ABSTRACT
OBJECTIVE: Cognitive deficits are commonly observed in people with epilepsy, but the biologic causation of these is challenging to identify. Animal models of epilepsy can be used to explore pathophysiologic mechanisms leading to cognitive problems, as well as to test novel therapeutics. We utilized a well-validated animal model of epilepsy to explore cognitive deficits using novel translational assessment tools/automated rodent touchscreen assays. METHODS: To induce epilepsy, adult Wistar rats were subjected to kainic acid-induced status epilepticus or sham control (n = 12/group). Two months following induction, animals underwent the Pairwise Discrimination and Reversal learning touchscreen tasks, novel object recognition, and the Y maze test of spatial memory. RESULTS: In the Pairwise Discrimination paradigm, only 40% of epilepsy animals acquired the discrimination learning criterion, compared to 100% of sham animals (P = 0.003). Epilepsy and sham animals that successfully acquired the discrimination progressed onto the reversal phase, which measures cognitive flexibility. Of interest, there were no differences in the rate of reversal learning; however, on the first reversal session, epilepsy rats committed more perseverative errors than shams (mean ± SEM: 6.3 ± 0.9 vs 1.8 ± 0.5, P < 0.0001). Additional behavioral analysis revealed that epilepsy rats were significantly impaired in novel object recognition and short-term spatial learning and memory. SIGNIFICANCE: Using translationally relevant behavioral tools in combination with traditional assays to measure cognition in animal models, here we identify impairments in learning and memory, and enhanced perseverative behaviors in rats with epilepsy. These tools can be used in future research to explore biologic mechanisms and treatments for cognitive deficits associated with epilepsy.
Subject(s)
Cognitive Dysfunction/etiology , Epilepsy, Temporal Lobe/complications , Animals , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Discrimination Learning , Disease Models, Animal , Epilepsy, Temporal Lobe/psychology , Kainic Acid/pharmacology , Male , Maze Learning , Rats , Rats, Wistar , Recognition, Psychology , Reversal Learning , Spatial MemoryABSTRACT
OBJECTIVE: Early life stressors are well-established risk factors for psychiatric disorders, and evidence also suggests that these promote vulnerability to epilepsy. Given the high prevalence of psychiatric disorders in epilepsy, early life stress may represent a common driver for these comorbidities. We used animal modelling to investigate the effects of early life stress on epileptogenesis and depressive behaviors, also exploring HPA axis programming as a potential associative mechanism. METHODS: From post-natal day 2-9, Wistar rat dams (n = 3) and their offspring were exposed to the Limited Bedding and Nesting (LBN) model of early life adversity. Control dams (n = 3) were undisturbed. Maternal care was video-recorded, and behavior scored. As adults, rats (n = 7/group) underwent kainic acid-induced status epilepticus (SE), to trigger epilepsy development. Spontaneous seizures, depression-like behavior and HPA axis function were quantified. RESULTS: LBN significantly altered aspects of maternal care, including markedly reducing the consistency of care (p < 0.05), compared to control conditions. Following SE, LBN rats exhibited significantly accelerated epileptogenesis (p = 0.01) and greater disease severity (p = 0.001), compared to control rats. Anhedonia and behavioral despair were observed in epileptic rats exposed to LBN. LBN rats showed significantly dampened HPA axis responsivity, but epileptic rats showed greater corticosterone responses to CRH administration (all p < 0.05). SIGNIFICANCE: Early life adversity promotes a vulnerability to experimental epileptogenesis. These two 'hits' (early life stress and epilepsy) interact to create a depressive-like phenotype, but effects on HPA axis are complex and contrasting. This has implications for the mechanisms underpinning the increased prevalence of psychiatric disorders observed in people with epilepsy.
Subject(s)
Adverse Childhood Experiences , Epilepsy , Animals , Corticosterone , Depression/etiology , Disease Models, Animal , Humans , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Rats , Rats, Wistar , Stress, Psychological/complicationsABSTRACT
Traumatic brain injury (TBI) can result in excitation: inhibition imbalance, as well as a range of chronic neurological deficits. However, how TBI affects different interneurons, and how this relates to behavioral abnormalities, remains poorly understood. This study examined the effects of a mixed diffuse-focal model of TBI, the lateral fluid percussion injury (LFPI), on interneurons, 8 weeks post-TBI in rats. Brains were labeled with antibodies against calbindin, parvalbumin, calretinin, neuropeptide Y, and somatostatin, and the number of interneurons were assessed in the cortex and hippocampus following LFPI. LFPI caused a reduction in the numbers of interneurons mediating both perisomatic and dendritic inhibition in the somatosensory cortex. In hippocampus, there were heterogenous changes in the number of interneurons while motor cortex, showed no obvious loss in any of the subsets of interneurons after TBI. In parallel to the investigations of changes in the number of interneurons, we also investigated the long-term behavioral consequences of LFPI. Behaviorally, rats given an LFPI displayed transient reduction in performance in motor tasks and were significantly impaired in reversal learning in the water maze task post-TBI. We also report here progressive neurodegeneration in cortex and hippocampus indicated by Fluoro-Jade C in the different brain areas examined after injury. Our findings suggest differential vulnerability of inhibitory neurons to LFPI in the different brain areas examined after injury. These data will aid in evaluation of new treatments for TBI and help target specific neuronal subtypes as a function of injury time and type.
