Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
EMBO Rep ; 25(1): 254-285, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177910

ABSTRACT

Midbrain dopaminergic neurons (mDANs) control voluntary movement, cognition, and reward behavior under physiological conditions and are implicated in human diseases such as Parkinson's disease (PD). Many transcription factors (TFs) controlling human mDAN differentiation during development have been described, but much of the regulatory landscape remains undefined. Using a tyrosine hydroxylase (TH) human iPSC reporter line, we here generate time series transcriptomic and epigenomic profiles of purified mDANs during differentiation. Integrative analysis predicts novel regulators of mDAN differentiation and super-enhancers are used to identify key TFs. We find LBX1, NHLH1 and NR2F1/2 to promote mDAN differentiation and show that overexpression of either LBX1 or NHLH1 can also improve mDAN specification. A more detailed investigation of TF targets reveals that NHLH1 promotes the induction of neuronal miR-124, LBX1 regulates cholesterol biosynthesis, and NR2F1/2 controls neuronal activity.


Subject(s)
Dopaminergic Neurons , Induced Pluripotent Stem Cells , Humans , Dopaminergic Neurons/metabolism , Multiomics , Mesencephalon , Transcription Factors/genetics , Transcription Factors/metabolism , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics
2.
J Proteome Res ; 16(5): 2054-2071, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28378594

ABSTRACT

The multimodular nature of many eukaryotic proteins underlies their temporal or spatial engagement in a range of protein cocomplexes. Using the multimodule protein testin (TES), we here report a proteomics approach to increase insight in cocomplex diversity. The LIM-domain containing and tumor suppressor protein TES is present at different actin cytoskeleton adhesion structures in cells and influences cell migration, adhesion and spreading. TES module accessibility has been proposed to vary due to conformational switching and variants of TES lacking specific domains target to different subcellular locations. By applying iMixPro AP-MS ("intelligent Mixing of Proteomes"-affinity purification-mass spectrometry) to a set of tagged-TES modular variants, we identified proteins residing in module-specific cocomplexes. The obtained distinct module-specific interactomes combine to a global TES interactome that becomes more extensive and richer in information. Applying pathway analysis to the module interactomes revealed expected actin-related canonical pathways and also less expected pathways. We validated two new TES cocomplex partners: TGFB1I1 and a short form of the glucocorticoid receptor. TES and TGFB1I1 are shown to oppositely affect cell spreading providing biological validity for their copresence in complexes since they act in similar processes.


Subject(s)
Cytoskeletal Proteins/metabolism , LIM Domain Proteins/metabolism , Actins/metabolism , Focal Adhesions/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Space/metabolism , Protein Multimerization , Proteomics/methods , RNA-Binding Proteins
3.
FASEB J ; 24(1): 105-18, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19726756
4.
Front Cell Dev Biol ; 9: 665673, 2021.
Article in English | MEDLINE | ID: mdl-34307350

ABSTRACT

Recently, the highly mutated oncoprotein K-Ras4B (hereafter K-Ras) was shown to drive cancer cell stemness in conjunction with calmodulin (CaM). We previously showed that the covalent CaM inhibitor ophiobolin A (OphA) can potently inhibit K-Ras stemness activity. However, OphA, a fungus-derived natural product, exhibits an unspecific, broad toxicity across all phyla. Here we identified a less toxic, functional analog of OphA that can efficiently inactivate CaM by covalent inhibition. We analyzed a small series of benzazulenones, which bear some structural similarity to OphA and can be synthesized in only six steps. We identified the formyl aminobenzazulenone 1, here named Calmirasone1, as a novel and potent covalent CaM inhibitor. Calmirasone1 has a 4-fold increased affinity for CaM as compared to OphA and was active against K-Ras in cells within minutes, as compared to hours required by OphA. Calmirasone1 displayed a 2.5-4.5-fold higher selectivity for KRAS over BRAF mutant 3D spheroid growth than OphA, suggesting improved relative on-target activity. Importantly, Calmirasone1 has a 40-260-fold lower unspecific toxic effect on HRAS mutant cells, while it reaches almost 50% of the activity of novel K-RasG12C specific inhibitors in 3D spheroid assays. Our results suggest that Calmirasone1 can serve as a new tool compound to further investigate the cancer cell biology of the K-Ras and CaM associated stemness activities.

5.
ACS Omega ; 5(1): 832-842, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31956834

ABSTRACT

The trafficking chaperone PDE6D (also referred to as PDEδ) has been nominated as a surrogate target for K-Ras4B (hereafter K-Ras). Arl2-assisted unloading of K-Ras from PDE6D in the perinuclear area is significant for correct K-Ras localization and therefore activity. However, the unloading mechanism also leads to the undesired ejection of PDE6D inhibitors. To counteract ejection, others have recently optimized inhibitors for picomolar affinities; however, cell penetration generally seems to remain an issue. To increase resilience against ejection, we engineered a "chemical spring" into prenyl-binding pocket inhibitors of PDE6D. Furthermore, cell penetration was improved by attaching a cell-penetration group, allowing us to arrive at micromolar in cellulo potencies in the first generation. Our model compounds, Deltaflexin-1 and -2, selectively disrupt K-Ras, but not H-Ras membrane organization. This selectivity profile is reflected in the antiproliferative activity on colorectal and breast cancer cells, as well as the ability to block stemness traits of lung and breast cancer cells. While our current model compounds still have a low in vitro potency, we expect that our modular and simple inhibitor redesign could significantly advance the development of pharmacologically more potent compounds against PDE6D and related targets, such as UNC119 in the future.

6.
PLoS One ; 12(5): e0177879, 2017.
Article in English | MEDLINE | ID: mdl-28542564

ABSTRACT

The focal adhesion protein testin is a modular scaffold and tumour suppressor that consists of an N-terminal cysteine rich (CR) domain, a PET domain of unknown function and three C-terminal LIM domains. Testin has been proposed to have an open and a closed conformation based on the observation that its N-terminal half and C-terminal half directly interact. Here we extend the testin conformational model by demonstrating that testin can also form an antiparallel homodimer. In support of this extended model we determined that the testin region (amino acids 52-233) harbouring the PET domain interacts with the C-terminal LIM1-2 domains in vitro and in cells, and assign a critical role to tyrosine 288 in this interaction.


Subject(s)
Cytoskeletal Proteins/chemistry , LIM Domain Proteins/chemistry , Protein Multimerization , Amino Acid Sequence , Cytoskeletal Proteins/metabolism , Humans , LIM Domain Proteins/metabolism , Protein Domains , RNA-Binding Proteins
7.
PLoS One ; 10(10): e0140511, 2015.
Article in English | MEDLINE | ID: mdl-26509500

ABSTRACT

Focal adhesions are integrin-based structures that link the actin cytoskeleton and the extracellular matrix. They play an important role in various cellular functions such as cell signaling, cell motility and cell shape. To ensure and fine tune these different cellular functions, adhesions are regulated by a large number of proteins. The LIM domain protein zyxin localizes to focal adhesions where it participates in the regulation of the actin cytoskeleton. Because of its interactions with a variety of binding partners, zyxin has been proposed to act as a molecular scaffold. Here, we studied the interaction of zyxin with such a partner: Tes. Similar to zyxin, Tes harbors three highly conserved LIM domains of which the LIM1 domain directly interacts with zyxin. Using different zyxin variants in pull-down assays and ectopic recruitment experiments, we identified the Tes binding site in zyxin and showed that four highly conserved amino acids are crucial for its interaction with Tes. Based upon these findings, we used a zyxin mutant defective in Tes-binding to assess the functional consequences of abrogating the zyxin-Tes interaction in focal adhesions. Performing fluorescence recovery after photobleaching, we showed that zyxin recruits Tes to focal adhesions and modulates its turnover in these structures. However, we also provide evidence for zyxin-independent localization of Tes to focal adhesions. Zyxin increases focal adhesion numbers and reduces focal adhesion lifetimes, but does so independent of Tes. Quantitative analysis showed that the loss of interaction between zyxin and Tes affects the process of cell spreading. We conclude that zyxin influences focal adhesion dynamics, that it recruits Tes and that this interaction is functional in regulating cell spreading.


Subject(s)
DNA-Binding Proteins/metabolism , Protein Interaction Mapping , Zyxin/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Count , Cell Movement , Conserved Sequence , Cytoskeletal Proteins , Focal Adhesions/metabolism , Humans , Kinetics , Mice , Mitochondria/metabolism , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , RNA-Binding Proteins , Structure-Activity Relationship , Zyxin/chemistry
8.
PLoS One ; 5(2): e9210, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20169155

ABSTRACT

BACKGROUND: Initially detected in leukocytes and cancer cells derived from solid tissues, L-plastin/fimbrin belongs to a large family of actin crosslinkers and is considered as a marker for many cancers. Phosphorylation of L-plastin on residue Ser5 increases its F-actin binding activity and is required for L-plastin-mediated cell invasion. METHODOLOGY/PRINCIPAL FINDINGS: To study the kinetics of L-plastin and the impact of L-plastin Ser5 phosphorylation on L-plastin dynamics and actin turn-over in live cells, simian Vero cells were transfected with GFP-coupled WT-L-plastin, Ser5 substitution variants (S5/A, S5/E) or actin and analyzed by fluorescence recovery after photobleaching (FRAP). FRAP data were explored by mathematical modeling to estimate steady-state reaction parameters. We demonstrate that in Vero cell focal adhesions L-plastin undergoes rapid cycles of association/dissociation following a two-binding-state model. Phosphorylation of L-plastin increased its association rates by two-fold, whereas dissociation rates were unaffected. Importantly, L-plastin affected actin turn-over by decreasing the actin dissociation rate by four-fold, increasing thereby the amount of F-actin in the focal adhesions, all these effects being promoted by Ser5 phosphorylation. In MCF-7 breast carcinoma cells, phorbol 12-myristate 13-acetate (PMA) treatment induced L-plastin translocation to de novo actin polymerization sites in ruffling membranes and spike-like structures and highly increased its Ser5 phosphorylation. Both inhibition studies and siRNA knock-down of PKC isozymes pointed to the involvement of the novel PKC-delta isozyme in the PMA-elicited signaling pathway leading to L-plastin Ser5 phosphorylation. Furthermore, the L-plastin contribution to actin dynamics regulation was substantiated by its association with a protein complex comprising cortactin, which is known to be involved in this process. CONCLUSIONS/SIGNIFICANCE: Altogether these findings quantitatively demonstrate for the first time that L-plastin contributes to the fine-tuning of actin turn-over, an activity which is regulated by Ser5 phosphorylation promoting its high affinity binding to the cytoskeleton. In carcinoma cells, PKC-delta signaling pathways appear to link L-plastin phosphorylation to actin polymerization and invasion.


Subject(s)
Actins/metabolism , Cytoskeleton/metabolism , Membrane Glycoproteins/metabolism , Microfilament Proteins/metabolism , Algorithms , Amino Acid Substitution , Animals , Cell Line, Tumor , Chlorocebus aethiops , Cortactin/metabolism , Fluorescence Recovery After Photobleaching , Focal Adhesions/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Kinetics , Membrane Glycoproteins/genetics , Microfilament Proteins/genetics , Models, Biological , Phosphorylation/drug effects , Protein Binding , Protein Kinase C-delta/genetics , Protein Kinase C-delta/metabolism , Protein Transport/drug effects , RNA Interference , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Serine/genetics , Serine/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Transfection , Vero Cells
9.
J Cell Sci ; 119(Pt 9): 1947-60, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16636079

ABSTRACT

L-plastin, a malignant transformation-associated protein, is a member of a large family of actin filament cross-linkers. Here, we analysed how phosphorylation of L-plastin on Ser5 of the headpiece domain regulates its intracellular distribution and its interaction with F-actin in transfected cells and in in vitro assays. Phosphorylated wild-type L-plastin localised to the actin cytoskeleton in transfected Vero cells. Ser5Ala substitution reduced the capacity of L-plastin to localise with peripheral actin-rich membrane protrusions. Conversely, a Ser5Glu variant mimicking a constitutively phosphorylated state, accumulated in actin-rich regions and promoted the formation of F-actin microspikes in two cell lines. Similar to phosphorylated wild-type L-plastin, this variant remained associated with cellular F-actin in detergent-treated cells, whereas the Ser5Ala variant was almost completely extracted. When compared with non-phosphorylated protein, phosphorylated L-plastin and the Ser5Glu variant bound F-actin more efficiently in an in vitro assay. Importantly, expression of L-plastin elicited collagen invasion in HEK293T cells, in a manner dependent on Ser5 phosphorylation. Based on our findings, we propose that conversely to other calponin homology (CH)-domain family members, phosphorylation of L-plastin switches the protein from a low-activity to a high-activity state. Phosphorylated L-plastin might act as an integrator of signals controlling the assembly of the actin cytoskeleton and cell motility in a 3D-space.


Subject(s)
Actins/metabolism , Microfilament Proteins/metabolism , Serine/metabolism , Actins/chemistry , Amino Acid Sequence , Animals , Cell Line , Chlorocebus aethiops , Cytoskeleton/metabolism , Humans , Microfilament Proteins/chemistry , Microfilament Proteins/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphorylation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL