Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
Add more filters

Publication year range
2.
Mol Cell Proteomics ; 23(6): 100779, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679388

ABSTRACT

New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including thermal proteome profiling and proteome integral solubility alteration (PISA) assays, represent "deep proteomics" methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply thermal proteome profiling and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom.


Subject(s)
Crotalid Venoms , Crotalus , Proteome , Proteomics , Animals , Crotalus/metabolism , Proteome/metabolism , Proteomics/methods , Metalloproteases/antagonists & inhibitors , Metalloproteases/metabolism , Hydroxamic Acids/pharmacology , Snake Venoms/metabolism
3.
Genome Res ; 32(6): 1058-1073, 2022 06.
Article in English | MEDLINE | ID: mdl-35649579

ABSTRACT

Understanding how regulatory mechanisms evolve is critical for understanding the processes that give rise to novel phenotypes. Snake venom systems represent a valuable and tractable model for testing hypotheses related to the evolution of novel regulatory networks, yet the regulatory mechanisms underlying venom production remain poorly understood. Here, we use functional genomics approaches to investigate venom regulatory architecture in the prairie rattlesnake and identify cis-regulatory sequences (enhancers and promoters), trans-regulatory transcription factors, and integrated signaling cascades involved in the regulation of snake venom genes. We find evidence that two conserved vertebrate pathways, the extracellular signal-regulated kinase and unfolded protein response pathways, were co-opted to regulate snake venom. In one large venom gene family (snake venom serine proteases), this co-option was likely facilitated by the activity of transposable elements. Patterns of snake venom gene enhancer conservation, in some cases spanning 50 million yr of lineage divergence, highlight early origins and subsequent lineage-specific adaptations that have accompanied the evolution of venom regulatory architecture. We also identify features of chromatin structure involved in venom regulation, including topologically associated domains and CTCF loops that underscore the potential importance of novel chromatin structure to coevolve when duplicated genes evolve new regulatory control. Our findings provide a model for understanding how novel regulatory systems may evolve through a combination of genomic processes, including tandem duplication of genes and regulatory sequences, cis-regulatory sequence seeding by transposable elements, and diverse transcriptional regulatory proteins controlled by a co-opted regulatory cascade.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Animals , Chromatin/genetics , Crotalus/genetics , Gene Expression , Snake Venoms/genetics
4.
BMC Biol ; 21(1): 136, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280596

ABSTRACT

BACKGROUND: Snake venoms are trophic adaptations that represent an ideal model to examine the evolutionary factors that shape polymorphic traits under strong natural selection. Venom compositional variation is substantial within and among venomous snake species. However, the forces shaping this phenotypic complexity, as well as the potential integrated roles of biotic and abiotic factors, have received little attention. Here, we investigate geographic variation in venom composition in a wide-ranging rattlesnake (Crotalus viridis viridis) and contextualize this variation by investigating dietary, phylogenetic, and environmental variables that covary with venom. RESULTS: Using shotgun proteomics, venom biochemical profiling, and lethality assays, we identify 2 distinct divergent phenotypes that characterize major axes of venom variation in this species: a myotoxin-rich phenotype and a snake venom metalloprotease (SVMP)-rich phenotype. We find that dietary availability and temperature-related abiotic factors are correlated with geographic trends in venom composition. CONCLUSIONS: Our findings highlight the potential for snake venoms to vary extensively within species, for this variation to be driven by biotic and abiotic factors, and for the importance of integrating biotic and abiotic variation for understanding complex trait evolution. Links between venom variation and variation in biotic and abiotic factors indicate that venom variation likely results from substantial geographic variation in selection regimes that determine the efficacy of venom phenotypes across populations and snake species. Our results highlight the cascading influence of abiotic factors on biotic factors that ultimately shape venom phenotype, providing evidence for a central role of local selection as a key driver of venom variation.


Subject(s)
Crotalid Venoms , Crotalus , Animals , Crotalus/genetics , Phylogeny , Snake Venoms/genetics , Snake Venoms/chemistry , Phenotype , Crotalid Venoms/genetics , Crotalid Venoms/chemistry
5.
Mol Ecol ; 32(22): 6000-6017, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37861454

ABSTRACT

Hybridization facilitates recombination between divergent genetic lineages and can be shaped by both neutral and selective processes. Upon hybridization, loci with no net fitness effects introgress randomly from parental species into the genomes of hybrid individuals. Conversely, alleles from one parental species at some loci may provide a selective advantage to hybrids, resulting in patterns of introgression that do not conform to random expectations. We investigated genomic patterns of differential introgression in natural hybrids of two species of Caribbean anoles, Anolis pulchellus and A. krugi in Puerto Rico. Hybrids exhibit A. pulchellus phenotypes but possess A. krugi mitochondrial DNA, originated from multiple, independent hybridization events, and appear to have replaced pure A. pulchellus across a large area in western Puerto Rico. Combining genome-wide SNP datasets with bioinformatic methods to identify signals of differential introgression in hybrids, we demonstrate that the genomes of hybrids are dominated by pulchellus-derived alleles and show only 10%-20% A. krugi ancestry. The majority of A. krugi loci in hybrids exhibit a signal of non-random differential introgression and include loci linked to genes involved in development and immune function. Three of these genes (delta like canonical notch ligand 1, jagged1 and notch receptor 1) affect cell differentiation and growth and interact with mitochondrial function. Our results suggest that differential non-random introgression for a subset of loci may be driven by selection favouring the inheritance of compatible mitochondrial and nuclear-encoded genes in hybrids.


Subject(s)
Genome , Mitochondria , Humans , Mitochondria/genetics , Hybridization, Genetic , DNA, Mitochondrial/genetics , Puerto Rico
6.
BMC Genomics ; 23(1): 6, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983392

ABSTRACT

BACKGROUND: Snakes exhibit extreme intestinal regeneration following months-long fasts that involves unparalleled increases in metabolism, function, and tissue growth, but the specific molecular control of this process is unknown. Understanding the mechanisms that coordinate these regenerative phenotypes provides valuable opportunities to understand critical pathways that may control vertebrate regeneration and novel perspectives on vertebrate regenerative capacities. RESULTS: Here, we integrate a comprehensive set of phenotypic, transcriptomic, proteomic, and phosphoproteomic data from boa constrictors to identify the mechanisms that orchestrate shifts in metabolism, nutrient uptake, and cellular stress to direct phases of the regenerative response. We identify specific temporal patterns of metabolic, stress response, and growth pathway activation that direct regeneration and provide evidence for multiple key central regulatory molecules kinases that integrate these signals, including major conserved pathways like mTOR signaling and the unfolded protein response. CONCLUSION: Collectively, our results identify a novel switch-like role of stress responses in intestinal regeneration that forms a primary regulatory hub facilitating organ regeneration and could point to potential pathways to understand regenerative capacity in vertebrates.


Subject(s)
Boidae , Proteomics , Animals , Regeneration , Signal Transduction , Transcriptome
7.
Mol Biol Evol ; 38(3): 904-910, 2021 03 09.
Article in English | MEDLINE | ID: mdl-32986808

ABSTRACT

Microchromosomes are common yet poorly understood components of many vertebrate genomes. Recent studies have revealed that microchromosomes contain a high density of genes and possess other distinct characteristics compared with macrochromosomes. Whether distinctive characteristics of microchromosomes extend to features of genome structure and organization, however, remains an open question. Here, we analyze Hi-C sequencing data from multiple vertebrate lineages and show that microchromosomes exhibit consistently high degrees of interchromosomal interaction (particularly with other microchromosomes), appear to be colocalized to a common central nuclear territory, and are comprised of a higher proportion of open chromatin than macrochromosomes. These findings highlight an unappreciated level of diversity in vertebrate genome structure and function, and raise important questions regarding the evolutionary origins and ramifications of microchromosomes and the genes that they house.


Subject(s)
Biological Evolution , Chromosome Structures , Genome , Vertebrates/genetics , Animals
8.
Genome Res ; 29(4): 590-601, 2019 04.
Article in English | MEDLINE | ID: mdl-30898880

ABSTRACT

Here we use a chromosome-level genome assembly of a prairie rattlesnake (Crotalus viridis), together with Hi-C, RNA-seq, and whole-genome resequencing data, to study key features of genome biology and evolution in reptiles. We identify the rattlesnake Z Chromosome, including the recombining pseudoautosomal region, and find evidence for partial dosage compensation driven by an evolutionary accumulation of a female-biased up-regulation mechanism. Comparative analyses with other amniotes provide new insight into the origins, structure, and function of reptile microchromosomes, which we demonstrate have markedly different structure and function compared to macrochromosomes. Snake microchromosomes are also enriched for venom genes, which we show have evolved through multiple tandem duplication events in multiple gene families. By overlaying chromatin structure information and gene expression data, we find evidence for venom gene-specific chromatin contact domains and identify how chromatin structure guides precise expression of multiple venom gene families. Further, we find evidence for venom gland-specific transcription factor activity and characterize a complement of mechanisms underlying venom production and regulation. Our findings reveal novel and fundamental features of reptile genome biology, provide insight into the regulation of snake venom, and broadly highlight the biological insight enabled by chromosome-level genome assemblies.


Subject(s)
Crotalid Venoms/genetics , Crotalus/genetics , Dosage Compensation, Genetic , Evolution, Molecular , Animals , Chromatin/chemistry , Chromatin/genetics , Chromosomes/genetics , Crotalid Venoms/metabolism , Female , Male , Transcription Factors/metabolism
9.
Bioinformatics ; 37(13): 1923-1925, 2021 07 27.
Article in English | MEDLINE | ID: mdl-33051672

ABSTRACT

SUMMARY: Here, we present PhyloWGA, an open source R package for conducting phylogenetic analysis and investigation of whole genome data. AVAILABILITYAND IMPLEMENTATION: Available at Github (https://github.com/radamsRHA/PhyloWGA). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome , Software , Chromosomes , Phylogeny
10.
Proc Natl Acad Sci U S A ; 116(51): 25745-25755, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31772017

ABSTRACT

Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.


Subject(s)
Eutheria , Evolution, Molecular , Genome/genetics , Shrews , Venoms/genetics , Animals , Eutheria/classification , Eutheria/genetics , Eutheria/physiology , Gene Duplication , Male , Phylogeny , Proteomics , Shrews/classification , Shrews/genetics , Shrews/physiology , Tissue Kallikreins/genetics
11.
Mol Biol Evol ; 37(5): 1272-1294, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31926008

ABSTRACT

Meiotic recombination in vertebrates is concentrated in hotspots throughout the genome. The location and stability of hotspots have been linked to the presence or absence of PRDM9, leading to two primary models for hotspot evolution derived from mammals and birds. Species with PRDM9-directed recombination have rapid turnover of hotspots concentrated in intergenic regions (i.e., mammals), whereas hotspots in species lacking PRDM9 are concentrated in functional regions and have greater stability over time (i.e., birds). Snakes possess PRDM9, yet virtually nothing is known about snake recombination. Here, we examine the recombination landscape and test hypotheses about the roles of PRDM9 in rattlesnakes. We find substantial variation in recombination rate within and among snake chromosomes, and positive correlations between recombination rate and gene density, GC content, and genetic diversity. Like mammals, snakes appear to have a functional and active PRDM9, but rather than being directed away from genes, snake hotspots are concentrated in promoters and functional regions-a pattern previously associated only with species that lack a functional PRDM9. Snakes therefore provide a unique example of recombination landscapes in which PRDM9 is functional, yet recombination hotspots are associated with functional genic regions-a combination of features that defy existing paradigms for recombination landscapes in vertebrates. Our findings also provide evidence that high recombination rates are a shared feature of vertebrate microchromosomes. Our results challenge previous assumptions about the adaptive role of PRDM9 and highlight the diversity of recombination landscape features among vertebrate lineages.


Subject(s)
Crotalus/genetics , Histone-Lysine N-Methyltransferase/genetics , Recombination, Genetic , Animals , Female , Male , Whole Genome Sequencing
12.
Mol Biol Evol ; 37(9): 2706-2710, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32658964

ABSTRACT

Due to the scope and impact of the COVID-19 pandemic there exists a strong desire to understand where the SARS-CoV-2 virus came from and how it jumped species boundaries to humans. Molecular evolutionary analyses can trace viral origins by establishing relatedness and divergence times of viruses and identifying past selective pressures. However, we must uphold rigorous standards of inference and interpretation on this topic because of the ramifications of being wrong. Here, we dispute the conclusions of Xia (2020. Extreme genomic CpG deficiency in SARS-CoV-2 and evasion of host antiviral defense. Mol Biol Evol. doi:10.1093/molbev/masa095) that dogs are a likely intermediate host of a SARS-CoV-2 ancestor. We highlight major flaws in Xia's inference process and his analysis of CpG deficiencies, and conclude that there is no direct evidence for the role of dogs as intermediate hosts. Bats and pangolins currently have the greatest support as ancestral hosts of SARS-CoV-2, with the strong caveat that sampling of wildlife species for coronaviruses has been limited.


Subject(s)
Alphacoronavirus/genetics , Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Genome, Viral , Pandemics , Pneumonia, Viral/epidemiology , Reassortant Viruses/genetics , Alphacoronavirus/classification , Alphacoronavirus/pathogenicity , Animals , Betacoronavirus/classification , Betacoronavirus/pathogenicity , Biological Evolution , COVID-19 , Chiroptera/virology , Coronavirus Infections/immunology , Coronavirus Infections/transmission , Coronavirus Infections/virology , CpG Islands , Dogs , Eutheria/virology , Humans , Immune Evasion/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Protein Binding , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism , Reassortant Viruses/classification , Reassortant Viruses/pathogenicity , SARS-CoV-2 , Virus Replication
13.
Mol Ecol ; 30(18): 4481-4496, 2021 09.
Article in English | MEDLINE | ID: mdl-34245067

ABSTRACT

Species often experience spatial environmental heterogeneity across their range, and populations may exhibit signatures of adaptation to local environmental characteristics. Other population genetic processes, such as migration and genetic drift, can impede the effects of local adaptation. Genetic drift in particular can have a pronounced effect on population genetic structure during large-scale geographic expansions, where a series of founder effects leads to decreases in genetic variation in the direction of the expansion. Here, we explore the genetic diversity of a desert lizard that occupies a wide range of environmental conditions and that has experienced post-glacial expansion northwards along two colonization routes. Based on our analyses of a large SNP data set, we find evidence that both climate and demographic history have shaped the genetic structure of populations. Pronounced genetic differentiation was evident between populations occupying cold versus hot deserts, and we detected numerous loci with significant associations with climate. The genetic signal of founder effects, however, is still present in the genomes of the recently expanded populations, which comprise subsets of genetic variation found in the southern populations.


Subject(s)
Genetic Variation , Lizards , Animals , Climate , Demography , Genetics, Population , Genomics , Lizards/genetics
14.
Syst Biol ; 69(1): 194-207, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31086978

ABSTRACT

Despite the ubiquitous use of statistical models for phylogenomic and population genomic inferences, this model-based rigor is rarely applied to post hoc comparison of trees. In a recent study, Garba et al. derived new methods for measuring the distance between two gene trees computed as the difference in their site pattern probability distributions. Unlike traditional metrics that compare trees solely in terms of geometry, these measures consider gene trees and associated parameters as probabilistic models that can be compared using standard information theoretic approaches. Consequently, probabilistic measures of phylogenetic tree distance can be far more informative than simply comparisons of topology and/or branch lengths alone. However, in their current form, these distance measures are not suitable for the comparison of species tree models in the presence of gene tree heterogeneity. Here, we demonstrate an approach for how the theory of Garba et al. (2018), which is based on gene tree distances, can be extended naturally to the comparison of species tree models. Multispecies coalescent (MSC) models parameterize the discrete probability distribution of gene trees conditioned upon a species tree with a particular topology and set of divergence times (in coalescent units), and thus provide a framework for measuring distances between species tree models in terms of their corresponding gene tree topology probabilities. We describe the computation of probabilistic species tree distances in the context of standard MSC models, which assume complete genetic isolation postspeciation, as well as recent theoretical extensions to the MSC in the form of network-based MSC models that relax this assumption and permit hybridization among taxa. We demonstrate these metrics using simulations and empirical species tree estimates and discuss both the benefits and limitations of these approaches. We make our species tree distance approach available as an R package called pSTDistanceR, for open use by the community.


Subject(s)
Classification/methods , Models, Biological , Phylogeny , Computer Simulation , Software
15.
J Hered ; 112(2): 221-227, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33502475

ABSTRACT

Male-biased mutation rates occur in a diverse array of organisms. The ratio of male-to-female mutation rate may have major ramifications for evolution across the genome, and for sex-linked genes in particular. In ZW species, the Z chromosome is carried by males two-thirds of the time, leading to the prediction that male-biased mutation rates will have a disproportionate effect on the evolution of Z-linked genes relative to autosomes and the W chromosome. Colubroid snakes (including colubrids, elapids, and viperids) have ZW sex determination, yet male-biased mutation rates have not been well studied in this group. Here we analyze a population genomic dataset from rattlesnakes to quantify genetic variation within and genetic divergence between species. We use a new method for unbiased estimation of population genetic summary statistics to compare variation between the Z chromosome and autosomes and to calculate net nucleotide differentiation between species. We find evidence for a 2.03-fold greater mutation rate in male rattlesnakes relative to females, corresponding to an average µZ/µA ratio of 1.1. Our results from snakes are quantitatively similar to birds, suggesting that male-biased mutation rates may be a common feature across vertebrate lineages with ZW sex determination.


Subject(s)
Crotalus/genetics , Genetics, Population , Mutation Rate , Animals , Female , Genetic Variation , Male , Sex Chromosomes/genetics
16.
J Antimicrob Chemother ; 75(10): 2843-2851, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32591801

ABSTRACT

OBJECTIVES: Metallo-ß-lactamases (MBLs) are an emerging class of antimicrobial resistance enzymes that degrade ß-lactam antibiotics, including last-resort carbapenems. Infections caused by carbapenemase-producing Enterobacteriaceae (CPE) are increasingly prevalent, but treatment options are limited. While several serine-dependent ß-lactamase inhibitors are formulated with commonly prescribed ß-lactams, no MBL inhibitors are currently approved for combinatorial therapies. New compounds that target MBLs to restore carbapenem activity against CPE are therefore urgently needed. Herein we identified and characterized novel synthetic peptide inhibitors that bound to and inhibited NDM-1, which is an emerging ß-lactam resistance mechanism in CPE. METHODS: We leveraged Surface Localized Antimicrobial displaY (SLAY) to identify and characterize peptides that inhibit NDM-1, which is a primary carbapenem resistance mechanism in CPE. Lead inhibitor sequences were chemically synthesized and MBCs and MICs were calculated in the presence/absence of carbapenems. Kinetic analysis with recombinant NDM-1 and select peptides tested direct binding and supported NDM-1 inhibitor mechanisms of action. Inhibitors were also tested for cytotoxicity. RESULTS: We identified approximately 1700 sequences that potentiated carbapenem-dependent killing against NDM-1 Escherichia coli. Several also enhanced meropenem-dependent killing of other CPE. Biochemical characterization of a subset indicated the peptides penetrated the bacterial periplasm and directly bound NDM-1 to inhibit enzymatic activity. Additionally, each demonstrated minimal haemolysis and cytotoxicity against mammalian cell lines. CONCLUSIONS: Our approach advances a molecular platform for antimicrobial discovery, which complements the growing need for alternative antimicrobials. We also discovered lead NDM-1 inhibitors, which serve as a starting point for further chemical optimization.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , beta-Lactamases , Animals , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/metabolism , Enterobacteriaceae/metabolism , Kinetics , Meropenem/pharmacology , Microbial Sensitivity Tests , Peptides/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism
17.
Mol Phylogenet Evol ; 147: 106770, 2020 06.
Article in English | MEDLINE | ID: mdl-32084510

ABSTRACT

New world coralsnakes of the genus Micrurus are a diverse radiation of highly venomous and brightly colored snakes that range from North Carolina to Argentina. Species in this group have played central roles in developing and testing hypotheses about the evolution of mimicry and aposematism. Despite their diversity and prominence as model systems, surprisingly little is known about species boundaries and phylogenetic relationships within Micrurus, which has substantially hindered meaningful analyses of their evolutionary history. Here we use mitochondrial genes together with thousands of nuclear genomic loci obtained via ddRADseq to study the phylogenetic relationships and population genomics of a subclade of the genus Micrurus: The M. diastema species complex. Our results indicate that prior species and species-group inferences based on morphology and color pattern have grossly misguided taxonomy, and that the M. diastema complex is not monophyletic. Based on our analyses of molecular data, we infer the phylogenetic relationships among species and populations, and provide a revised taxonomy for the group. Two non-sister species-complexes with similar color patterns are recognized, the M. distans and the M. diastema complexes, the first being basal to the monadal Micrurus and the second encompassing most North American monadal taxa. We examined all 13 species, and their respective subspecies, for a total of 24 recognized taxa in the M. diastema species complex. Our analyses suggest a reduction to 10 species, with no subspecific designations warranted, to be a more likely estimate of species diversity, namely, M. apiatus, M. browni, M. diastema, M. distans, M. ephippifer, M. fulvius, M. michoacanensis, M. oliveri, M. tener, and one undescribed species.


Subject(s)
Biodiversity , Coral Snakes/genetics , Genome , Phylogeny , Polymorphism, Single Nucleotide/genetics , Animals , Argentina , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Geography , Likelihood Functions , Nucleotides/genetics , Pigmentation/genetics , Principal Component Analysis , Species Specificity
18.
Dev Dyn ; 248(8): 702-708, 2019 08.
Article in English | MEDLINE | ID: mdl-30839129

ABSTRACT

PURPOSE: The veiled chameleon (Chamaeleo calyptratus) is an emerging model system for studying functional morphology and evolutionary developmental biology (evo-devo). Chameleons possess body plans that are highly adapted to an arboreal life style, featuring laterally compressed bodies, split hands/ft for grasping, a projectile tongue, turreted independently moving eyes, and a prehensile tail. Despite being one of the most phenotypically divergent clades of tetrapods, genomic resources for chameleons are severely lacking. METHODS: To address this lack of resources, we used RNAseq to generate 288 million raw Illumina sequence reads from four adult tissues (male and female eyes and gonads) and whole embryos at three distinct developmental stages. We used these data to assemble a largely complete de novo transcriptome consisting of only 82 952 transcripts. In addition, a majority of assembled transcripts (67%) were successfully annotated. RESULTS: We then demonstrated the utility of these data in the context of studying visual system evolution by examining the content of veiled chameleon opsin genes to show that chameleons possess all five ancestral tetrapod opsins. CONCLUSION: We present this de novo, annotated, multi-tissue transcriptome assembly for the Veiled Chameleon, Chamaeleo calyptratus, as a resource to address a range of evolutionary and developmental questions. The associated raw reads and final annotated transcriptome assembly are freely available for use on NCBI and Figshare, respectively.


Subject(s)
Biological Evolution , Lizards/genetics , Transcriptome/genetics , Animals , Developmental Biology , Eye/growth & development , Female , Gonads/growth & development , Male , Molecular Sequence Annotation , Opsins/genetics , Vertebrates
19.
Mol Biol Evol ; 35(6): 1376-1389, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29800394

ABSTRACT

The visual systems of snakes are heavily modified relative to other squamates, a condition often thought to reflect their fossorial origins. Further modifications are seen in caenophidian snakes, where evolutionary transitions between rod and cone photoreceptors, termed photoreceptor transmutations, have occurred in many lineages. Little previous work, however, has focused on the molecular evolutionary underpinnings of these morphological changes. To address this, we sequenced seven snake eye transcriptomes and utilized new whole-genome and targeted capture sequencing data. We used these data to analyze gene loss and shifts in selection pressures in phototransduction genes that may be associated with snake evolutionary origins and photoreceptor transmutation. We identified the surprising loss of rhodopsin kinase (GRK1), despite a low degree of gene loss overall and a lack of relaxed selection early during snake evolution. These results provide some of the first evolutionary genomic corroboration for a dim-light ancestor that lacks strong fossorial adaptations. Our results also indicate that snakes with photoreceptor transmutation experienced significantly different selection pressures from other reptiles. Significant positive selection was found primarily in cone-specific genes, but not rod-specific genes, contrary to our expectations. These results reveal potential molecular adaptations associated with photoreceptor transmutation and also highlight unappreciated functional differences between rod- and cone-specific phototransduction proteins. This intriguing example of snake visual system evolution illustrates how the underlying molecular components of a complex system can be reshaped in response to changing selection pressures.


Subject(s)
Colubridae/genetics , Evolution, Molecular , G-Protein-Coupled Receptor Kinase 1/genetics , Selection, Genetic , Vision, Ocular/genetics , Animals
20.
Proc Biol Sci ; 286(1906): 20190910, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31288694

ABSTRACT

Several snake species that feed infrequently in nature have evolved the ability to massively upregulate intestinal form and function with each meal. While fasting, these snakes downregulate intestinal form and function, and upon feeding restore intestinal structure and function through major increases in cell growth and proliferation, metabolism and upregulation of digestive function. Previous studies have identified changes in gene expression that underlie this regenerative growth of the python intestine, but the unique features that differentiate this extreme regenerative growth from non-regenerative post-feeding responses exhibited by snakes that feed more frequently remain unclear. Here, we leveraged variation in regenerative capacity across three snake species-two distantly related lineages ( Crotalus and Python) that experience regenerative growth, and one ( Nerodia) that does not-to infer molecular mechanisms underlying intestinal regeneration using transcriptomic and proteomic approaches. Using a comparative approach, we identify a suite of growth, stress response and DNA damage response signalling pathways with inferred activity specifically in regenerating species, and propose a hypothesis model of interactivity between these pathways that may drive regenerative intestinal growth in snakes.


Subject(s)
Intestines/physiology , Regeneration , Snakes/physiology , Animals , Feeding Behavior/physiology , Proteome , Signal Transduction , Snakes/genetics , Snakes/growth & development , Snakes/immunology , Stress, Physiological , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL