Evolution, Molecular , Host-Pathogen Interactions/genetics , Humans , Ireland , Molecular Sequence Data , Necrosis , Phenotype , Phytophthora infestans/pathogenicity , Plant Diseases/immunology , Solanum tuberosum/immunology , StarvationABSTRACT
MicroRNAs (miRNAs) are small regulatory RNAs found in diverse eukaryotic lineages. In plants, a minority of annotated MIRNA gene families are conserved between plant families, while the majority are family- or species-specific, suggesting that most known MIRNA genes arose relatively recently in evolutionary time. Given the high proportion of young MIRNA genes in plant species, new MIRNA families are likely spawned and then lost frequently. Unlike highly conserved, ancient miRNAs, young miRNAs are often weakly expressed, processed imprecisely, lack targets, and display patterns of neutral variation, suggesting that young MIRNA loci tend to evolve neutrally. Genome-wide analyses from several plant species have revealed that variation in miRNA foldback expression, structure, processing efficiency, and miRNA size have resulted in the unique functionality of MIRNA loci and resulting miRNAs. Additionally, some miRNAs have evolved specific properties and functions that regulate other transcriptional or posttranscriptional silencing pathways. The evolution of miRNA processing and functional diversity underscores the dynamic nature of miRNA-based regulation in complex regulatory networks.
Subject(s)
Evolution, Molecular , MicroRNAs/genetics , Plants/genetics , RNA, Plant/genetics , Genes, Plant , Genome, Plant , RNA Processing, Post-TranscriptionalABSTRACT
Endogenous small interfering RNAs (siRNAs) are a class of naturally occuring regulatory RNAs found in fungi, plants, and animals. Some endogenous siRNAs are required to silence transposons or function in chromosome segregation; however, the specific roles of most endogenous siRNAs are unclear. The helicase gene eri-6/7 was identified in the nematode Caenorhabditis elegans by the enhanced response to exogenous double-stranded RNAs (dsRNAs) of the null mutant. eri-6/7 encodes a helicase homologous to small RNA factors Armitage in Drosophila, SDE3 in Arabidopsis, and Mov10 in humans. Here we show that eri-6/7 mutations cause the loss of 26-nucleotide (nt) endogenous siRNAs derived from genes and pseudogenes in oocytes and embryos, as well as deficiencies in somatic 22-nucleotide secondary siRNAs corresponding to the same loci. About 80 genes are eri-6/7 targets that generate the embryonic endogenous siRNAs that silence the corresponding mRNAs. These 80 genes share extensive nucleotide sequence homology and are poorly conserved, suggesting a role for these endogenous siRNAs in silencing of and thereby directing the fate of recently acquired, duplicated genes. Unlike most endogenous siRNAs in C. elegans, eri-6/7-dependent siRNAs require Dicer. We identify that the eri-6/7-dependent siRNAs have a passenger strand that is â¼19 nt and is inset by â¼3-4 nts from both ends of the 26 nt guide siRNA, suggesting non-canonical Dicer processing. Mutations in the Argonaute ERGO-1, which associates with eri-6/7-dependent 26 nt siRNAs, cause passenger strand stabilization, indicating that ERGO-1 is required to separate the siRNA duplex, presumably through endonucleolytic cleavage of the passenger strand. Thus, like several other siRNA-associated Argonautes with a conserved RNaseH motif, ERGO-1 appears to be required for siRNA maturation.
Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , DNA Helicases/genetics , Gene Duplication/genetics , Gene Silencing , Oocytes/metabolism , RNA, Small Interfering/genetics , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , DNA Helicases/metabolism , Gene Expression Regulation , Mutation , Pseudogenes/genetics , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonuclease III/geneticsABSTRACT
Argonaute-associated siRNAs and Piwi-associated piRNAs have overlapping roles in silencing mobile genetic elements in animals. In Caenorhabditis elegans, mutator (mut) class genes mediate siRNA-guided repression of transposons as well as exogenous RNAi, but their roles in endogenous RNA silencing pathways are not well-understood. To characterize the endogenous small RNAs dependent on mut class genes, small RNA populations from a null allele of mut-16 as well as a regulatory mut-16(mg461) allele that disables only somatic RNAi were subjected to deep sequencing. Additionally, each of the mut class genes was tested for a requirement in 26G siRNA pathways. The results indicate that mut-16 is an essential factor in multiple endogenous germline and somatic siRNA pathways involving several distinct Argonautes and RNA-dependent RNA polymerases. The results also reveal essential roles for mut-2 and mut-7 in the ERGO-1 class 26G siRNA pathway and less critical roles for mut-8, mut-14, and mut-15. We show that transposons are hypersusceptible to mut-16-dependent silencing and identify a requirement for the siRNA machinery in piRNA biogenesis from Tc1 transposons. We also show that the soma-specific mut-16(mg461) mutant allele is present in multiple C. elegans laboratory strains.
Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , RNA, Small Interfering/genetics , Signal Transduction/genetics , Alleles , Animals , Blotting, Northern , DNA Transposable Elements/genetics , Embryo, Nonmammalian/metabolism , Exoribonucleases/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Germ Cells/metabolism , Male , Mutation , RNA, Helminth/classification , RNA, Helminth/genetics , RNA, Helminth/metabolism , RNA, Small Interfering/classification , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Species SpecificityABSTRACT
The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests.