ABSTRACT
The innate immune system is the first line of defense against pathogens such as the acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The type I-interferon (IFN) response activation during the initial steps of infection is essential to prevent viral replication and tissue damage. SARS-CoV and SARS-CoV-2 can inhibit this activation, and individuals with a dysregulated IFN-I response are more likely to develop severe disease. Several mutations in different variants of SARS-CoV-2 have shown the potential to interfere with the immune system. Here, we evaluated the buffy coat transcriptome of individuals infected with Gamma or Delta variants of SARS-CoV-2. The Delta transcriptome presents more genes enriched in the innate immune response and Gamma in the adaptive immune response. Interactome and enriched promoter analysis showed that Delta could activate the INF-I response more effectively than Gamma. Two mutations in the N protein and one in the nsp6 protein found exclusively in Gamma have already been described as inhibitors of the interferon response pathway. This indicates that the Gamma variant evolved to evade the IFN-I response. Accordingly, in this work, we showed one of the mechanisms that variants of SARS-CoV-2 can use to avoid or interfere with the host Immune system.
Subject(s)
COVID-19 , Interferon Type I , Severe acute respiratory syndrome-related coronavirus , Humans , Interferon Type I/genetics , SARS-CoV-2 , Transcriptome , COVID-19/geneticsABSTRACT
A complete genome of the first anellovirus infecting the wild felid Leopardus pardalis (ocelot) and a partial genome were assembled and annotated through high-throughput sequencing protocols followed by Sanger sequencing validation. The full-length virus obtained comprises 2,003 bp, while the partial genome comprises 1,224 bp. Phylogenetic analysis grouped these two sequences in two distinct clusters related to previously described Felidae anelloviruses. The ORF1 of the partial genome was identified as a new species provisionally called Torque teno ocelot virus, with 53.6% identity with its sister lineage. The complete genome was inferred as a new representative of the Torque teno felid virus 3 species, with 73.28% identity to the closest reference. This study expands known virus diversity and the host span of anelloviruses.
ABSTRACT
Background: Household transmission studies seek to understand the transmission dynamics of a pathogen by estimating the risk of infection from household contacts and community exposures. We estimated within/extra-household SARS-CoV-2 infection risk and associated factors in a household cohort study in one of the most vulnerable neighbourhoods in Rio de Janeiro city. Methods: Individuals ≥1 years-old with suspected or confirmed COVID-19 in the past 30 days (index cases) and household members aged ≥1 year were enrolled and followed at 14 and 28 days (study period November/2020-December/2021). RT-PCR testing, COVID-19 symptoms, and SARS-CoV-2 serologies were ascertained in all visits. Chain binomial household transmission models were fitted using data from 2024 individuals (593 households). Findings: Extra-household infection risk was 74.2% (95% credible interval [CrI] 70.3-77.8), while within-household infection risk was 11.4% (95% CrI 5.7-17.2). Participants reporting having received two doses of a COVID-19 vaccine had lower extra-household (68.9%, 95% CrI 57.3-77.6) and within-household (4.1%, 95% CrI 0.4-16.6) infection risk. Within-household infection risk was higher among participants aged 10-19 years, from overcrowded households, and with low family income. Contrastingly, extra-household infection risk was higher among participants aged 20-29 years, unemployed, and public transportation users. Interpretation: Our study provides important insights into COVID-19 household/community transmission in a vulnerable population that resided in overcrowded households and who struggled to adhere to lockdown policies and social distancing measures. The high extra-household infection risk highlights the extreme social vulnerability of this population. Prioritising vaccination of the most socially vulnerable could protect these individuals and reduce widespread community transmission. Funding: Fundação Oswaldo Cruz, CNPq, FAPERJ, Royal Society, Instituto Serrapilheira, FAPESP.
ABSTRACT
Foamy viruses (FVs) are the only exogenous retrovirus to date known to infect neotropical primates (NPs). In the last decade, an increasing number of strains have been completely or partially sequenced, and molecular evolution analyses have identified an ancient co-speciation with their hosts. In this review, the improvement of diagnostic techniques that allowed the determination of a more accurate prevalence of simian FVs (SFVs) in captive and free-living NPs is discussed. Determination of DNA viral load in American primates indicates that oral tissues are the viral replicative site and that buccal swab collection can be an alternative to diagnose SFV infection in NPs. Finally, the transmission potential of NP SFVs to primate workers in zoos and primate centers of the Americas is examined.
Subject(s)
Evolution, Molecular , Monkey Diseases/diagnosis , Primates/virology , Retroviridae Infections/veterinary , Simian foamy virus/isolation & purification , Animals , Animals, Zoo/virology , Central America/epidemiology , Humans , Monkey Diseases/transmission , Monkey Diseases/virology , Phylogeny , Platyrrhini/virology , Retroviridae Infections/diagnosis , Retroviridae Infections/transmission , Simian foamy virus/physiology , South America/epidemiologyABSTRACT
The complete genome sequence of a simian foamy virus infecting the neotropical primate Brachyteles arachnoides (SFVbar) was obtained using next-generation sequencing and genome walking. The full-length SFVbar genome is composed of 11,994 bp and shows a genomic organization similar to that of other neotropical SFVs.
ABSTRACT
Feline foamy virus (FFV) and feline leukemia virus (FeLV) belong to the Retroviridae family. While disease has not been reported for FFV infection, FeLV infection can cause anemia and immunosuppression (progressive infection). Co-infection with FFV/FeLV allows evaluation of the pathogenic potential and epidemiology of FFV infection in cats with FeLV pathology. Blood and buccal swab samples from 81 cats were collected in Rio de Janeiro. Plasma was serologically tested for FeLV. DNA extracted from peripheral blood mononuclear cells and buccal swabs was used to PCR detect FFV and FeLV. A qPCR was developed to detect and measure FFV proviral loads (pVLs) in cats. FeLV qPCR was performed using previous methods. The median log10 pVL of FFV mono-infected individuals was lower than found in FFV/FeLV co-infected cats in buccal swabs (p = 0.003). We found 78% of cats had detectable buccal FFV DNA in FFV mono-infected and FFV co-infected FeLV-progressive cats, while in FeLV-regressive cats (those without signs of disease) 22% of cats had detectable buccal FFV DNA (p = 0.004). Our results suggest that regressive FeLV infection may reduce FFV saliva transmission, the main mode of FV transmission. We did not find evidence of differences in pathogenicity in FFV mono- and -dually infected cats. In summary, we show that FVs may interact with FeLV within the same host. Our study supports the utility of cats naturally co-infected with retroviruses as a model to investigate the impact of FV on immunocompromised mammalian hosts.
Subject(s)
Cat Diseases/virology , Coinfection/veterinary , Leukemia Virus, Feline , Retroviridae Infections/veterinary , Spumavirus , Tumor Virus Infections/veterinary , Animals , Brazil , Cats , Coinfection/virology , DNA, Viral/blood , Female , Male , Proviruses , Real-Time Polymerase Chain Reaction , Retroviridae Infections/blood , Tumor Virus Infections/blood , Viral Load/veterinary , Virus ReplicationABSTRACT
Simian foamy viruses (SFVs) co-evolved with a wide range of Old World and New World primates (OWPs and NWPs, respectively) and occasionally transmit to humans. Previous studies of OWPs showed that the predominant site of SFV replication is the oral mucosa. However, very little is known about SFV viral loads (VLs) in the oral mucosa or blood of NWPs. NWPs have smaller body sizes, limiting collection of sufficient whole blood volumes to molecularly detect and quantify SFV. Our study evaluated the use of noninvasively collected buccal swabs to detect NWP SFV compared with detection in blood using a new NWP SFV quantitative PCR (qPCR) assay. Buccal and blood samples were collected from 107 captive NWPs in Brazil comprising eleven distinct genera at the Primate Center of Rio de Janeiro (n = 58) and at Fundação Jardim Zoológico da Cidade do Rio Janeiro (n = 49). NWP SFV western blot (WB) testing was performed on a subset of animals for comparison with PCR results. The qPCR assay was validated using distinct SFV polymerase sequences from seven NWP genera (Callithrix, Sapajus, Saimiri, Ateles, Alouatta, Cacajao and Pithecia). Assay sensitivity was 20 copies/106 cells, detectable in 90% of replicates. SFV DNA VLs were higher in buccal swabs (5 log copies/106 cells) compared to peripheral blood mononuclear cells (PBMCs) (3 log copies/106 cells). The qPCR assay was also more sensitive than nested PCR for detection of NWP SFV infection and identified an additional 27 SFV-infected monkeys of which 18 (90%) were WB-positive and three that were WB-negative. We show the utility of using both blood and buccal swabs and our new qPCR assay for detection and quantification of diverse NWP SFV, which will assist a better understanding of the epidemiology of SFV in NWPs and any potential zoonotic infection risk for humans exposed to NWPs.
Subject(s)
Leukocytes, Mononuclear/virology , Primates/virology , Retroviridae Infections/diagnosis , Simian foamy virus/genetics , Specimen Handling/methods , Animals , Brazil , DNA, Viral/genetics , Humans , Monkey Diseases/diagnosis , Monkey Diseases/virology , Mouth Mucosa/virology , Phylogeny , Plasmids/metabolism , Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Retroviridae Infections/veterinary , Sensitivity and Specificity , Species Specificity , Viral Tropism , Zoonoses/virologyABSTRACT
Simian foamy viruses (SFVs) are retroviruses present in nearly all nonhuman primates (NHPs), including Old World primates (OWP) and New World primates (NWP). While all confirmed human infections with SFV are from zoonotic transmissions originating from OWP, little is known about the zoonotic transmission potential of NWP SFV. We conducted a longitudinal, prospective study of 56 workers occupationally exposed to NWP in Brazil. Plasma from these workers was tested using Western blot (WB) assays containing NWP SFV antigens. Genomic DNA from blood and buccal swabs was analyzed for the presence of proviral SFV sequences by three nested PCR tests and a new quantitative PCR assay. Exposure histories were obtained and analyzed for associations with possible SFV infection. Ten persons (18%) tested seropositive and two persons were seroindeterminate (3.6%) for NWP SFV. Six persons had seroreactivity over 2-3 years suggestive of persistent infection. All SFV NWP WB-positive workers reported at least one incident involving NWP, including six reporting NWP bites. NWP SFV viral DNA was not detected in the blood or buccal swabs from all 12 NWP SFV seroreactive workers. We also found evidence of SFV seroreversion in three workers suggestive of possible clearance of infection. Our findings suggest that NWP SFV can be transmitted to occupationally-exposed humans and can elicit specific humoral immune responses but infection remains well-controlled resulting in latent infection and may occasionally clear.