ABSTRACT
Surface rendering of MRI brain scans may lead to identification of the participant through facial characteristics. In this study, we evaluate three methods that overwrite voxels containing privacy-sensitive information: Face Masking, FreeSurfer defacing, and FSL defacing. We included structural T1-weighted MRI scans of children, young adults and older adults. For the young adults, test-retest data were included with a 1-week interval. The effects of the de-identification methods were quantified using different statistics to capture random variation and systematic noise in measures obtained through the FreeSurfer processing pipeline. Face Masking and FSL defacing impacted brain voxels in some scans especially in younger participants. FreeSurfer defacing left brain tissue intact in all cases. FSL defacing and FreeSurfer defacing preserved identifiable characteristics around the eyes or mouth in some scans. For all de-identification methods regional brain measures of subcortical volume, cortical volume, cortical surface area, and cortical thickness were on average highly replicable when derived from original versus de-identified scans with average regional correlations >.90 for children, young adults, and older adults. Small systematic biases were found that incidentally resulted in significantly different brain measures after de-identification, depending on the studied subsample, de-identification method, and brain metric. In young adults, test-retest intraclass correlation coefficients (ICCs) were comparable for original scans and de-identified scans with average regional ICCs >.90 for (sub)cortical volume and cortical surface area and ICCs >.80 for cortical thickness. We conclude that apparent visual differences between de-identification methods minimally impact reliability of brain measures, although small systematic biases can occur.
Subject(s)
Brain/diagnostic imaging , Data Anonymization , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neuroimaging , Adult , Age Factors , Aged , Aged, 80 and over , Cerebral Cortex , Child , Female , Humans , Male , Middle Aged , Young AdultABSTRACT
Normal brain-aging occurs at all structural levels. Excessive pathophysiological changes in the brain, beyond the normal one, are implicated in the etiology of brain disorders such as severe forms of the schizophrenia spectrum and dementia. To account for brain-aging in health and disease, it is critical to study the age-dependent trajectories of brain biomarkers at various levels and among different age groups. The intracranial volume (ICV) is a key biological marker, and changes in the ICV during the lifespan can teach us about the biology of development, aging, and gene X environment interactions. However, whether ICV changes with age in adulthood is not resolved. Applying a semi-automatic in-house-built algorithm for ICV extraction on T1w MR brain scans in the Dutch longitudinal cohort (GROUP), we measured ICV changes. Individuals between the ages of 16 and 55 years were scanned up to three consecutive times with 3.32±0.32 years between consecutive scans (N = 482, 359, 302). Using the extracted ICVs, we calculated ICV longitudinal aging-trajectories based on three analysis methods; direct calculation of ICV differences between the first and the last scan, fitting all ICV measurements of individuals to a straight line, and applying a global linear mixed model fitting. We report statistically significant increase in the ICV in adulthood until the fourth decade of life (average change +0.03%/y, or about 0.5 ml/y, at age 20), and decrease in the ICV afterward (-0.09%/y, or about -1.2 ml/y, at age 55). To account for previous cross-sectional reports of ICV changes, we analyzed the same data using a cross-sectional approach. Our cross-sectional analysis detected ICV changes consistent with the previously reported cross-sectional effect. However, the reported amount of cross-sectional changes within this age range was significantly larger than the longitudinal changes. We attribute the cross-sectional results to a generational effect. In conclusion, the human intracranial volume does not stay constant during adulthood but instead shows a small increase during young adulthood and a decrease thereafter from the fourth decade of life. The age-related changes in the longitudinalmeasure are smaller than those reported using cross-sectional approaches and unlikely to affect structural brain imaging studies correcting for intracranial volume considerably. As to the possible mechanisms involved, this awaits further study, although thickening of the meninges and skull bones have been proposed, as well as a smaller amount of brain fluids addition above the overall loss of brain tissue.
Subject(s)
Aging , Brain/diagnostic imaging , Adolescent , Adult , Brain/growth & development , Female , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size/physiology , Young AdultABSTRACT
Purpose: The diagnosis of primary bone tumors is challenging as the initial complaints are often non-specific. The early detection of bone cancer is crucial for a favorable prognosis. Incidentally, lesions may be found on radiographs obtained for other reasons. However, these early indications are often missed. We propose an automatic algorithm to detect bone lesions in conventional radiographs to facilitate early diagnosis. Detecting lesions in such radiographs is challenging. First, the prevalence of bone cancer is very low; any method must show high precision to avoid a prohibitive number of false alarms. Second, radiographs taken in health maintenance organizations (HMOs) or emergency departments (EDs) suffer from inherent diversity due to different X-ray machines, technicians, and imaging protocols. This diversity poses a major challenge to any automatic analysis method. Approach: We propose training an off-the-shelf object detection algorithm to detect lesions in radiographs. The novelty of our approach stems from a dedicated preprocessing stage that directly addresses the diversity of the data. The preprocessing consists of self-supervised region-of-interest detection using vision transformer (ViT), and a foreground-based histogram equalization for contrast enhancement to relevant regions only. Results: We evaluate our method via a retrospective study that analyzes bone tumors on radiographs acquired from January 2003 to December 2018 under diverse acquisition protocols. Our method obtains 82.43% sensitivity at a 1.5% false-positive rate and surpasses existing preprocessing methods. For lesion detection, our method achieves 82.5% accuracy and an IoU of 0.69. Conclusions: The proposed preprocessing method enables effectively coping with the inherent diversity of radiographs acquired in HMOs and EDs.
ABSTRACT
Intercellular signalling is an indispensable part of multicellular life. Understanding the commonalities and differences in how signalling molecules function in two remote branches of the tree of life may shed light on the reasons these molecules were originally recruited for intercellular signalling. Here we review the plant function of three highly studied animal intercellular signalling molecules, namely glutamate, γ-aminobutyric acid (GABA), and melatonin. By considering both their signalling function in plants and their broader physiological function, we suggest that molecules with an original function as key metabolites or active participants in reactive ion species scavenging have a high chance of becoming intercellular signalling molecules. Naturally, the evolution of machinery to transduce a message across the plasma membrane is necessary. This fact is demonstrated by three other well-studied animal intercellular signalling molecules, namely serotonin, dopamine, and acetylcholine, for which there is currently no evidence that they act as intercellular signalling molecules in plants.
Subject(s)
Melatonin , Animals , Melatonin/metabolism , Glutamic Acid/metabolism , Plants/metabolism , gamma-Aminobutyric Acid/metabolism , Signal TransductionABSTRACT
The enlargement of the liver and spleen (hepatosplenomegaly) is a common manifestation of Gaucher disease (GD). An accurate estimation of the liver and spleen volumes in patients with GD, using imaging tools such as magnetic resonance imaging (MRI), is crucial for the baseline assessment and monitoring of the response to treatment. A commonly used method in clinical practice to estimate the spleen volume is the employment of a formula that uses the measurements of the craniocaudal length, diameter, and thickness of the spleen in MRI. However, the inaccuracy of this formula is significant, which, in turn, emphasizes the need for a more precise and reliable alternative. To this end, we employed deep-learning techniques, to achieve a more accurate spleen segmentation and, subsequently, calculate the resulting spleen volume with higher accuracy on a testing set cohort of 20 patients with GD. Our results indicate that the mean error obtained using the deep-learning approach to spleen volume estimation is 3.6 ± 2.7%, which is significantly lower than the common formula approach, which resulted in a mean error of 13.9 ± 9.6%. These findings suggest that the integration of deep-learning methods into the clinical routine practice for spleen volume calculation could lead to improved diagnostic and monitoring outcomes.
ABSTRACT
Background and Hypothesis: An existing model suggests that some brain features of relatives of people affected by psychosis can be distinguished from both the probands and a control group. Such findings can be interpreted as representing a compensating mechanism. Study Design: We studied white matter features using diffusion tensor imaging in a cohort of 82 people affected by psychosis, 122 of their first-degree relatives, and 89 control subjects that were scanned between two to three times with an interval of approximately 3 years between consecutive scans. We measured both fractional anisotropy and other standard diffusivity measures such as axial diffusivity. Additionally, we calculated standard connectivity measures such as path length based on probabilistic or deterministic tractography. Finally, by averaging the values of the different measures over the two or three consecutive scans, we studied epoch-averagely the difference between these three groups. Study Results: For several tracts and several connectivity measures, the relatives showed distinct features from both the probands and the control groups. In those cases, the relatives did not necessarily score between the probands and the control group. An aggregate analysis in the form of a group-dependent score for the different modes of the analysis (e.g., for fractional anisotropy) supported this observation. Conclusions: We interpret these results as evidence supporting a compensation mechanism in the brain of relatives that may be related to resilience that some of them exhibit in the face of the genetic risk they have for being affected by psychosis.
ABSTRACT
Three-dimensional fetal ultrasound is commonly used to study the volumetric development of brain structures. To date, only a limited number of automatic procedures for delineating the intracranial volume exist. Hence, intracranial volume measurements from three-dimensional ultrasound images are predominantly performed manually. Here, we present and validate an automated tool to extract the intracranial volume from three-dimensional fetal ultrasound scans. The procedure is based on the registration of a brain model to a subject brain. The intracranial volume of the subject is measured by applying the inverse of the final transformation to an intracranial mask of the brain model. The automatic measurements showed a high correlation with manual delineation of the same subjects at two gestational ages, namely, around 20 and 30 weeks (linear fitting R2(20 weeks) = 0.88, R2(30 weeks) = 0.77; Intraclass Correlation Coefficients: 20 weeks=0.94, 30 weeks = 0.84). Overall, the automatic intracranial volumes were larger than the manually delineated ones (84 ± 16 vs. 76 ± 15 cm3; and 274 ± 35 vs. 237 ± 28 cm3), probably due to differences in cerebellum delineation. Notably, the automated measurements reproduced both the non-linear pattern of fetal brain growth and the increased inter-subject variability for older fetuses. By contrast, there was some disagreement between the manual and automatic delineation concerning the size of sexual dimorphism differences. The method presented here provides a relatively efficient way to delineate volumes of fetal brain structures like the intracranial volume automatically. It can be used as a research tool to investigate these structures in large cohorts, which will ultimately aid in understanding fetal structural human brain development.
ABSTRACT
Structural analysis, supported by biochemical, mutagenesis and computational evidence, indicates that the peptidyltransferase centre of the contemporary ribosome is a universal symmetrical pocket composed solely of rRNA. This pocket seems to be a relic of the proto-ribosome, an ancient ribozyme, which was a dimeric RNA assembly formed from self-folded RNA chains of identical, similar or different sequences. This could have occurred spontaneously by gene duplication or gene fusion. This pocket-like entity was capable of autonomously catalysing various reactions, including peptide bond formation and non-coded or semi-coded amino acid polymerization. Efforts toward the structural definition of the early entity capable of genetic decoding involve the crystallization of the small ribosomal subunit of a bacterial organism harbouring a single functional rRNA operon.
Subject(s)
RNA, Catalytic/genetics , RNA, Catalytic/physiology , Ribosomes/genetics , Ribosomes/physiology , Evolution, Molecular , Models, Biological , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Biosynthesis/physiology , RNA, Catalytic/chemistry , RNA, Catalytic/metabolism , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Bacterial/metabolism , Ribosome Subunits, Small, Bacterial/chemistry , Ribosome Subunits, Small, Bacterial/metabolism , Ribosome Subunits, Small, Bacterial/ultrastructure , Ribosomes/metabolismABSTRACT
Cell division in most prokaryotes is mediated by the well-studied fts genes, with FtsZ as the principal player. In many archaeal species, however, division is orchestrated differently. The Crenarchaeota phylum of archaea features the action of the three proteins, CdvABC. This Cdv system is a unique and less-well-studied division mechanism that merits closer inspection. In vivo, the three Cdv proteins form a composite band that contracts concomitantly with the septum formation. Of the three Cdv proteins, CdvA is the first to be recruited to the division site, while CdvB and CdvC are thought to participate in the active part of the Cdv division machinery. Interestingly, CdvB shares homology with a family of proteins from the eukaryotic ESCRT-III complex, and CdvC is a homolog of the eukaryotic Vps4 complex. These two eukaryotic complexes are key factors in the endosomal sorting complex required for transport (ESCRT) pathway, which is responsible for various budding processes in eukaryotic cells and which participates in the final stages of division in Metazoa. There, ESCRT-III forms a contractile machinery that actively cuts the membrane, whereas Vps4, which is an ATPase, is necessary for the turnover of the ESCRT membrane-abscission polymers. In contrast to CdvB and CdvC, CdvA is unique to the archaeal Crenarchaeota and Thaumarchaeota phyla. The Crenarchaeota division mechanism has often been suggested to represent a simplified version of the ESCRT division machinery thus providing a model system to study the evolution and mechanism of cell division in higher organisms. However, there are still many open questions regarding this parallelism and the division mechanism of Crenarchaeota. Here, we review the existing data on the role of the Cdv proteins in the division process of Crenarchaeota as well as concisely review the ESCRT system in eukaryotes. We survey the similarities and differences between the division and abscission mechanisms in the two cases. We suggest that the Cdv system functions differently in archaea than ESCRT does in eukaryotes, and that, unlike the eukaryotic case, the Cdv system's main function may be related to surplus membrane invagination and cell-wall synthesis.
ABSTRACT
The bacterial Min protein system provides a major model system for studying reaction-diffusion processes in biology. Here we present the first in vitro study of the Min system in fully confined three-dimensional chambers that are lithography-defined, lipid-bilayer coated and isolated through pressure valves. We identify three typical dynamical behaviors that occur dependent on the geometrical chamber parameters: pole-to-pole oscillations, spiral rotations, and traveling waves. We establish the geometrical selection rules and show that, surprisingly, Min-protein spiral rotations govern the larger part of the geometrical phase diagram. Confinement as well as an elevated temperature reduce the characteristic wavelength of the Min patterns, although even for confined chambers with a bacterial-level viscosity, the patterns retain a ~5 times larger wavelength than in vivo. Our results provide an essential experimental base for modeling of intracellular Min gradients in bacterial cell division as well as, more generally, for understanding pattern formation in reaction-diffusion systems.
Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , DNA Nucleotidyltransferases/chemistry , DNA Nucleotidyltransferases/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Kinetics , Protein ConformationABSTRACT
Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 µm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.
Subject(s)
Microfluidics/methods , Octanols/chemistry , Unilamellar Liposomes/chemistry , Escherichia coli Proteins/chemistry , Hemolysin Proteins/chemistry , Lipids/chemistry , Microfluidics/instrumentationABSTRACT
The mechanical properties of bacterial cells are determined by their stress-bearing elements. The size of typical bacterial cells, and the fact that different time and length scales govern their behavior, necessitate special experimental techniques in order to probe their mechanical properties under various spatiotemporal conditions. Here, we present such an experimental technique to study cell mechanics using hydrodynamic forces in a microfluidic device. We demonstrate the application of this technique by calculating the flexural rigidity of non-growing Escherichia coli cells. In addition, we compare the deformation of filamentous cells under growing and non-growing conditions during the deformation process. We show that, at low forces, the force needed to deform growing cells to the same extent as non-growing cells is approximately two times smaller. Following previous works, we interpret these results as the outcome of the difference between the elastic response of non-growing cells and the plastic-elastic response of growing cells. Finally, we observe some heterogeneity in the response of individual cells to the applied force. We suggest that this results from the individuality of different bacterial cells.
Subject(s)
Biomechanical Phenomena , Escherichia coli/physiology , Microfluidic Analytical Techniques , Algorithms , Models, Theoretical , Stress, MechanicalABSTRACT
With the recent dawn of synthetic biology, the old idea of man-made artificial life has gained renewed interest. In the context of a bottom-up approach, this entails the de novo construction of synthetic cells that can autonomously sustain themselves and proliferate. Reproduction of a synthetic cell involves the synthesis of its inner content, replication of its information module, and growth and division of its shell. Theoretical and experimental analysis of natural cells shows that, whereas the core synthesis machinery of the information module is highly conserved, a wide range of solutions have been realized in order to accomplish division. It is therefore to be expected that there are multiple ways to engineer division of synthetic cells. Here we survey the field and review potential routes that can be explored to accomplish the division of bottom-up designed synthetic cells. We cover a range of complexities from simple abiotic mechanisms involving splitting of lipid-membrane-encapsulated vesicles due to physical or chemical principles, to potential division mechanisms of synthetic cells that are based on prokaryotic division machineries.
ABSTRACT
The nuclear pore complex is a large protein channel present universally in eukaryotic cells. It generates an essential macromolecular separation between the nucleus and cytoplasm. The transport mechanism relies on recognition of molecular cargos by receptor proteins, and on specific interaction between the receptors and the pores. We present a chemical mimic of this "receptor-mediated" transport using modified nanoporous membrane filters, polyisopropylacrylamide as the carrier molecule, or receptor, and single-stranded DNA as the cargo. We show that a complex of ssDNA and polyisopropylacrylamide diffuses faster through the modified pores than does the bare ssDNA, in spite of the larger size of the complex. The mobile polymer thus acts as a soluble receptor to usher a macromolecular cargo specifically through the pores.
Subject(s)
Biomimetic Materials/chemical synthesis , Biomimetic Materials/metabolism , Nuclear Pore/metabolism , Biomimetic Materials/chemistry , DNA/chemistryABSTRACT
We studied local budding and tubulation induced in highly oblate lipid vesicles by the anchoring of either polymers having a hydrophilic backbone and grafted hydrophobic anchor groups, or by oleoyl-coenzyme A, an amphiphilic molecule important in lipid metabolism. The dynamics of bud formation, shrinkage, and readsorption is consistent with an induced spontaneous curvature coupled with local amphiphile diffusion on the membrane. We report a novel metastable state prior to bud readsorption.