Subject(s)
Brain Injuries, Traumatic/pathology , Brain/pathology , Interneurons/pathology , Animals , Brain/physiopathology , Brain Injuries, Traumatic/physiopathology , Disease Models, Animal , Male , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Rats , Rats, Sprague-DawleyABSTRACT
Changes in inhibition following traumatic brain injury (TBI) appear to be one of the major factors that contribute to excitation:inhibition imbalance. Neuron pathology, interneurons in particular evolves from minutes to weeks post injury and follows a complex time course. Previously, we showed that in the long-term in diffuse TBI (dTBI), there was select reduction of specific dendrite-targeting neurons in sensory cortex and hippocampus while in motor cortex there was up-regulation of specific dendrite-targeting neurons. We now investigated the time course of dTBI effects on interneurons in neocortex and hippocampus. Brains were labeled with antibodies against calbindin (CB), parvalbumin (PV), calretinin (CR) neuropeptide Y (NPY), and somatostatin (SOM) at 24â¯h and 2â¯weeks post dTBI. We found time-dependent, brain area-specific changes in inhibition at 24â¯h and 2â¯weeks. At 24â¯h post-injury, reduction of dendrite-targeting inhibitory neurons occurred in sensory cortex and hippocampus. At 2â¯weeks, we found compensatory changes in the somatosensory cortex and CA2/3 of hippocampus affected at 24â¯h, with affected interneuronal populations returning to sham levels. However, DG of hippocampus now showed reduction of dendrite-targeting inhibitory neurons. Finally, with respect to motor cortex, there was an upregulation of dendrite-targeting interneurons in the supragranular layers at 24â¯h returning to normal levels by 2â¯weeks. Overall, our findings reconfirm that dendritic inhibition is particularly susceptible to brain trauma, but also show that there are complex brain-area-specific changes in inhibitory neuronal numbers and in compensatory changes, rather than a simple monotonic progression of changes post-dTBI.
Subject(s)
Brain Injuries, Diffuse/physiopathology , Brain Injuries, Traumatic/physiopathology , Cerebral Cortex/physiopathology , Hippocampus/physiopathology , Neurons/physiology , Animals , Brain Injuries, Diffuse/pathology , Brain Injuries, Traumatic/pathology , Cerebral Cortex/pathology , Disease Models, Animal , Disease Progression , Hippocampus/pathology , Male , Neural Inhibition/physiology , Neurons/pathology , Random Allocation , Rats, Sprague-Dawley , Time FactorsABSTRACT
Traumatic brain injury (TBI), caused by direct blows to the head or inertial forces during relative head-brain movement, can result in long-lasting cognitive and motor deficits which can be particularly consequential when they occur in young people with a long life ahead. Much is known of the molecular and anatomical changes produced in TBI but much less is known of the consequences of these changes to neuronal functionality, especially in the cortex. Given that much of our interior and exterior lives are dependent on responsiveness to information from and about the world around us, we have hypothesized that a significant contributor to the cognitive and motor deficits seen after TBI could be changes in sensory processing. To explore this hypothesis, and to develop a model test system of the changes in neuronal functionality caused by TBI, we have examined neuronal encoding of simple and complex sensory input in the rat's exploratory and discriminative tactile system, the large face macrovibrissae, which feeds to the so-called "barrel cortex" of somatosensory cortex. In this review we describe the short-term and long-term changes in the barrel cortex encoding of whisker motion modeling naturalistic whisker movement undertaken by rats engaged in a variety of tasks. We demonstrate that the most common form of TBI results in persistent neuronal hyperexcitation specifically in the upper cortical layers, likely due to changes in inhibition. We describe the types of cortical inhibitory neurons and their roles and how selective effects on some of these could produce the particular forms of neuronal encoding changes described in TBI, and then generalize to compare the effects on inhibition seen in other forms of brain injury. From these findings we make specific predictions as to how non-invasive extra-cranial electrophysiology can be used to provide the high-precision information needed to monitor and understand the temporal evolution of changes in neuronal functionality in humans suffering TBI. Such detailed understanding of the specific changes in an individual patient's cortex can allow for treatment to be tailored to the neuronal changes in that particular patient's brain in TBI, a precision that is currently unavailable with any technique.
ABSTRACT
Long-term diffuse traumatic brain injury (dTBI) causes neuronal hyperexcitation in supragranular layers in sensory cortex, likely through reduced inhibition. Other forms of TBI affect inhibitory interneurons in subcortical areas but it is unknown if this occurs in cortex, or in any brain area in dTBI. We investigated dTBI effects on inhibitory neurons and astrocytes in somatosensory and motor cortex, and hippocampus, 8 weeks post-TBI. Brains were labeled with antibodies against calbindin (CB), parvalbumin (PV), calretinin (CR) and neuropeptide Y (NPY), and somatostatin (SOM) and glial fibrillary acidic protein (GFAP), a marker for astrogliosis during neurodegeneration. Despite persistent behavioral deficits in rotarod performance up to the time of brain extraction (TBI = 73.13 ± 5.23% mean ± SEM, Sham = 92.29 ± 5.56%, P < 0.01), motor cortex showed only a significant increase, in NPY neurons in supragranular layers (mean cells/mm2 ± SEM, Sham = 16 ± 0.971, TBI = 25 ± 1.51, P = 0.001). In somatosensory cortex, only CR+ neurons showed changes, being decreased in supragranular (TBI = 19 ± 1.18, Sham = 25 ± 1.10, P < 0.01) and increased in infragranular (TBI = 28 ± 1.35, Sham = 24 ± 1.07, P < 0.05) layers. Heterogeneous changes were seen in hippocampal staining: CB+ decreased in dentate gyrus (TBI = 2 ± 0.382, Sham = 4 ± 0.383, P < 0.01), PV+ increased in CA1 (TBI = 39 ± 1.26, Sham = 33 ± 1.69, P < 0.05) and CA2/3 (TBI = 26 ± 2.10, Sham = 20 ± 1.49, P < 0.05), and CR+ decreased in CA1 (TBI = 10 ± 1.02, Sham = 14 ± 1.14, P < 0.05). Astrogliosis significantly increased in corpus callosum (TBI = 6.7 ± 0.69, Sham = 2.5 ± 0.38; P = 0.007). While dTBI effects on inhibitory neurons appear region- and type-specific, a common feature in all cases of decrease was that changes occurred in dendrite targeting interneurons involved in neuronal integration. J. Comp. Neurol. 524:3530-3560, 2016. © 2016 Wiley Periodicals, Inc.
Subject(s)
Astrocytes/pathology , Brain Injuries, Traumatic/pathology , Hippocampus/pathology , Motor Cortex/pathology , Neurons/pathology , Somatosensory Cortex/pathology , Animals , Astrocytes/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/metabolism , Corpus Callosum/metabolism , Corpus Callosum/pathology , Disease Models, Animal , Gliosis/metabolism , Gliosis/pathology , Hippocampus/metabolism , Immunohistochemistry , Male , Microelectrodes , Motor Cortex/metabolism , Neural Inhibition/physiology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/metabolism , Organ Size , Random Allocation , Rats, Sprague-Dawley , Somatosensory Cortex/metabolism , Touch Perception/physiology , Vibrissae/physiologyABSTRACT
We have previously demonstrated that traumatic brain injury (TBI) induces significant long-term neuronal hyperexcitability in supragranular layers of sensory cortex, coupled with persistent sensory deficits. Hence, we aimed to investigate whether brain plasticity induced by environmental enrichment (EE) could attenuate abnormal neuronal and sensory function post-TBI. TBI (n = 22) and sham control (n = 21) animals were randomly assigned housing in either single or enriched conditions for 7-9 weeks. Then, in terminal experiments, extracellular recordings were obtained from barrel cortex neurons in response to whisker motion, including those mimicking motion in awake animals undertaking different tasks. Long-term EE exposure (6 weeks) attenuated TBI-induced hyperexcitability in layers 2-3, such that neuronal activity in TBI animals exposed to EE was restored to control levels. Little to no EE-induced changes in population neuronal responses occurred in input layer 4 and output layer 5. However, single-cell responses demonstrated EE-induced hypoexcitation in L4 post-TBI. EE was also able to fully ameliorate sensory hypersensitivity post-TBI, although it was not found to improve motor function. Long-term enrichment post-TBI induces changes at both the population and single-cell level in the sensory cortex, where EE may act to restore the excitation/inhibition balance in supragranular cortical layers.