Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
Add more filters

Publication year range
1.
Cell ; 184(7): 1821-1835.e16, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33667349

ABSTRACT

Human monoclonal antibodies are safe, preventive, and therapeutic tools that can be rapidly developed to help restore the massive health and economic disruption caused by the coronavirus disease 2019 (COVID-19) pandemic. By single-cell sorting 4,277 SARS-CoV-2 spike protein-specific memory B cells from 14 COVID-19 survivors, 453 neutralizing antibodies were identified. The most potent neutralizing antibodies recognized the spike protein receptor-binding domain, followed in potency by antibodies that recognize the S1 domain, the spike protein trimer, and the S2 subunit. Only 1.4% of them neutralized the authentic virus with a potency of 1-10 ng/mL. The most potent monoclonal antibody, engineered to reduce the risk of antibody-dependent enhancement and prolong half-life, neutralized the authentic wild-type virus and emerging variants containing D614G, E484K, and N501Y substitutions. Prophylactic and therapeutic efficacy in the hamster model was observed at 0.25 and 4 mg/kg respectively in absence of Fc functions.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , B-Lymphocytes/immunology , COVID-19 , Convalescence , 3T3 Cells , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , B-Lymphocytes/cytology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/therapy , Chlorocebus aethiops , Disease Models, Animal , Female , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/immunology , Male , Mice , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
2.
Euro Surveill ; 29(26)2024 Jun.
Article in English | MEDLINE | ID: mdl-38940002

ABSTRACT

Oropouche fever is caused by Oropouche virus (OROV), transmitted primarily through the bite of infected midges, particularly of the genus Culicoides. The virus is mainly circulating in Central and South America where several countries reported an ongoing outbreak. We report here two imported cases of OROV infection identified in Italy, late May-early June 2024. These cases indicate that in the shadow of a massive dengue outbreak in the Americas, the Oropouche outbreak might be more widespread than previously estimated.


Subject(s)
Travel , Humans , Italy/epidemiology , Male , Cuba/epidemiology , Adult , Orthobunyavirus/isolation & purification , Animals , Disease Outbreaks , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/epidemiology , Middle Aged , Female
3.
Mol Ther ; 30(1): 311-326, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34547465

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax-a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)-induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization/methods , Models, Animal , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/virology , Female , Ferrets , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Protein Domains , Rats, Sprague-Dawley
4.
Clin Infect Dis ; 75(1): e552-e563, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35366316

ABSTRACT

BACKGROUND: Data on SARS-CoV-2 vaccine immunogenicity in PLWH are currently limited. Aim of the study was to investigate immunogenicity according to current CD4 T-cell count. METHODS: PLWH on ART attending a SARS-CoV-2 vaccination program, were included in a prospective immunogenicity evaluation after receiving BNT162b2 or mRNA-1273. Participants were stratified by current CD4 T-cell count (poor CD4 recovery, PCDR: <200/mm3; intermediate CD4 recovery, ICDR: 200-500/mm3; high CD4 recovery, HCDR: >500/mm3). RBD-binding IgG, SARS-CoV-2 neutralizing antibodies (nAbs) and IFN-γ release were measured. As control group, HIV-negative healthcare workers (HCWs) were used. FINDINGS: Among 166 PLWH, after 1 month from the booster dose, detectable RBD-binding IgG were elicited in 86.7% of PCDR, 100% of ICDR, 98.7% of HCDR, and a neutralizing titre ≥1:10 elicited in 70.0%, 88.2%, and 93.1%, respectively. Compared to HCDR, all immune response parameters were significantly lower in PCDR. After adjusting for confounders, current CD4 T-cell <200/mm3 significantly predicted a poor magnitude of anti-RDB, nAbs and IFN-γ response. As compared with HCWs, PCDR elicited a consistently reduced immunogenicity for all parameters, ICDR only a reduced RBD-binding antibody response, whereas HCDR elicited a comparable immune response for all parameters. CONCLUSION: Humoral and cell-mediated immune response against SARS-CoV-2 were elicited in most of PLWH, albeit significantly poorer in those with CD4 T-cell <200/mm3 versus those with >500 cell/mm3 and HIV-negative controls. A lower RBD-binding antibody response than HCWs was also observed in PLWH with CD4 T-cell 200-500/mm3, whereas immune response elicited in PLWH with a CD4 T-cell >500/mm3 was comparable to HIV-negative population.


