Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Am J Hum Genet ; 110(8): 1343-1355, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541188

ABSTRACT

Despite significant progress in unraveling the genetic causes of neurodevelopmental disorders (NDDs), a substantial proportion of individuals with NDDs remain without a genetic diagnosis after microarray and/or exome sequencing. Here, we aimed to assess the power of short-read genome sequencing (GS), complemented with long-read GS, to identify causal variants in participants with NDD from the National Institute for Health and Care Research (NIHR) BioResource project. Short-read GS was conducted on 692 individuals (489 affected and 203 unaffected relatives) from 465 families. Additionally, long-read GS was performed on five affected individuals who had structural variants (SVs) in technically challenging regions, had complex SVs, or required distal variant phasing. Causal variants were identified in 36% of affected individuals (177/489), and a further 23% (112/489) had a variant of uncertain significance after multiple rounds of re-analysis. Among all reported variants, 88% (333/380) were coding nuclear SNVs or insertions and deletions (indels), and the remainder were SVs, non-coding variants, and mitochondrial variants. Furthermore, long-read GS facilitated the resolution of challenging SVs and invalidated variants of difficult interpretation from short-read GS. This study demonstrates the value of short-read GS, complemented with long-read GS, in investigating the genetic causes of NDDs. GS provides a comprehensive and unbiased method of identifying all types of variants throughout the nuclear and mitochondrial genomes in individuals with NDD.


Subject(s)
Genome, Human , Neurodevelopmental Disorders , Humans , Genome, Human/genetics , Chromosome Mapping , Base Sequence , INDEL Mutation , Neurodevelopmental Disorders/genetics
2.
Am J Hum Genet ; 104(5): 948-956, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30982612

ABSTRACT

The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.


Subject(s)
Calcium Channels, N-Type/genetics , Calcium/metabolism , Dyskinesias/genetics , Epilepsy/genetics , Mutation , Synaptic Transmission , Adolescent , Child , Child, Preschool , Dyskinesias/pathology , Epilepsy/pathology , Female , Humans , Infant , Loss of Heterozygosity , Male , Pedigree
3.
Am J Hum Genet ; 103(1): 144-153, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29961568

ABSTRACT

Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability.


Subject(s)
Intellectual Disability/genetics , Mutation/genetics , Seizures/genetics , Wiskott-Aldrich Syndrome Protein Family/genetics , Adult , Female , Heterozygote , Humans , Male , Exome Sequencing/methods , Young Adult
4.
Genet Med ; 23(3): 488-497, 2021 03.
Article in English | MEDLINE | ID: mdl-33077892

ABSTRACT

PURPOSE: Previous studies suggest that ceramide is a proapoptotic lipid as high levels of ceramides can lead to apoptosis of neuronal cells, including photoreceptors. However, no pathogenic variant in ceramide synthases has been identified in human patients and knockout of various ceramide synthases in mice has not led to photoreceptor degeneration. METHODS: Exome sequencing was used to identify candidate disease genes in patients with vision loss as confirmed by standard evaluation methods, including electroretinography (ERG) and optical coherence tomography. The vision loss phenotype in mice was evaluated by ERG and histological analyses. RESULTS: Here we have identified four patients with cone-rod dystrophy or maculopathy from three families carrying pathogenic variants in TLCD3B. Consistent with the phenotype observed in patients, the Tlcd3bKO/KO mice exhibited a significant reduction of the cone photoreceptor light responses, thinning of the outer nuclear layer, and loss of cone photoreceptors across the retina. CONCLUSION: Our results provide a link between loss-of-function variants in a ceramide synthase gene and human retinal dystrophy. Establishment of the Tlcd3b knockout murine model, an in vivo photoreceptor cell degeneration model due to loss of a ceramide synthase, will provide a unique opportunity in probing the role of ceramide in survival and function of photoreceptor cells.


Subject(s)
Retinal Degeneration , Retinal Dystrophies , Animals , Electroretinography , Humans , Mice , Oxidoreductases , Retina , Retinal Cone Photoreceptor Cells , Retinal Dystrophies/genetics
5.
Am J Hum Genet ; 100(2): 334-342, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28132693

ABSTRACT

Mutations in more than 250 genes are implicated in inherited retinal dystrophy; the encoded proteins are involved in a broad spectrum of pathways. The presence of unsolved families after highly parallel sequencing strategies suggests that further genes remain to be identified. Whole-exome and -genome sequencing studies employed here in large cohorts of affected individuals revealed biallelic mutations in ARHGEF18 in three such individuals. ARHGEF18 encodes ARHGEF18, a guanine nucleotide exchange factor that activates RHOA, a small GTPase protein that is a key component of tight junctions and adherens junctions. This biological pathway is known to be important for retinal development and function, as mutation of CRB1, encoding another component, causes retinal dystrophy. The retinal structure in individuals with ARHGEF18 mutations resembled that seen in subjects with CRB1 mutations. Five mutations were found on six alleles in the three individuals: c.808A>G (p.Thr270Ala), c.1617+5G>A (p.Asp540Glyfs∗63), c.1996C>T (p.Arg666∗), c.2632G>T (p.Glu878∗), and c.2738_2761del (p.Arg913_Glu920del). Functional tests suggest that each disease genotype might retain some ARHGEF18 activity, such that the phenotype described here is not the consequence of nullizygosity. In particular, the p.Thr270Ala missense variant affects a highly conserved residue in the DBL homology domain, which is required for the interaction and activation of RHOA. Previously, knock-out of Arhgef18 in the medaka fish has been shown to cause larval lethality which is preceded by retinal defects that resemble those seen in zebrafish Crumbs complex knock-outs. The findings described here emphasize the peculiar sensitivity of the retina to perturbations of this pathway, which is highlighted as a target for potential therapeutic strategies.


Subject(s)
Cell Polarity , Epithelial Cells/metabolism , Retinal Degeneration/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , Adult , Alleles , Amino Acid Sequence , Exome , Eye Proteins/genetics , Eye Proteins/metabolism , Female , Genetic Variation , Genome-Wide Association Study , Genotype , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Mutation, Missense , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pedigree , Phenotype , Retina/metabolism , Retinal Degeneration/diagnosis , Retinal Dystrophies/genetics , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
6.
Am J Hum Genet ; 100(1): 75-90, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28041643

ABSTRACT

Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.


Subject(s)
DNA Mutational Analysis , Genetic Variation/genetics , Genome, Human/genetics , Retinal Diseases/genetics , Adaptor Proteins, Signal Transducing/genetics , Alleles , Base Sequence , Choroideremia/genetics , Ethnicity/genetics , Exome/genetics , Female , Genes, Recessive/genetics , Humans , Introns/genetics , Male , Mutation , Rare Diseases/genetics
7.
Hum Mutat ; 40(5): 578-587, 2019 05.
Article in English | MEDLINE | ID: mdl-30710461

ABSTRACT

The autosomal dominant progressive bifocal chorioretinal atrophy (PBCRA) disease locus has been mapped to chromosome 6q14-16.2 that overlaps the North Carolina macular dystrophy (NCMD) locus MCDR1. NCMD is a nonprogressive developmental macular dystrophy, in which variants upstream of PRDM13 have been implicated. Whole genome sequencing was performed to interrogate structural variants (SVs) and single nucleotide variants (SNVs) in eight individuals, six affected individuals from two families with PBCRA, and two individuals from an additional family with a related developmental macular dystrophy. A SNV (chr6:100,046,804T>C), located 7.8 kb upstream of the PRDM13 gene, was shared by all PBCRA-affected individuals in the disease locus. Haplotype analysis suggested that the variant arose independently in the two families. The two affected individuals from Family 3 were screened for rare variants in the PBCRA and NCMD loci. This revealed a de novo variant in the proband, 21 bp from the first SNV (chr6:100,046,783A>C). This study expands the noncoding variant spectrum upstream of PRDM13 and suggests altered spatio-temporal expression of PRDM13 as a candidate disease mechanism in the phenotypically distinct but related conditions, NCMD and PBCRA.


Subject(s)
5' Untranslated Regions , Corneal Dystrophies, Hereditary/diagnosis , Corneal Dystrophies, Hereditary/genetics , Genetic Predisposition to Disease , Histone-Lysine N-Methyltransferase/genetics , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Transcription Factors/genetics , Adult , Computational Biology/methods , Female , Genetic Association Studies/methods , Genetic Loci , Haplotypes , Humans , Multigene Family , Pedigree , Whole Genome Sequencing
8.
Am J Hum Genet ; 99(6): 1305-1315, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27889058

ABSTRACT

Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy.


Subject(s)
Eye Proteins/genetics , Genes, Recessive/genetics , Membrane Transport Proteins/genetics , Mutation/genetics , Retinitis Pigmentosa/genetics , Adolescent , Alleles , Animals , Child , Child, Preschool , Eye Proteins/chemistry , Eye Proteins/metabolism , Female , Humans , Induced Pluripotent Stem Cells/cytology , Male , Membrane Proteins , Mice , Mutation, Missense/genetics , Phenotype , Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/metabolism , Young Adult
9.
Genet Med ; 21(8): 1751-1760, 2019 08.
Article in English | MEDLINE | ID: mdl-30643219

ABSTRACT

PURPOSE: Using exome sequencing, the underlying variants in many persons with autosomal recessive diseases remain undetected. We explored autosomal recessive Stargardt disease (STGD1) as a model to identify the missing heritability. METHODS: Sequencing of ABCA4 was performed in 8 STGD1 cases with one variant and p.Asn1868Ile in trans, 25 cases with one variant, and 3 cases with no ABCA4 variant. The effect of intronic variants was analyzed using in vitro splice assays in HEK293T cells and patient-derived fibroblasts. Antisense oligonucleotides were used to correct splice defects. RESULTS: In 24 of the probands (67%), one known and five novel deep-intronic variants were found. The five novel variants resulted in messenger RNA pseudoexon inclusions, due to strengthening of cryptic splice sites or by disrupting a splicing silencer motif. Variant c.769-784C>T showed partial insertion of a pseudoexon and was found in cis with c.5603A>T (p.Asn1868Ile), so its causal role could not be fully established. Variant c.4253+43G>A resulted in partial skipping of exon 28. Remarkably, antisense oligonucleotides targeting the aberrant splice processes resulted in (partial) correction of all splicing defects. CONCLUSION: Our data demonstrate the importance of assessing noncoding variants in genetic diseases, and show the great potential of splice modulation therapy for deep-intronic variants.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Oligonucleotides, Antisense/genetics , Protein Isoforms/genetics , Stargardt Disease/genetics , Adolescent , Adult , Aged , Child , Exons/genetics , HEK293 Cells , Humans , Introns/genetics , Middle Aged , Mutation/genetics , Oligonucleotides, Antisense/pharmacology , Pedigree , Polymorphism, Single Nucleotide/genetics , RNA Splicing/genetics , Stargardt Disease/pathology , Young Adult
10.
J Med Genet ; 55(2): 114-121, 2018 02.
Article in English | MEDLINE | ID: mdl-29074561

ABSTRACT

BACKGROUND: Diagnostic use of gene panel next-generation sequencing (NGS) techniques is commonplace for individuals with inherited retinal dystrophies (IRDs), a highly genetically heterogeneous group of disorders. However, these techniques have often failed to capture the complete spectrum of genomic variation causing IRD, including CNVs. This study assessed the applicability of introducing CNV surveillance into first-tier diagnostic gene panel NGS services for IRD. METHODS: Three read-depth algorithms were applied to gene panel NGS data sets for 550 referred individuals, and informatics strategies used for quality assurance and CNV filtering. CNV events were confirmed and reported to referring clinicians through an accredited diagnostic laboratory. RESULTS: We confirmed the presence of 33 deletions and 11 duplications, determining these findings to contribute to the confirmed or provisional molecular diagnosis of IRD for 25 individuals. We show that at least 7% of individuals referred for diagnostic testing for IRD have a CNV within genes relevant to their clinical diagnosis, and determined a positive predictive value of 79% for the employed CNV filtering techniques. CONCLUSION: Incorporation of CNV analysis increases diagnostic yield of gene panel NGS diagnostic tests for IRD, increases clarity in diagnostic reporting and expands the spectrum of known disease-causing mutations.


Subject(s)
DNA Copy Number Variations , High-Throughput Nucleotide Sequencing/methods , Retinal Dystrophies/genetics , Adaptor Proteins, Signal Transducing/genetics , Algorithms , Cytoskeletal Proteins , Gene Duplication , Gene Frequency , Genetic Predisposition to Disease , Humans , Membrane Proteins/genetics , Ribonucleoproteins, Small Nuclear/genetics , Workflow
11.
J Allergy Clin Immunol ; 142(4): 1285-1296, 2018 10.
Article in English | MEDLINE | ID: mdl-29477724

ABSTRACT

BACKGROUND: The genetic cause of primary immunodeficiency disease (PID) carries prognostic information. OBJECTIVE: We conducted a whole-genome sequencing study assessing a large proportion of the NIHR BioResource-Rare Diseases cohort. METHODS: In the predominantly European study population of principally sporadic unrelated PID cases (n = 846), a novel Bayesian method identified nuclear factor κB subunit 1 (NFKB1) as one of the genes most strongly associated with PID, and the association was explained by 16 novel heterozygous truncating, missense, and gene deletion variants. This accounted for 4% of common variable immunodeficiency (CVID) cases (n = 390) in the cohort. Amino acid substitutions predicted to be pathogenic were assessed by means of analysis of structural protein data. Immunophenotyping, immunoblotting, and ex vivo stimulation of lymphocytes determined the functional effects of these variants. Detailed clinical and pedigree information was collected for genotype-phenotype cosegregation analyses. RESULTS: Both sporadic and familial cases demonstrated evidence of the noninfective complications of CVID, including massive lymphadenopathy (24%), unexplained splenomegaly (48%), and autoimmune disease (48%), features prior studies correlated with worse clinical prognosis. Although partial penetrance of clinical symptoms was noted in certain pedigrees, all carriers have a deficiency in B-lymphocyte differentiation. Detailed assessment of B-lymphocyte numbers, phenotype, and function identifies the presence of an increased CD21low B-cell population. Combined with identification of the disease-causing variant, this distinguishes between healthy subjects, asymptomatic carriers, and clinically affected cases. CONCLUSION: We show that heterozygous loss-of-function variants in NFKB1 are the most common known monogenic cause of CVID, which results in a temporally progressive defect in the formation of immunoglobulin-producing B cells.


Subject(s)
B-Lymphocytes/immunology , Common Variable Immunodeficiency/genetics , NF-kappa B p50 Subunit/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Europe , Female , Humans , Infant , Infant, Newborn , Loss of Function Mutation , Male , Middle Aged , Phenotype , T-Lymphocytes/immunology , Young Adult
12.
Mol Vis ; 24: 603-612, 2018.
Article in English | MEDLINE | ID: mdl-30210231

ABSTRACT

Purpose: Mutations in ARL2BP, encoding ADP-ribosylation factor-like 2 binding protein, have recently been implicated as a cause of autosomal recessive retinitis pigmentosa (arRP), with three homozygous variants identified to date. In this study, we performed next-generation sequencing to reveal additional arRP cases associated with ARL2BP variants. Methods: Whole-genome sequencing (WGS) or whole-exome sequencing (WES) was performed in 1,051 unrelated individuals recruited for the UK Inherited Retinal Disease Consortium and NIHR-BioResource Rare Diseases research studies. Sanger sequencing was used to validate the next-generation sequencing data, and reverse transcriptase (RT)-PCR analysis was performed on RNA extracted from blood from affected individuals to test for altered splicing of ARL2BP. Detailed phenotyping was performed, including clinical evaluation, electroretinography, fundus photography, fundus autofluorescence imaging, and spectral-domain optical coherence tomography. Results: Homozygous variants in ARL2BP (NM_012106.3) were identified in two unrelated individuals with RP. The variants, c.207+1G>A and c.390+5G>A, at conserved splice donor sites for intron 3 and intron 5, respectively, were predicted to alter the pre-mRNA splicing of ARL2BP. RT-PCR spanning the affected introns revealed that both variants caused abnormal splicing of ARL2BP in samples from affected individuals. Conclusions: This study identified two homozygous variants in ARL2BP as a rare cause of arRP. Further studies are required to define the underlying disease mechanism causing retinal degeneration as a result of mutations in ARL2BP and any phenotype-genotype correlation associated with residual levels of the wild-type transcript.


Subject(s)
Carrier Proteins/genetics , Mutation , Retinitis Pigmentosa/genetics , Adult , DNA Mutational Analysis , Electroretinography , Exome , Female , Genes, Recessive , Genetic Association Studies , High-Throughput Nucleotide Sequencing , History, 16th Century , Homozygote , Humans , Male , Pedigree , Phenotype , RNA Splicing , Reverse Transcriptase Polymerase Chain Reaction , Tomography, Optical Coherence , Transcription Factors , Whole Genome Sequencing
13.
Retina ; 38(3): 620-628, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28234808

ABSTRACT

BACKGROUND: Albinism refers to a group of disorders primarily characterized by hypopigmentation. Affected individuals usually manifest both ocular and cutaneous features of the disease, but occasionally hair and skin pigmentation may appear normal. This is the case in ocular albinism, an X chromosome linked disorder resulting from mutation of GPR143. Female carriers may be recognized by a "mud-splatter" appearance in the peripheral retina. The macula is thought to be normal, however. METHODS: Obligate female carriers of pathogenic GPR143 alleles were recruited. Molecular confirmation of disease was performed only for atypical cases. Detailed retinal imaging was performed (colour fundus photography, optical coherence tomography, fundus autofluorescence. RESULTS: Eight individuals were ascertained. A novel GPR143 mutation was identified in one family (p.Gln328Ter). Foveal fundus autofluorescence was subjectively reduced in 6/6 patients imaged. A "tapetal-like" pattern of autofluorescence was visible at the macula in 3/6. Persistence of the inner retinal layers at the fovea was observed in 6/8 females. CONCLUSION: Female carriers of ocular albinism may manifest signs of retinal pigment epithelium mosaicism at the macula and the peripheral fundus. A tapetal-like reflex on fundus autofluorescence may be considered the macular correlate of "mud-splatter."


Subject(s)
Albinism, Ocular/pathology , Retina/pathology , Adult , Albinism, Ocular/genetics , Eye Proteins/genetics , Female , Heterozygote , Humans , Macula Lutea/pathology , Membrane Glycoproteins/genetics , Middle Aged , Prospective Studies , Retinal Pigment Epithelium/pathology
14.
Hum Mol Genet ; 23(12): 3269-77, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24476948

ABSTRACT

The genetic etiology of non-aneuploid fetal structural abnormalities is typically investigated by karyotyping and array-based detection of microscopically detectable rearrangements, and submicroscopic copy-number variants (CNVs), which collectively yield a pathogenic finding in up to 10% of cases. We propose that exome sequencing may substantially increase the identification of underlying etiologies. We performed exome sequencing on a cohort of 30 non-aneuploid fetuses and neonates (along with their parents) with diverse structural abnormalities first identified by prenatal ultrasound. We identified candidate pathogenic variants with a range of inheritance models, and evaluated these in the context of detailed phenotypic information. We identified 35 de novo single-nucleotide variants (SNVs), small indels, deletions or duplications, of which three (accounting for 10% of the cohort) are highly likely to be causative. These are de novo missense variants in FGFR3 and COL2A1, and a de novo 16.8 kb deletion that includes most of OFD1. In five further cases (17%) we identified de novo or inherited recessive or X-linked variants in plausible candidate genes, which require additional validation to determine pathogenicity. Our diagnostic yield of 10% is comparable to, and supplementary to, the diagnostic yield of existing microarray testing for large chromosomal rearrangements and targeted CNV detection. The de novo nature of these events could enable couples to be counseled as to their low recurrence risk. This study outlines the way for a substantial improvement in the diagnostic yield of prenatal genetic abnormalities through the application of next-generation sequencing.


Subject(s)
Chromosome Aberrations , Disease/genetics , Genetic Testing/methods , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Cohort Studies , DNA Mutational Analysis , Disease/etiology , Exome , Female , Genome, Human , Humans , Infant, Newborn , Male , Mutation , Polymorphism, Single Nucleotide , Pregnancy , Prenatal Diagnosis/methods , Ultrasonography, Prenatal
15.
Am J Hum Genet ; 92(3): 354-65, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23453667

ABSTRACT

Mutations in several known or putative glycosyltransferases cause glycosylation defects in α-dystroglycan (α-DG), an integral component of the dystrophin glycoprotein complex. The hypoglycosylation reduces the ability of α-DG to bind laminin and other extracellular matrix ligands and is responsible for the pathogenesis of an inherited subset of muscular dystrophies known as the dystroglycanopathies. By exome and Sanger sequencing we identified two individuals affected by a dystroglycanopathy with mutations in ß-1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2). B3GALNT2 transfers N-acetyl galactosamine (GalNAc) in a ß-1,3 linkage to N-acetyl glucosamine (GlcNAc). A subsequent study of a separate cohort of individuals identified recessive mutations in four additional cases that were all affected by dystroglycanopathy with structural brain involvement. We show that functional dystroglycan glycosylation was reduced in the fibroblasts and muscle (when available) of these individuals via flow cytometry, immunoblotting, and immunocytochemistry. B3GALNT2 localized to the endoplasmic reticulum, and this localization was perturbed by some of the missense mutations identified. Moreover, knockdown of b3galnt2 in zebrafish recapitulated the human congenital muscular dystrophy phenotype with reduced motility, brain abnormalities, and disordered muscle fibers with evidence of damage to both the myosepta and the sarcolemma. Functional dystroglycan glycosylation was also reduced in the b3galnt2 knockdown zebrafish embryos. Together these results demonstrate a role for B3GALNT2 in the glycosylation of α-DG and show that B3GALNT2 mutations can cause dystroglycanopathy with muscle and brain involvement.


Subject(s)
Dystroglycans/genetics , Muscular Dystrophies/genetics , Mutation , N-Acetylgalactosaminyltransferases/genetics , Animals , Brain/enzymology , Brain/metabolism , Cell Line , Dystroglycans/metabolism , Endoplasmic Reticulum/enzymology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Female , Fibroblasts/enzymology , Fibroblasts/metabolism , Genetic Predisposition to Disease , Glycosylation , Humans , Infant , Male , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Muscular Dystrophies/enzymology , Muscular Dystrophies/metabolism , N-Acetylgalactosaminyltransferases/metabolism , Zebrafish
16.
Am J Hum Genet ; 93(1): 29-41, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23768512

ABSTRACT

Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG.


Subject(s)
Dystroglycans/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Mutation, Missense , Nucleotidyltransferases/metabolism , Animals , Child, Preschool , DNA Mutational Analysis/methods , Dystroglycans/genetics , Eye Abnormalities/pathology , Female , Fibroblasts/enzymology , Fibroblasts/pathology , Genetic Association Studies/methods , Glycosylation , Guanosine Diphosphate Mannose/metabolism , Heterozygote , Humans , Infant , Infant, Newborn , Male , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/enzymology , Nucleotidyltransferases/genetics , Zebrafish/genetics , Zebrafish/metabolism
17.
Mov Disord ; 31(7): 1033-40, 2016 07.
Article in English | MEDLINE | ID: mdl-27061943

ABSTRACT

BACKGROUND: Adenylyl cyclase 5 (ADCY5) mutations is associated with heterogenous syndromes: familial dyskinesia and facial myokymia; paroxysmal chorea and dystonia; autosomal-dominant chorea and dystonia; and benign hereditary chorea. We provide detailed clinical data on 7 patients from six new kindreds with mutations in the ADCY5 gene, in order to expand and define the phenotypic spectrum of ADCY5 mutations. METHODS: In 5 of the 7 patients, followed over a period of 9 to 32 years, ADCY5 was sequenced by Sanger sequencing. The other 2 unrelated patients participated in studies for undiagnosed pediatric hyperkinetic movement disorders and underwent whole-exome sequencing. RESULTS: Five patients had the previously reported p.R418W ADCY5 mutation; we also identified two novel mutations at p.R418G and p.R418Q. All patients presented with motor milestone delay, infantile-onset action-induced generalized choreoathetosis, dystonia, or myoclonus, with episodic exacerbations during drowsiness being a characteristic feature. Axial hypotonia, impaired upward saccades, and intellectual disability were variable features. The p.R418G and p.R418Q mutation patients had a milder phenotype. Six of seven patients had mild functional gain with clonazepam or clobazam. One patient had bilateral globus pallidal DBS at the age of 33 with marked reduction in dyskinesia, which resulted in mild functional improvement. CONCLUSION: We further delineate the clinical features of ADCY5 gene mutations and illustrate its wide phenotypic expression. We describe mild improvement after treatment with clonazepam, clobazam, and bilateral pallidal DBS. ADCY5-associated dyskinesia may be under-recognized, and its diagnosis has important prognostic, genetic, and therapeutic implications. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Adenylyl Cyclases/genetics , Movement Disorders/genetics , Movement Disorders/physiopathology , Aftercare , Child, Preschool , Female , Humans , Infant , Male , Pedigree
19.
Nat Rev Drug Discov ; 22(2): 145-162, 2023 02.
Article in English | MEDLINE | ID: mdl-36261593

ABSTRACT

Human genetics research has discovered thousands of proteins associated with complex and rare diseases. Genome-wide association studies (GWAS) and studies of Mendelian disease have resulted in an increased understanding of the role of gene function and regulation in human conditions. Although the application of human genetics has been explored primarily as a method to identify potential drug targets and support their relevance to disease in humans, there is increasing interest in using genetic data to identify potential safety liabilities of modulating a given target. Human genetic variants can be used as a model to anticipate the effect of lifelong modulation of therapeutic targets and identify the potential risk for on-target adverse events. This approach is particularly useful for non-clinical safety evaluation of novel therapeutics that lack pharmacologically relevant animal models and can contribute to the intrinsic safety profile of a drug target. This Review illustrates applications of human genetics to safety studies during drug discovery and development, including assessing the potential for on- and off-target associated adverse events, carcinogenicity risk assessment, and guiding translational safety study designs and monitoring strategies. A summary of available human genetic resources and recommended best practices is provided. The challenges and future perspectives of translating human genetic information to identify risks for potential drug effects in preclinical and clinical development are discussed.


Subject(s)
Genome-Wide Association Study , Human Genetics , Animals , Humans
20.
BMC Genomics ; 13: 415, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22908939

ABSTRACT

BACKGROUND: Vomeronasal receptors (VRs), expressed in sensory neurons of the vomeronasal organ, are thought to bind pheromones and mediate innate behaviours. The mouse reference genome has over 360 functional VRs arranged in highly homologous clusters, but the vast majority are of unknown function. Differences in these receptors within and between closely related species of mice are likely to underpin a range of behavioural responses. To investigate these differences, we interrogated the VR gene repertoire from 17 inbred strains of mice using massively parallel sequencing. RESULTS: Approximately half of the 6222 VR genes that we investigated could be successfully resolved, and those that were unambiguously mapped resulted in an extremely accurate dataset. Collectively VRs have over twice the coding sequence variation of the genome average; but we identify striking non-random distribution of these variants within and between genes, clusters, clades and functional classes of VRs. We show that functional VR gene repertoires differ considerably between different Mus subspecies and species, suggesting these receptors may play a role in mediating behavioural adaptations. Finally, we provide evidence that widely-used, highly inbred laboratory-derived strains have a greatly reduced, but not entirely redundant capacity for differential pheromone-mediated behaviours. CONCLUSIONS: Together our results suggest that the unusually variable VR repertoires of mice have a significant role in encoding differences in olfactory-mediated responses and behaviours. Our dataset has expanded over nine fold the known number of mouse VR alleles, and will enable mechanistic analyses into the genetics of innate behavioural differences in mice.


Subject(s)
Genetic Variation/genetics , Receptors, Pheromone/genetics , Vomeronasal Organ/metabolism , Animals , Genome/genetics , High-Throughput Nucleotide Sequencing , Mice , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL