Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396760

ABSTRACT

Serine/arginine-rich splicing factors (SRSFs) are a family of proteins involved in RNA metabolism, including pre-mRNA constitutive and alternative splicing. The role of SRSF proteins in regulating mitochondrial activity has already been shown for SRSF6, but SRSF4 altered expression has never been reported as a cause of bone marrow failure. An 8-year-old patient admitted to the hematology unit because of leukopenia, lymphopenia, and neutropenia showed a missense variant of unknown significance of the SRSF4 gene (p.R235W) found via whole genome sequencing analysis and inherited from the mother who suffered from mild leuko-neutropenia. Both patients showed lower SRSF4 protein expression and altered mitochondrial function and energetic metabolism in primary lymphocytes and Epstein-Barr-virus (EBV)-immortalized lymphoblasts compared to healthy donor (HD) cells, which appeared associated with low mTOR phosphorylation and an imbalance in the proteins regulating mitochondrial biogenesis (i.e., CLUH) and dynamics (i.e., DRP1 and OPA1). Transfection with the wtSRSF4 gene restored mitochondrial function. In conclusion, this study shows that the described variant of the SRSF4 gene is pathogenetic and causes reduced SRSF4 protein expression, which leads to mitochondrial dysfunction. Since mitochondrial function is crucial for hematopoietic stem cell maintenance and some genetic bone marrow failure syndromes display mitochondrial defects, the SRSF4 mutation could have substantially contributed to the clinical phenotype of our patient.


Subject(s)
Bone Marrow , Mitochondria , Neutropenia , Serine-Arginine Splicing Factors , Child , Humans , Alternative Splicing , Bone Marrow/metabolism , Bone Marrow/pathology , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/metabolism , Phosphoproteins/metabolism , RNA Precursors/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism
2.
Dig Dis Sci ; 68(10): 3857-3871, 2023 10.
Article in English | MEDLINE | ID: mdl-37650948

ABSTRACT

Visceral myopathy is a rare, life-threatening disease linked to identified genetic mutations in 60% of cases. Mostly due to the dearth of knowledge regarding its pathogenesis, effective treatments are lacking. The disease is most commonly diagnosed in children with recurrent or persistent disabling episodes of functional intestinal obstruction, which can be life threatening, often requiring long-term parenteral or specialized enteral nutritional support. Although these interventions are undisputedly life-saving as they allow affected individuals to avoid malnutrition and related complications, they also seriously compromise their quality of life and can carry the risk of sepsis and thrombosis. Animal models for visceral myopathy, which could be crucial for advancing the scientific knowledge of this condition, are scarce. Clearly, a collaborative network is needed to develop research plans to clarify genotype-phenotype correlations and unravel molecular mechanisms to provide targeted therapeutic strategies. This paper represents a summary report of the first 'European Forum on Visceral Myopathy'. This forum was attended by an international interdisciplinary working group that met to better understand visceral myopathy and foster interaction among scientists actively involved in the field and clinicians who specialize in care of people with visceral myopathy.


Subject(s)
Intestinal Pseudo-Obstruction , Malnutrition , Animals , Child , Humans , Quality of Life , Models, Animal , Mutation , Rare Diseases
3.
Clin Auton Res ; 33(3): 231-249, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36403185

ABSTRACT

PURPOSE: With contemporaneous advances in congenital central hypoventilation syndrome (CCHS), recognition, confirmatory diagnostics with PHOX2B genetic testing, and conservative management to reduce the risk of early morbidity and mortality, the prevalence of identified adolescents and young adults with CCHS and later-onset (LO-) CCHS has increased. Accordingly, there is heightened awareness and need for transitional care of these patients from pediatric medicine into a multidisciplinary adult medical team. Hence, this review summarizes key clinical and management considerations for patients with CCHS and LO-CCHS and emphasizes topics of particular importance for this demographic. METHODS: We performed a systematic review of literature on diagnostics, pathophysiology, and clinical management in CCHS and LO-CCHS, and supplemented the review with anecdotal but extensive experiences from large academic pediatric centers with expertise in CCHS. RESULTS: We summarized our findings topically for an overview of the medical care in CCHS and LO-CCHS specifically applicable to adolescents and adults. Care topics include genetic and embryologic basis of the disease, clinical presentation, management, variability in autonomic nervous system dysfunction, and clarity regarding transitional care with unique considerations such as living independently, family planning, exposure to anesthesia, and alcohol and drug use. CONCLUSIONS: While a lack of experience and evidence exists in the care of adults with CCHS and LO-CCHS, a review of the relevant literature and expert consensus provides guidance for transitional care areas.


Subject(s)
Homeodomain Proteins , Transitional Care , Child , Humans , Adolescent , Young Adult , Homeodomain Proteins/genetics , Mutation , Transcription Factors/genetics
4.
PLoS Genet ; 16(11): e1009106, 2020 11.
Article in English | MEDLINE | ID: mdl-33151932

ABSTRACT

Hirschsprung disease (HSCR, OMIM 142623) involves congenital intestinal obstruction caused by dysfunction of neural crest cells and their progeny during enteric nervous system (ENS) development. HSCR is a multifactorial disorder; pathogenetic variants accounting for disease phenotype are identified only in a minority of cases, and the identification of novel disease-relevant genes remains challenging. In order to identify and to validate a potential disease-causing relevance of novel HSCR candidate genes, we established a complementary study approach, combining whole exome sequencing (WES) with transcriptome analysis of murine embryonic ENS-related tissues, literature and database searches, in silico network analyses, and functional readouts using candidate gene-specific genome-edited cell clones. WES datasets of two patients with HSCR and their non-affected parents were analysed, and four novel HSCR candidate genes could be identified: ATP7A, SREBF1, ABCD1 and PIAS2. Further rare variants in these genes were identified in additional HSCR patients, suggesting disease relevance. Transcriptomics revealed that these genes are expressed in embryonic and fetal gastrointestinal tissues. Knockout of these genes in neuronal cells demonstrated impaired cell differentiation, proliferation and/or survival. Our approach identified and validated candidate HSCR genes and provided further insight into the underlying pathomechanisms of HSCR.


Subject(s)
Hirschsprung Disease/genetics , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Animals , Cell Differentiation/genetics , Cell Line , Cell Proliferation/genetics , Cell Survival/genetics , Computer Simulation , Copper-Transporting ATPases/genetics , Disease Models, Animal , Gene Expression Profiling , Gene Knockout Techniques , Humans , Infant , Male , Mice , Protein Inhibitors of Activated STAT/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Exome Sequencing
5.
J Clin Immunol ; 42(2): 325-335, 2022 02.
Article in English | MEDLINE | ID: mdl-34783940

ABSTRACT

PURPOSE: NLRC4-associated autoinflammatory disease (NLRC4-AID) is an autosomal dominant condition presenting with a range of clinical manifestations which can include macrophage activation syndrome (MAS) and severe enterocolitis. We now report the first homozygous mutation in NLRC4 (c.478G > A, p.A160T) causing autoinflammatory disease with immune dysregulation and find that heterozygous carriers in the general population are at increased risk of developing ulcerative colitis. METHODS: Circulating immune cells and inflammatory markers were profiled and historical clinical data interrogated. DNA was extracted and sequenced using standard procedures. Inflammasome activation assays for ASC speck formation, pyroptosis, and IL-1ß/IL-18 secretion confirmed pathogenicity of the mutation in vitro. Genome-wide association of NLRC4 (A160T) with ulcerative colitis was examined using data from the IBD exomes portal. RESULTS: A 60-year-old Brazilian female patient was evaluated for recurrent episodes of systemic inflammation from six months of age. Episodes were characterized by recurrent low-grade fever, chills, oral ulceration, uveitis, arthralgia, and abdominal pain, followed by diarrhea with mucus and variable skin rash. High doses of corticosteroids were somewhat effective in controlling disease and anti-IL-1ß therapy partially controlled symptoms. While on treatment, serum IL-1ß and IL-18 levels remained elevated. Genetic investigations identified a homozygous mutation in NLRC4 (A160T), inherited in a recessive fashion. Increased ASC speck formation and IL-1ß/IL-18 secretion confirmed pathogenicity when NLRC4 (A160T) was analyzed in human cell lines. This allele is significantly enriched in patients with ulcerative colitis: OR 2.546 (95% 1.778-3.644), P = 0.01305. CONCLUSION: NLRC4 (A160T) can either cause recessively inherited autoinflammation and immune dysregulation, or function as a heterozygous risk factor for the development of ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Hereditary Autoinflammatory Diseases , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Calcium-Binding Proteins/genetics , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/genetics , Female , Genome-Wide Association Study , Humans , Inflammasomes/metabolism , Middle Aged
6.
Eur J Immunol ; 51(1): 206-219, 2021 01.
Article in English | MEDLINE | ID: mdl-32707604

ABSTRACT

Adenosine deaminase 2 deficiency (DADA2) is an autoinflammatory disease characterized by inflammatory vasculopathy, early strokes associated often with hypogammaglobulinemia. Pure red cell aplasia, thrombocytopenia, and neutropenia have been reported. The defect is due to biallelic loss of function of ADA2 gene, coding for a protein known to regulate the catabolism of extracellular adenosine. We therefore investigated immune phenotype and B- and T-cell responses in 14 DADA2 patients to address if ADA2 mutation affects B- and T-cell function. Here, we show a significant decrease in memory B cells, in particular class switch memory, and an expansion of CD21low B cells in DADA2 patients. In vitro stimulated B lymphocytes were able to secrete nonfunctional ADA2 protein, suggesting a cell intrinsic defect resulting in an impairment of B-cell proliferation and differentiation. Moreover, CD4+ and CD8+ T cells were diminished; however, the frequency of circulating T follicular helper cells was significantly increased but they had an impairment in IL-21 production possibly contributing to an impaired B cell help. Our findings suggest that ADA2 mutation could lead to a B-cell intrinsic defect but also to a defective Tfh cell function, which could contribute to the immunodeficient phenotype reported in DADA2 patients.


Subject(s)
Adenosine Deaminase/deficiency , Agammaglobulinemia/immunology , B-Lymphocytes/immunology , Intercellular Signaling Peptides and Proteins/deficiency , Severe Combined Immunodeficiency/immunology , T Follicular Helper Cells/immunology , Adenosine Deaminase/genetics , Adenosine Deaminase/immunology , Adolescent , Adult , Agammaglobulinemia/enzymology , Agammaglobulinemia/genetics , B-Lymphocytes/enzymology , B-Lymphocytes/pathology , Case-Control Studies , Cell Differentiation , Cell Proliferation , Child , Child, Preschool , Female , Humans , Immunologic Memory , Immunophenotyping , In Vitro Techniques , Infant , Infant, Newborn , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/immunology , Interleukins/biosynthesis , Lymphocyte Activation , Male , Mutation , Severe Combined Immunodeficiency/enzymology , Severe Combined Immunodeficiency/genetics , T Follicular Helper Cells/pathology
7.
Rheumatology (Oxford) ; 61(2): 696-704, 2022 02 02.
Article in English | MEDLINE | ID: mdl-33909886

ABSTRACT

OBJECTIVES: To test the usefulness of an extended panel of lymphocyte subsets in combination with Oliveira's diagnostic criteria for the identification of autoimmune lymphoproliferative syndrome (ALPS) in children referred to a paediatric rheumatology centre. METHODS: Patients referred from 2015 to 2018 to our rheumatology unit for an autoimmune or autoinflammatory condition were retrospectively analysed. Oliveira's required criteria [chronic lymphoproliferation and elevated double-negative T (DNT)] were applied as first screening. Flow cytometry study included double-negative CD4-CD8-TCRαß+ T lymphocytes (DNT), CD25+CD3+, HLA-DR+CD3+ T cells, B220+ T cells and CD27+ B cells. Data were analysed with a univariate logistic regression analysis, followed by a multivariate analysis. Sensitivity and specificity of the Oliveira's required criteria were calculated. RESULTS: A total of 264 patients were included in the study and classified as: (i) autoimmune diseases (n = 26); (ii) juvenile idiopathic arthritis (JIA) (35); (iii) monogenic systemic autoinflammatory disease (27); (iv) periodic fever, aphthous stomatitis, pharyngitis and adenitis syndrome (100); (v) systemic undefined recurrent fever (45); (vi) undetermined-systemic autoinflammatory disease (14); or (vii) ALPS (17). Oliveira's required criteria displayed a sensitivity of 100% and specificity of 79%. When compared with other diseases the TCRαß+B220+ lymphocytes were significantly increased in ALPS patients. The multivariate analysis revealed five clinical/laboratory parameters positively associated to ALPS: splenomegaly, female gender, arthralgia, elevated DNT and TCRαß+B220+ lymphocytes. CONCLUSIONS: Oliveira's required criteria are useful for the early suspicion of ALPS. TCRαß+B220+ lymphocytes should be added in the diagnostic work-up of patients referred to the paediatric rheumatology unit for a suspected autoimmune or autoinflammatory condition, providing a relevant support in the early diagnosis of ALPS.


Subject(s)
Autoimmune Diseases/diagnosis , Autoimmune Lymphoproliferative Syndrome/diagnosis , Hereditary Autoinflammatory Diseases/diagnosis , Age of Onset , Autoimmune Diseases/blood , Autoimmune Lymphoproliferative Syndrome/blood , CD4-CD8 Ratio , Child , Child, Preschool , Early Diagnosis , Female , Flow Cytometry , Hereditary Autoinflammatory Diseases/blood , Humans , Infant , Male , Receptors, Antigen, T-Cell, alpha-beta/blood , Retrospective Studies
8.
Brain ; 144(5): 1451-1466, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33855352

ABSTRACT

Abnormal gut motility is a feature of several mitochondrial encephalomyopathies, and mutations in genes such as TYMP and POLG, have been linked to these rare diseases. The human genome encodes three DNA ligases, of which only one, ligase III (LIG3), has a mitochondrial splice variant and is crucial for mitochondrial health. We investigated the effect of reduced LIG3 activity and resulting mitochondrial dysfunction in seven patients from three independent families, who showed the common occurrence of gut dysmotility and neurological manifestations reminiscent of mitochondrial neurogastrointestinal encephalomyopathy. DNA from these patients was subjected to whole exome sequencing. In all patients, compound heterozygous variants in a new disease gene, LIG3, were identified. All variants were predicted to have a damaging effect on the protein. The LIG3 gene encodes the only mitochondrial DNA (mtDNA) ligase and therefore plays a pivotal role in mtDNA repair and replication. In vitro assays in patient-derived cells showed a decrease in LIG3 protein levels and ligase activity. We demonstrated that the LIG3 gene defects affect mtDNA maintenance, leading to mtDNA depletion without the accumulation of multiple deletions as observed in other mitochondrial disorders. This mitochondrial dysfunction is likely to cause the phenotypes observed in these patients. The most prominent and consistent clinical signs were severe gut dysmotility and neurological abnormalities, including leukoencephalopathy, epilepsy, migraine, stroke-like episodes, and neurogenic bladder. A decrease in the number of myenteric neurons, and increased fibrosis and elastin levels were the most prominent changes in the gut. Cytochrome c oxidase (COX) deficient fibres in skeletal muscle were also observed. Disruption of lig3 in zebrafish reproduced the brain alterations and impaired gut transit in vivo. In conclusion, we identified variants in the LIG3 gene that result in a mitochondrial disease characterized by predominant gut dysmotility, encephalopathy, and neuromuscular abnormalities.


Subject(s)
DNA Ligase ATP/genetics , Gastrointestinal Diseases/genetics , Gastrointestinal Motility/genetics , Mitochondrial Encephalomyopathies/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Animals , Female , Gastrointestinal Diseases/pathology , Humans , Male , Mitochondrial Encephalomyopathies/pathology , Mutation , Pedigree , Zebrafish
9.
Brain ; 144(5): 1422-1434, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33970200

ABSTRACT

Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays.


Subject(s)
Oxygenases/genetics , Spastic Paraplegia, Hereditary/genetics , Animals , Female , Humans , Male , Mice , Mutation , Pedigree , Rats , Zebrafish
10.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36361767

ABSTRACT

The advent of Whole Genome Sequencing (WGS) broadened the genetic variation detection range, revealing the presence of variants even in non-coding regions of the genome, which would have been missed using targeted approaches. One of the most challenging issues in WGS analysis regards the interpretation of annotated variants. This review focuses on tools suitable for the functional annotation of variants falling into non-coding regions. It couples the description of non-coding genomic areas with the results and performance of existing tools for a functional interpretation of the effect of variants in these regions. Tools were tested in a controlled genomic scenario, representing the ground-truth and allowing us to determine software performance.


Subject(s)
Genomics , Software , Humans , Genomics/methods , Whole Genome Sequencing/methods , Genome , Genome, Human
11.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498862

ABSTRACT

In recent years, the knowledge about the immune-mediated impairment of bone marrow precursors in immune-dysregulation and autoimmune disorders has increased. In addition, immune-dysregulation, secondary to marrow failure, has been reported as being, in some cases, the most evident and early sign of the disease and making the diagnosis of both groups of disorders challenging. Dyskeratosis congenita is a disorder characterized by premature telomere erosion, typically showing marrow failure, nail dystrophy and leukoplakia, although incomplete genetic penetrance and phenotypes with immune-dysregulation features have been described. We report on a previously healthy 17-year-old girl, with a cousin successfully treated for acute lymphoblastic leukemia, who presented with leukopenia and neutropenia. The diagnostic work-up showed positive anti-neutrophil antibodies, leading to the diagnosis of autoimmune neutropenia, a slightly low NK count and high TCR-αß+-double-negative T-cells. A next-generation sequencing (NGS) analysis showed the 734C>A variant on exon 6 of the TINF2 gene, leading to the p.Ser245Tyr. The telomere length was short on the lymphocytes and granulocytes, suggesting the diagnosis of an atypical telomeropathy showing with immune-dysregulation. This case underlines the importance of an accurate diagnostic work-up of patients with immune-dysregulation, who should undergo NGS or whole exome sequencing to identify specific disorders that deserve targeted follow-up and treatment.


Subject(s)
Dyskeratosis Congenita , Neutropenia , Humans , Dyskeratosis Congenita/genetics , Telomere , Exons , Neutropenia/genetics , Bone Marrow , Telomere-Binding Proteins/genetics
12.
Clin Immunol ; 231: 108837, 2021 10.
Article in English | MEDLINE | ID: mdl-34455097

ABSTRACT

RAS-associated autoimmune leukoproliferative disease (RALD) is a rare immune dysregulation syndrome caused by somatic gain-of-function mutations of either NRAS or KRAS gene in hematopoietic cells. We describe a 27-year-old patient presenting at 5 months of age with recurrent infections and generalized lymphadenopathy who developed a complex multi-organ autoimmune syndrome with hypogammaglobulinemia, partially controlled with oral steroids, hydroxichloroquine, mofetil mycophenolate and IVIG prophylaxis. Activation of type I interferon pathway was observed in peripheral blood. Since 18 years of age, the patient developed regenerative nodular hyperplasia of the liver evolving into hepatopulmonary syndrome. Whole exome sequencing analysis of the peripheral blood DNA showed the NRAS p.Gly13Asp mutation validated as somatic. Our report highlights the possibility of detecting somatic NRAS gene mutations in patients with inflammatory immune dysregulation and type I interferon activation.


Subject(s)
Autoimmune Lymphoproliferative Syndrome/genetics , Autoimmune Lymphoproliferative Syndrome/immunology , GTP Phosphohydrolases/genetics , Interferon Type I/immunology , Liver Diseases/genetics , Membrane Proteins/genetics , Adult , Autoimmune Lymphoproliferative Syndrome/complications , Humans , Liver Diseases/immunology , Mutation
13.
Genet Med ; 23(9): 1656-1663, 2021 09.
Article in English | MEDLINE | ID: mdl-33958749

ABSTRACT

PURPOSE: CCHS is an extremely rare congenital disorder requiring artificial ventilation as life support. Typically caused by heterozygous polyalanine repeat expansion mutations (PARMs) in the PHOX2B gene, identification of a relationship between PARM length and phenotype severity has enabled anticipatory management. However, for patients with non-PARMs in PHOX2B (NPARMs, ~10% of CCHS patients), a genotype-phenotype correlation has not been established. This comprehensive report of PHOX2B NPARMs and associated phenotypes, aims at elucidating potential genotype-phenotype correlations that will guide anticipatory management. METHODS: An international collaboration (clinical, commercial, and research laboratories) was established to collect/share information on novel and previously published PHOX2B NPARM cases. Variants were categorized by type and gene location. Categorical data were analyzed with chi-square and Fisher's exact test; further pairwise comparisons were made on significant results. RESULTS: Three hundred two individuals with PHOX2B NPARMs were identified, including 139 previously unreported cases. Findings demonstrate significant associations between key phenotypic manifestations of CCHS and variant type, location, and predicted effect on protein function. CONCLUSION: This study presents the largest cohort of PHOX2B NPARMs and associated phenotype data to date, enabling genotype-phenotype studies that will advance personalized, anticipatory management and help elucidate pathological mechanisms. Further characterization of PHOX2B NPARMs demands longitudinal clinical follow-up through international registries.


Subject(s)
Genes, Homeobox , Homeodomain Proteins , Genetic Association Studies , Homeodomain Proteins/genetics , Humans , Hypoventilation/congenital , Mutation , Sleep Apnea, Central
14.
Mol Genet Metab ; 134(4): 353-358, 2021 12.
Article in English | MEDLINE | ID: mdl-34865968

ABSTRACT

Alexander disease (AxD) is a leukodystrophy that primarily affects astrocytes and is caused by dominant variants in the Glial Fibrillary Acidic Protein gene. Three main classifications are currently used, the traditional one defined by the age of onset, and two more recent ones based on both clinical features at onset and brain MRI findings. In this study, we retrospectively included patients with genetically confirmed pediatric-onset AxD. Twenty-one Italian patients were enrolled, and we revised all their clinical and radiological data. Participants were divided according to the current classification systems. We qualitatively analyzed data on neurodevelopment and neurologic decline in order to identify the possible trajectories of the evolution of the disease over time. One patient suffered from a Neonatal presentation and showed a rapidly evolving course which led to death within the second year of life (Type Ia). 16 patients suffered from the Infantile presentation: 5 of them (here defined Type Ib) presented developmental delay and began to deteriorate by the age of 5. A second group (Type Ic) included patients who presented a delay in neuromotor development and started deteriorating after 6 years of age. A third group (Type Id) included patients who presented developmental delay and remained clinically stable beyond adolescence. In 4 patients, the age at last evaluation made it not possible to ascertain whether they belonged to Type Ic or Id, as they were too young to evaluate their neurologic decline. 4 patients suffered from the Juvenile presentation: they had normal neuromotor development with no or only mild cognitive impairment; the subsequent clinical evolution was similar to Type Ic AxD in 2 patients, to Id group in the other 2. In conclusion, our results confirm previously described findings about clinical features at onset; based on follow-up data we might classify patients with Type I AxD into four subgroups (Ia, Ib, Ic, Id). Further studies will be needed to confirm our results and to better highlight the existence of clinical and neuroradiological prognostic factors able to predict disease progression.


Subject(s)
Alexander Disease/complications , Adolescent , Adult , Alexander Disease/classification , Child , Child, Preschool , Disease Progression , Female , Glial Fibrillary Acidic Protein/genetics , Humans , Infant , Infant, Newborn , Male , Mutation , Retrospective Studies , Young Adult
15.
Clin Genet ; 99(3): 430-436, 2021 03.
Article in English | MEDLINE | ID: mdl-33294969

ABSTRACT

Variants in the ACTG2 gene, encoding a protein crucial for correct enteric muscle contraction, have been found in patients affected with chronic intestinal pseudo-obstruction, either congenital or late-onset visceral myopathy, and megacystis-microcolon-intestinal hypoperistalsis syndrome. Here we report about ten pediatric and one adult patients, from nine families, carrying ACTG2 variants: four show novel still unpublished missense variants, including one that is apparently transmitted according to a recessive mode of inheritance. Four of the remaining five probands carry variants affecting arginine residues, that have already been associated with a severe phenotype. A de novo occurrence of the variants could be confirmed in six of these families. Since a genotype-phenotype correlation is affected by extrinsic factors, such as, diagnosis delay, quality of clinical management, and intra-familial variability, we have undertaken 3D molecular modeling to get further insights into the effects of the variants here described. The present findings and further ACTG2 testing of patients presenting with intestinal pseudo-obstruction, will improve our understanding of visceral myopathies, including implications in the prognosis and genetic counseling of this set of severe disorders.


Subject(s)
Actins/genetics , Genetic Variation , Intestinal Pseudo-Obstruction/genetics , Actins/chemistry , Alleles , Amino Acid Substitution , Child , Child, Preschool , Female , Genetic Association Studies , Humans , Inheritance Patterns , Intestinal Pseudo-Obstruction/diagnosis , Male , Middle Aged , Models, Molecular , Molecular Diagnostic Techniques , Mutation, Missense , Phenotype , Prognosis , Severity of Illness Index
16.
Am J Hematol ; 96(9): 1077-1086, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34000087

ABSTRACT

The differential diagnosis of marrow failure (MF) is crucial in the diagnostic work-up, since genetic forms require specific care. We retrospectively studied all patients with single/multi-lineage MF evaluated in a single-center to identify the type and incidence of underlying molecular defects. The diepoxybutane test was used to screen Fanconi Anemia. Other congenital MFs have been searched using Sanger and/or Next Generation Sequencing analysis, depending on the available tools over the years. Between 2009-2019, 97 patients (aged 0-32 years-median 5) with single-lineage (29%) or multilineage (68%) MF were evaluated. Fifty-three (54%) and 28 (29%) were diagnosed with acquired and congenital MF, respectively. The remaining 16 (17%), with trilinear (n=9) and monolinear (n=7) MF, were found to have an underlying primary immunodeficiency (PID) and showed clinical and biochemical signs of immune-dysregulation in 10/16 (62%) and in 14/16 (87%) of cases, respectively. Clinical signs were also found in 22/53 (41%) and 8/28 (28%) patients with idiopathic and classical cMF, respectively. Eight out of 16 PIDs patients were successfully transplanted, four received immunosuppression, two did not require treatment, and the remaining two died. We show that patients with single/multi-lineage MF may have underlying PIDs in a considerable number of cases and that MF may represent a relevant clinical sign in patients with PIDs, thus widening their clinical phenotype. An accurate immunological work-up should be performed in all patients with MF, and PID-related genes should be considered when screening MF in order to identify disorders that may receive targeted treatments and/or appropriate conditioning regimens before transplant.


Subject(s)
Bone Marrow Failure Disorders/genetics , Bone Marrow/pathology , Primary Immunodeficiency Diseases/genetics , Adolescent , Adult , Bone Marrow/metabolism , Bone Marrow Failure Disorders/pathology , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Primary Immunodeficiency Diseases/pathology , Retrospective Studies , Young Adult
17.
Pediatr Nephrol ; 36(10): 3151-3158, 2021 10.
Article in English | MEDLINE | ID: mdl-33834290

ABSTRACT

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) have been underestimated in Hirschsprung disease (HSCR). This paper aims at reporting results of patients with HSCR who underwent kidney and urinary tract assessment. METHODS: Patients seen between December 2005 and November 2020 underwent a complete kidney and urinary tract diagnostic workup. Data regarding CAKUT, gender, length of aganglionosis, familial history, HSCR-associated enterocolitis (HAEC), RET genotype, and outcome were collected. RESULTS: Out of 472 patients, 280 completed the workup and represented the focus. Male to female ratio was 3.24:1. Familial cases accounted for 9.8% of patients. RET mutations were detected in 19.8%. We encountered a total of 61 patients with 70 nephrological issues (21.8%), including 28 hypoplasia/dysplasia, 12 hydronephrosis, 11 vesicoureteric reflux, 7 duplex collecting system, 2 kidney agenesis, 2 horseshoe kidney, and 8 miscellanea, involving 91 kidneys without side preponderance (50 right, 41 left). Of these 61 patients, 20 (7.1% of the whole series) required medical or surgical treatment. When comparing patients with and without CAKUT, familial history proved to occur with a significantly lower frequency in the former as did better patient perspectives of outcome. CONCLUSIONS: We confirmed that all diagnostic workups in HSCR should include a complete kidney and urinary tract diagnostic workup. Our study suggests that genes other than RET could play a role in determining CAKUT. Given worse patient perspectives of outcome, CAKUT seems to significantly interfere with quality of life thus confirming the need for early diagnosis and tailored prevention strategies.


Subject(s)
Urinary Tract , Urogenital Abnormalities , Female , Hirschsprung Disease/diagnosis , Hirschsprung Disease/genetics , Humans , Kidney/abnormalities , Male , Quality of Life , Urogenital Abnormalities/epidemiology , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux
18.
J Pediatr Hematol Oncol ; 43(8): e1168-e1172, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-33625086

ABSTRACT

BACKGROUND: Functional variants of the cytotoxic T-lymphocyte antigen-4 (CTLA4) could contribute to the pathogenesis of disorders characterized by abnormal T-cell responses. CASE PRESENTATION: We report a case of a 13-year-old girl who first presented with polyarticular juvenile idiopathic arthritis poorly responsive to treatment. During the following years the patient developed cytopenias, chronic lymphoproliferation, high values of T-cell receptor αß+ CD4- CD8- double-negative T cells and defective Fas-mediated T cells apoptosis. Autoimmune lymphoproliferative syndrome was diagnosed and therapy with mycophenolate mofetil was started, with good hematological control. Due to the persistence of active polyarthritis, mycophenolate mofetil was replaced with sirolimus. In the following months the patient developed hypogammaglobulinemia and started having severe diarrhea. Histologically, duodenitis and chronic gastritis were present. Using the next generation sequencing-based gene panel screening, a CTLA4 mutation was detected (p.Cys58Serfs*13). At the age of 21 the patient developed acute autoimmune hemolytic anemia; steroid treatment in combination with abatacept were started with clinical remission of all symptoms, even arthritis. CONCLUSIONS: Targeted immunologic screening and appropriate genetic tests could help in the diagnosis of a specific genetically mediated immune dysregulation syndrome, allowing to select those patients who can take advantage of target therapy, as in the case of abatacept in CTLA4 deficiency.


Subject(s)
Abatacept/therapeutic use , Arthritis, Juvenile/drug therapy , Autoimmune Lymphoproliferative Syndrome/drug therapy , CTLA-4 Antigen/deficiency , Immune Checkpoint Inhibitors/therapeutic use , Mutation , Adolescent , Arthritis, Juvenile/complications , Arthritis, Juvenile/pathology , Autoimmune Lymphoproliferative Syndrome/complications , Autoimmune Lymphoproliferative Syndrome/pathology , CTLA-4 Antigen/genetics , Female , Humans , Prognosis
19.
Rheumatol Int ; 41(1): 173-181, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31062074

ABSTRACT

Blau syndrome is a rare autosomal dominant monogenic auto-inflammatory disorder characterized by triad of granulomatous polyarthritis, dermatitis, and uveitis. However, it may be difficult to recognize this syndrome in the absence of all three characteristic clinical manifestations. A 3-year-old girl presented with early onset symmetric polyarthritis and developed granulomatous uveitis at 13 years of age. However, Blau syndrome was suspected at 21 years of age when she was diagnosed to have disseminated granulomas in liver and kidneys. Diagnosis of Blau syndrome was confirmed by finding a mutation in NOD2 gene (p.Arg334Gln; FP2678). She was initiated on adalimumab therapy and she showed good response to this treatment. We did a literature search to find out all reported cases of Blau syndrome with disseminated granulomatous inflammation and all cases of Blau syndrome that were treated with adalimumab therapy. Seventeen patients with Blau syndrome have been reported to have granulomas at unusual locations (liver; kidneys; lungs; salivary glands; intestine; and lymph nodes). Adalimumab has been reported to be used in 33 patients with Blau syndrome. The indication to initiate adalimumab in large majority of these patients was persistence of uveitis. A possibility of Blau syndrome should be considered in all children presenting with early onset arthritis (especially with the presence of boggy swelling) and granulomatous uveitis. Granulomas in the liver and kidney are uncommon disease manifestations. Adalimumab may be an effective treatment for patients with Blau syndrome who are resistant to other forms of therapy.


Subject(s)
Adalimumab/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis/drug therapy , Sarcoidosis/drug therapy , Synovitis/drug therapy , Uveitis/drug therapy , Arthritis/diagnosis , Child, Preschool , Female , Humans , Sarcoidosis/diagnosis , Synovitis/diagnosis , Uveitis/diagnosis
20.
J Allergy Clin Immunol ; 145(1): 368-378.e13, 2020 01.
Article in English | MEDLINE | ID: mdl-31194989

ABSTRACT

BACKGROUND: Cryopyrin-associated periodic syndromes (CAPS) are a group of autoinflammatory diseases linked to gain-of-function mutations in the NOD-like receptor family, pyrin domain containing 3 (NLRP3) gene, which cause uncontrolled IL-1ß secretion. Proton pump inhibitors (PPIs), which are commonly used as inhibitors of gastric acid production, also have anti-inflammatory properties, protect mice from sepsis, and prevent IL-1ß secretion by monocytes from patients with CAPS. OBJECTIVE: We sought to develop a novel Nlrp3 knock-in (KI) mouse model of CAPS to study amyloidosis, a severe CAPS complication, and test novel therapeutic approaches. METHODS: We generated KI mice by engineering the N475K mutation, which is associated with the CAPS phenotype, into the mouse Nlrp3 gene. KI and wild-type mice received PPIs or PBS intraperitoneally and were analyzed for survival, inflammation, cytokine secretion, and amyloidosis development. RESULTS: Mutant Nlrp3 KI mice displayed features that recapitulate the immunologic and clinical phenotype of CAPS. They showed systemic inflammation with high levels of serum proinflammatory cytokines, inflammatory infiltrates in various organs, and amyloid deposits in the spleen, liver, and kidneys. Toll-like receptor stimulated macrophages from KI mice secreted high levels of IL-1ß, IL-18, and IL-1α but low amounts of IL-1 receptor antagonist. Treatment of KI mice with PPIs had a clear clinical effect, showing a reduction in inflammatory manifestations, regression of amyloid deposits, and normalization of proinflammatory and anti-inflammatory cytokine production by macrophages. CONCLUSION: Nlrp3 KI mice displayed a CAPS phenotype with many characteristics of autoinflammation, including amyloidosis. The therapeutic effectiveness of PPIs associated with a lack of toxicity indicates that these drugs could represent relevant adjuvants to the anti-IL-1 drugs in patients with CAPS and other IL-1-driven diseases.


Subject(s)
Amyloidosis , Cryopyrin-Associated Periodic Syndromes , NLR Family, Pyrin Domain-Containing 3 Protein , Proton Pump Inhibitors/pharmacology , Amyloidosis/drug therapy , Amyloidosis/genetics , Amyloidosis/immunology , Animals , Cryopyrin-Associated Periodic Syndromes/drug therapy , Cryopyrin-Associated Periodic Syndromes/genetics , Cryopyrin-Associated Periodic Syndromes/immunology , Cryopyrin-Associated Periodic Syndromes/pathology , Disease Models, Animal , Gene Knock-In Techniques , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Mice , Mice, Mutant Strains , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology
SELECTION OF CITATIONS
SEARCH DETAIL