Subject(s)
COVID-19 , HIV Infections , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , CD4-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , HIV , HIV Infections/drug therapy , Humans , Immunity, Cellular , Immunoglobulin G , Lymphocyte Count , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Vaccination
5.
Emerg Infect Dis ; 28(4): 865-869, 2022 04.
Article in English | MEDLINE | ID: mdl-35318936

ABSTRACT

We report detecting infectious Toscana virus in the seminal fluid of a 25-year-old man from Italy returning from Elba Island. The presence of infectious virus in human semen adds Toscana virus to the long list of viruses detected in this genital fluid and indicates a potential for sexual transmission.


Subject(s)
Body Fluids , Communicable Diseases , Sandfly fever Naples virus , Adult , Fetus , Humans , Male , Sandfly fever Naples virus/genetics , Semen
6.
Virol J ; 19(1): 97, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659257

ABSTRACT

BACKGROUND: The aim of this study was to characterize the genome of a recombinant Enterovirus associated with severe and fatal nosocomial infection; it was typed as Echovirus 11 (E-11) according to the VP1 gene. Enterovirus infection is generally asymptomatic and self-limited, but occasionally it may progress to a more severe clinical manifestation, as in the case described here. Recombination plays a crucial role in the evolution of Enteroviruses (EVs) and has been recognized as the main driving force behind the emergence of epidemic strains associated with severe infection. Therefore, it is of utmost importance to monitor the circulation of recombinant strains for surveillance purposes. METHODS: Enterovirus-RNA was detected in the serum and liver biopsy of patients involved in the nosocomial cluster by commercial One-Step qRT-PCR method and the Enterovirus strains were isolated in vitro. The EVs typing was determined by analyzing the partial-length of the 5'UTR and VP1 sequences with the web-based open-access Enterovirus Genotyping Tool Version 0.1. The amplicons targeting 5'UTR, VP1 and overlapping fragments of the entire genome were sequenced with the Sanger method. Phylogenetic analysis was performed comparing the VP1 and the full-genome sequences of our strains against an appropriate reference set of Enterovirus prototypes of the Picornaviridae genera and species retrieved from the Enterovirus Genotyping Tool. Recombination analysis was performed using RDP4 software. RESULTS: The Neighbor-Joining tree of the VP1 gene revealed that the 4 patients were infected with an identical molecular variant of Echovirus 11 (E-11). While the phylogenetic and the RDP4 analysis of the full-genome sequences provided evidence that it was a chimeric strain between an E-11 and a Coxsackievirus B (CV-B). CONCLUSIONS: The chimeric structure of the E-11 genome might have contributed to the severe infection and epidemic feature of the strain, but further biological characterizations are needed. The evidence reported in this study, highlights the limit of typing techniques based on the VP1 gene, as they fail to identify the emergence of recombinant strains with potentially more pathogenic or epidemic properties, thus providing only partial information on the epidemiology and pathogenesis of Enteroviruses.


Subject(s)
Cross Infection , Enterovirus Infections , Enterovirus , 5' Untranslated Regions , Cross Infection/epidemiology , Disease Outbreaks , Enterovirus B, Human , Enterovirus Infections/epidemiology , Genome, Viral , Humans , Phylogeny , RNA, Viral/chemistry , RNA, Viral/genetics
7.
Liver Int ; 42(1): 180-186, 2022 01.
Article in English | MEDLINE | ID: mdl-34719107

ABSTRACT

Limited data are available on risks and benefits of anti-SARS-CoV2 vaccination in solid organ transplant recipients, and weaker responses have been described. At the Italian National Institute for Infectious Diseases, 61 liver transplant recipients underwent testing to describe the dynamics of humoral and cell-mediated immune response after two doses of anti-SARS-CoV2 mRNA vaccines and compared with 51 healthy controls. Humoral response was measured by quantifying both anti-spike and neutralizing antibodies; cell-mediated response was measured by PBMC proliferation assay with IFN-γ and IL-2 production. Liver transplant recipients showed lower response rates compared with controls in both humoral and cellular arms; shorter time since transplantation and multi-drug immunosuppressive regimen containing mycophenolate mofetil were predictive of reduced response to vaccination. Specific antibody and cytokine production, though reduced, were highly correlated in transplant recipients.


Subject(s)
COVID-19 , Liver Transplantation , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Humoral , Leukocytes, Mononuclear , RNA, Messenger , RNA, Viral , SARS-CoV-2 , Transplant Recipients , Vaccination
8.
Mol Ther ; 29(8): 2412-2423, 2021 08 04.
Article in English | MEDLINE | ID: mdl-33895322

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the emergent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health, and there is an urgent need to develop safe and effective vaccines. Here, we report the generation and the preclinical evaluation of a novel replication-defective gorilla adenovirus-vectored vaccine encoding the pre-fusion stabilized Spike (S) protein of SARS-CoV-2. We show that our vaccine candidate, GRAd-COV2, is highly immunogenic both in mice and macaques, eliciting both functional antibodies that neutralize SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and a robust, T helper (Th)1-dominated cellular response. We show here that the pre-fusion stabilized Spike antigen is superior to the wild type in inducing ACE2-interfering, SARS-CoV-2-neutralizing antibodies. To face the unprecedented need for vaccine manufacturing at a massive scale, different GRAd genome deletions were compared to select the vector backbone showing the highest productivity in stirred tank bioreactors. This preliminary dataset identified GRAd-COV2 as a potential COVID-19 vaccine candidate, supporting the translation of the GRAd-COV2 vaccine in a currently ongoing phase I clinical trial (ClinicalTrials.gov: NCT04528641).


Subject(s)
Adenoviridae/immunology , Adenovirus Vaccines/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Gorilla gorilla/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Cell Line, Tumor , Female , Genetic Vectors/immunology , Gorilla gorilla/virology , HEK293 Cells , HeLa Cells , Humans , Macaca , Male , Mice , Mice, Inbred BALB C , Middle Aged , Pandemics/prevention & control , Young Adult
9.
Euro Surveill ; 27(42)2022 10.
Article in English | MEDLINE | ID: mdl-36268736

ABSTRACT

BackgroundCountries worldwide are focusing to mitigate the ongoing SARS-CoV-2 pandemic by employing public health measures. Laboratories have a key role in the control of SARS-CoV-2 transmission. Serology for SARS-CoV-2 is of critical importance to support diagnosis, define the epidemiological framework and evaluate immune responses to natural infection and vaccine administration.AimThe aim of this study was the assessment of the actual capability among laboratories involved in sero-epidemiological studies on COVID-19 in EU/EEA and EU enlargement countries to detect SARS-CoV-2 antibodies through an external quality assessment (EQA) based on proficiency testing.MethodsThe EQA panels were composed of eight different, pooled human serum samples (all collected in 2020 before the vaccine roll-out), addressing sensitivity and specificity of detection. The panels and two EU human SARS-CoV-2 serological standards were sent to 56 laboratories in 30 countries.ResultsThe overall performance of laboratories within this EQA indicated a robust ability to establish past SARS-CoV-2 infections via detection of anti-SARS-CoV-2 antibodies, with 53 of 55 laboratories using at least one test that characterised all EQA samples correctly. IgM-specific test methods provided most incorrect sample characterisations (24/208), while test methods detecting total immunoglobulin (0/119) and neutralising antibodies (2/230) performed the best. The semiquantitative assays used by the EQA participants also showed a robust performance in relation to the standards.ConclusionOur EQA showed a high capability across European reference laboratories for reliable diagnostics for SARS-CoV-2 antibody responses. Serological tests that provide robust and reliable detection of anti-SARS-CoV-2 antibodies are available.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Laboratories , Antibodies, Viral , Sensitivity and Specificity , Immunoglobulin M , Antibodies, Neutralizing
10.
J Med Virol ; 93(3): 1796-1804, 2021 03.
Article in English | MEDLINE | ID: mdl-32975842

ABSTRACT

Little evidence on coronavirus disease 2019 (COVID-19) in people living with HIV (PLWH) is currently available. We reported clinical and viroimmunological data of all HIV-positive patients admitted to our center with COVID-19 from March 1 to May 12, 2020. Overall, five patients were included: all were virologically-suppressed on antiretroviral therapy and CD4+ count was greater than 350 cell/mm3 in all but two patients. Although all patients had evidence of pneumonia on admission, only one developed respiratory failure. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was never detected from nasopharyngeal swabs in two patients, whereas in the others, viral clearance occurred within a maximum of 43 days. Immunoglobulin G production was elicited in all patients and neutralizing antibodies in all but one patient. Specific-T-cell response developed in all patients but was stronger in those with the more severe presentations. Similarly, the highest level of proinflammatory cytokines was found in the only patient experiencing respiratory failure. Despite a mild presentation, patients with more pronounced immunosuppression showed high degrees of both cytokines production and immune activation. Our study did not find an increased risk and severity of COVID-19 in PLWH. Adaptative cellular immune response to SARS-CoV-2 appeared to correlate to disease severity. The mild clinical picture showed in advanced HIV patients, despite a significant T-cell activation and inflammatory profile, suggests a potential role of HIV-driven immunological dysregulation in avoiding immune-pathogenetic processes. However, other possible explanations, as a protective role of certain antiretroviral drugs, should be considered. Further larger studies are needed to better clarify the impact of HIV infection on COVID-19.


Subject(s)
Anti-Retroviral Agents/therapeutic use , COVID-19 Drug Treatment , HIV Infections/drug therapy , SARS-CoV-2/drug effects , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CD4 Lymphocyte Count , Coinfection/virology , Cytokines/blood , Female , HIV Integrase Inhibitors/therapeutic use , Heterocyclic Compounds, 3-Ring/therapeutic use , Humans , Immunity, Humoral/immunology , Male , Middle Aged , Oxazines/therapeutic use , Piperazines/therapeutic use , Pyridones/therapeutic use , RNA, Viral/analysis , Reverse Transcriptase Inhibitors/therapeutic use , Risk , Severity of Illness Index , Tenofovir/therapeutic use , Transgender Persons
11.
Infection ; 49(5): 1061-1064, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33454928

ABSTRACT

Tuberculosis (TB) is top infectious disease killer caused by a single organism responsible for 1.5 million deaths in 2018. Both COVID-19 and the pandemic response are risking to affect control measures for TB and continuity of essential services for people affected by this infection in western countries and even more in developing countries. Knowledge about concomitant pulmonary TB and COVID-19 is extremely limited. The double burden of these two diseases can have devastating effects. Here, we describe from both the clinical and the immunological point of view a case of a patient with in vitro immune cell anergy affected by bilateral cavitary pulmonary TB and subsequent COVID-19-associated pneumonia with a worst outcome. COVID-19 can be a precipitating factor in TB respiratory failure and, during ongoing SARS-COV-2 pandemic, clinicians must be aware of this possible co-infection in differential diagnosis of patients with active TB and new or worsening chest imaging.


Subject(s)
COVID-19 , Tuberculosis, Pulmonary , Tuberculosis , Humans , Pandemics , SARS-CoV-2 , Tuberculosis/epidemiology , Tuberculosis, Pulmonary/diagnosis
12.
Clin Chem Lab Med ; 59(12): 2010-2018, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34492749

ABSTRACT

OBJECTIVES: Simple and standardized methods to establish correlates to vaccine-elicited SARS-CoV-2 protection are needed. METHODS: An observational study on antibody response to a mRNA vaccine (Comirnaty) was performed on health care workers (V, n=120). Recovered COVID-19 patients (N, n=94) were used for comparison. Antibody response was evaluated by a quantitative anti-receptor binding domain IgG (anti-RBD) commercial assay and by virus microneutralization test (MNT), in order to establish a threshold of anti-RBD binding antibody units (BAU) able to predict a robust (≥1:80) MNT titer. RESULTS: Significant correlation between BAU and MNT titers was found in both V and N, being stronger in V (rs=0.91 and 0.57 respectively, p<0.001); a higher incremental trend starting from MNT titer 1:80 was observed in the V group. The 99% probability of high MNT titer (≥1:80) was reached at 1,814 and 3,564 BAU/mL, and the area under the receiver operating characteristic (ROC) curve was 0.99 (CI: 0.99-1.00) and 0.78 (CI: 0.67-0.86) in V and N, respectively. CONCLUSIONS: A threshold of 2,000 BAU/mL is highly predictive of strong MNT response in vaccinated individuals and may represent a good surrogate marker of protective response. It remains to be established whether the present results can be extended to BAU titers obtained with other assays.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Humoral , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Area Under Curve , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Health Personnel , Humans , Logistic Models , Male , Middle Aged , Neutralization Tests , ROC Curve , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/administration & dosage , Young Adult , mRNA Vaccines
13.
Nature ; 524(7563): 97-101, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26083749

ABSTRACT

West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.


Subject(s)
Disease Outbreaks/statistics & numerical data , Ebolavirus/genetics , Evolution, Molecular , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/virology , Phylogeny , Spatio-Temporal Analysis , Amino Acid Substitution/genetics , Ebolavirus/isolation & purification , Female , Guinea/epidemiology , Hemorrhagic Fever, Ebola/transmission , High-Throughput Nucleotide Sequencing , Humans , Liberia/epidemiology , Male , Mali/epidemiology , Molecular Sequence Data , Sierra Leone/epidemiology
14.
New Microbiol ; 44(4): 241-244, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34942009

ABSTRACT

Type 1 diabetes (T1DM) ethiopathogenesis is still being studied, since the role of environmental factors , especially viruses, is not yet clear. This study was conducted on 31 paediatric patients with T1DM at onset. We analysed: Coxsackieviruses A (CoxA), Coxsackieviruses B (CoxB), Echoviruses (Echo); Influenzavirus A and B (IV-A and IV-B); Adenovirus (AdV); Parainfluenza viruses 1-2 and 3 (PiV 1-2-3); Cytomegalovirus (CMV) and Respiratory Syncytial Virus (RSV). Enteroviruses, especially CoxB and Echo, are most represented. Unexpectedly, Parainfluenza viruses were detected in seasonal subgroups, with peaks in autumn and spring, and spread homogeneously in different age groups.


Subject(s)
Diabetes Mellitus, Type 1 , Enterovirus Infections , Paramyxoviridae Infections , Respiratory Tract Infections , Viruses , Child , Humans , Infant , Seasons
15.
Emerg Infect Dis ; 26(8): 1842-1845, 2020 08.
Article in English | MEDLINE | ID: mdl-32459984

ABSTRACT

We report phylogenetic and mutational analysis of severe acute respiratory syndrome coronavirus 2 virus strains from the Lazio region of Italy and provide information about the dynamics of virus spread. Data suggest effective containment of clade V strains, but subsequently, multiple waves of clade G strains were circulating widely in Europe.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , RNA, Viral/genetics , Adult , Aged , Betacoronavirus/classification , Betacoronavirus/pathogenicity , Bronchoalveolar Lavage Fluid/virology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Female , High-Throughput Nucleotide Sequencing , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Mutation , Nasopharynx/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Prospective Studies , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Severity of Illness Index , Time Factors
16.
Eur Respir J ; 56(4)2020 10.
Article in English | MEDLINE | ID: mdl-32586885

ABSTRACT

Major epidemics, including some that qualify as pandemics, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), HIV, influenza A (H1N1)pdm/09 and most recently COVID-19, affect the lung. Tuberculosis (TB) remains the top infectious disease killer, but apart from syndemic TB/HIV little is known regarding the interaction of viral epidemics and pandemics with TB. The aim of this consensus-based document is to describe the effects of viral infections resulting in epidemics and pandemics that affect the lung (MERS, SARS, HIV, influenza A (H1N1)pdm/09 and COVID-19) and their interactions with TB. A search of the scientific literature was performed. A writing committee of international experts including the European Centre for Disease Prevention and Control Public Health Emergency (ECDC PHE) team, the World Association for Infectious Diseases and Immunological Disorders (WAidid), the Global Tuberculosis Network (GTN), and members of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Mycobacterial Infections (ESGMYC) was established. Consensus was achieved after multiple rounds of revisions between the writing committee and a larger expert group. A Delphi process involving the core group of authors (excluding the ECDC PHE team) identified the areas requiring review/consensus, followed by a second round to refine the definitive consensus elements. The epidemiology and immunology of these viral infections and their interactions with TB are discussed with implications for diagnosis, treatment and prevention of airborne infections (infection control, viral containment and workplace safety). This consensus document represents a rapid and comprehensive summary on what is known on the topic.


Subject(s)
Respiratory Tract Infections/epidemiology , Tuberculosis/epidemiology , Virus Diseases/epidemiology , BCG Vaccine/therapeutic use , Betacoronavirus , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Epidemics , HIV Infections/diagnosis , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/immunology , Humans , Influenza A Virus, H1N1 Subtype , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Influenza, Human/immunology , Lung/immunology , Middle East Respiratory Syndrome Coronavirus , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Public Health , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/diagnosis , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/immunology , Tuberculosis/diagnosis , Tuberculosis/immunology , Tuberculosis/prevention & control , Virus Diseases/diagnosis , Virus Diseases/drug therapy , Virus Diseases/immunology
17.
J Antimicrob Chemother ; 75(10): 2977-2980, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32607555

ABSTRACT

BACKGROUND: Remdesivir is a prodrug of the nucleoside analogue GS-441524 and is under evaluation for treatment of SARS-CoV-2-infected patients. OBJECTIVES: To evaluate the pharmacokinetics of remdesivir and GS-441524 in plasma, bronchoalveolar aspirate (BAS) and CSF in two critically ill COVID-19 patients. METHODS: Remdesivir was administered at 200 mg loading dose on the first day followed by 12 days of 100 mg in two critically ill patients. Blood samples were collected immediately after (C0) and at 1 (C1) and 24 h (C24) after intravenous administration on day 3 until day 9. BAS samples were collected on Days 4, 7 and 9 from both patients while one CSF on Day 7 was obtained in one patient. Remdesivir and GS-441524 concentrations were measured in these samples using a validated UHPLC-MS/MS method. RESULTS: We observed higher concentrations of remdesivir at C0 (6- to 7-fold higher than EC50 from in vitro studies) and a notable decay at C1. GS-441524 plasma concentrations reached a peak at C1 and persisted until the next administration. Higher concentrations of GS-441524 were observed in the patient with mild renal dysfunction. Mean BAS/plasma concentration ratios of GS-441524 were 2.3% and 6.4% in Patient 1 and Patient 2, respectively. The CSF concentration found in Patient 2 was 25.7% with respect to plasma. GS-441524 levels in lung and CNS suggest compartmental differences in drug exposure. CONCLUSIONS: We report the first pharmacokinetic evaluation of remdesivir and GS-441524 in recovered COVID-19 patients. Further study of the pharmacokinetic profile of remdesivir, GS-441524 and the intracellular triphosphate form are required.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Adenosine Triphosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacokinetics , Betacoronavirus , Coronavirus Infections/metabolism , Critical Illness/therapy , Pneumonia, Viral/metabolism , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/therapeutic use , Adenosine Triphosphate/pharmacokinetics , Adenosine Triphosphate/therapeutic use , Aged , Alanine/pharmacokinetics , Alanine/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Female , Humans , Male , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Recovery of Function/drug effects , Recovery of Function/physiology , SARS-CoV-2
18.
Euro Surveill ; 25(8)2020 02.
Article in English | MEDLINE | ID: mdl-32127123

ABSTRACT

A novel coronavirus (SARS-CoV-2) has been identified as the causative pathogen of an ongoing outbreak of respiratory disease, now named COVID-19. Most cases and sustained transmission occurred in China, but travel-associated cases have been reported in other countries, including Europe and Italy. Since the symptoms are similar to other respiratory infections, differential diagnosis in travellers arriving from countries with wide-spread COVID-19 must include other more common infections such as influenza and other respiratory tract diseases.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques , Pneumonia, Viral/diagnosis , Algorithms , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/epidemiology , Diagnosis, Differential , Disease Outbreaks , Humans , Influenza, Human/diagnosis , Italy/epidemiology , Mass Screening , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Pneumonia, Viral/epidemiology , Population Surveillance , Respiratory Tract Infections/diagnosis , SARS-CoV-2 , Travel
19.
PLoS Pathog ; 13(1): e1006065, 2017 01.
Article in English | MEDLINE | ID: mdl-28056096

ABSTRACT

An unprecedented Ebola virus (EBOV) epidemic occurred in 2013-2016 in West Africa. Over this time the epidemic exponentially grew and moved to Europe and North America, with several imported cases and many Health Care Workers (HCW) infected. Better understanding of EBOV infection patterns in different body compartments is mandatory to develop new countermeasures, as well as to fully comprehend the pathways of human-to-human transmission. We have longitudinally explored the persistence of EBOV-specific negative sense genomic RNA (neg-RNA) and the presence of positive sense RNA (pos-RNA), including both replication intermediate (antigenomic-RNA) and messenger RNA (mRNA) molecules, in the upper and lower respiratory tract, as compared to plasma, in a HCW infected with EBOV in Sierra Leone, who was hospitalized in the high isolation facility of the National Institute for Infectious Diseases "Lazzaro Spallanzani" (INMI), Rome, Italy. We observed persistence of pos-RNA and neg-RNAs in longitudinally collected specimens of the lower respiratory tract, even after viral clearance from plasma, suggesting possible local replication. The purpose of the present study is to enhance the knowledge on the biological features of EBOV that can contribute to the human-to-human transmissibility and to develop effective intervention strategies. However, further investigation is needed in order to better understand the clinical meaning of viral replication and shedding in the respiratory tract.


Subject(s)
Hemorrhagic Fever, Ebola/virology , RNA, Viral/analysis , Ebolavirus/genetics , Humans , Polymerase Chain Reaction
20.
Euro Surveill ; 24(3)2019 Jan.
Article in English | MEDLINE | ID: mdl-30670139

ABSTRACT

Blood donation screening for West Nile virus (WNV) was mandatory in the Lazio region in 2017 and 2018 (June-November) according to the national surveillance plan. In these years, all five donations reactive in WNV nucleic acid amplification tests harboured instead Usutu virus (USUV). Clade 'Europe 2' was identified in four blood donations and a 2018 mosquito pool. The cocirculation of WNV and USUV in Lazio warrants increased laboratory support and awareness of possible virus misidentification.


Subject(s)
Blood Donors/statistics & numerical data , Disease Outbreaks/prevention & control , Flavivirus Infections/epidemiology , Flavivirus/isolation & purification , West Nile virus/isolation & purification , Adult , Aged , Animals , Culicidae/virology , Flavivirus/genetics , Flavivirus Infections/diagnosis , Flavivirus Infections/virology , Humans , Italy/epidemiology , Male , Middle Aged , Nucleic Acid Amplification Techniques , Phylogeny , Polymerase Chain Reaction , Sentinel Surveillance , Sequence Analysis , West Nile virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL