Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pharmaceutics ; 16(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399298

ABSTRACT

Decades of pharmacogenetic research have revealed genetic biomarkers of clinical response to antipsychotics. Genetic variants in antipsychotic targets, dopamine and serotonin receptors in particular, and in metabolic enzymes have been associated with the efficacy and toxicity of antipsychotic treatments. However, genetic prediction of antipsychotic response based on these biomarkers is far from accurate. Despite the clinical validity of these findings, the clinical utility remains unclear. Nevertheless, genetic information on CYP metabolic enzymes responsible for the biotransformation of most commercially available antipsychotics has proven to be effective for the personalisation of clinical dosing, resulting in a reduction of induced side effects and in an increase in efficacy. However, pharmacogenetic information is rarely used in psychiatric settings as a prescription aid. Lack of studies on cost-effectiveness, absence of clinical guidelines based on pharmacogenetic biomarkers for several commonly used antipsychotics, the cost of genetic testing and the delay in results delivery hamper the implementation of pharmacogenetic interventions in clinical settings. This narrative review will comment on the existing pharmacogenetic information, the clinical utility of pharmacogenetic findings, and their current and future implementations.

2.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38794134

ABSTRACT

Polypharmacy is a global healthcare concern, especially among the elderly, leading to drug interactions and adverse reactions, which are significant causes of death in developed nations. However, the integration of pharmacogenetics can help mitigate these risks. In this study, the data from 483 patients, primarily elderly and polymedicated, were analyzed using Eugenomic®'s personalized prescription software, g-Nomic®. The most prescribed drug classes included antihypertensives, platelet aggregation inhibitors, cholesterol-lowering drugs, and gastroprotective medications. Drug-lifestyle interactions primarily involved inhibitions but also included inductions. Interactions were analyzed considering gender. Significant genetic variants identified in the study encompassed ABCB1, SLCO1B1, CYP2C19, CYP2C9, CYP2D6, CYP3A4, ABCG2, NAT2, SLC22A1, and G6PD. To prevent adverse reactions and enhance medication effectiveness, it is strongly recommended to consider pharmacogenetics testing. This approach shows great promise in optimizing medication regimens and ultimately improving patient outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL